The present invention relates to an improved system and method for preventing condensate drain pan flooding using a liquid biocide or other liquid line cleaning solution (also collectively to be considered as “clog-clearing liquid”) dispersion to prevent clogging due to biological formation in either the condensate drain pan or the condensate drain line, and for detecting condensate water overflow and shutting the heat pump or air conditioner off to prevent further flooding in the event drain lines become plugged for any reason.
Biocide tablets or chemical line cleaning solution such as those discussed in U.S. Pat. No. 6,303,039 are commonly placed into a condensate drain pan or in a tablet dispenser. For example, U.S. Pat. No. 7,740,025 describes locating the tablets in the condensate drain line where they dissolve and prevent biological formation. Unfortunately, these tablets typically dissolve far too quickly, having been totally dissolved in hours or days but certainly not lasting weeks or months. Furthermore, even if the tables dissolve slowly over a period of months, the concentration of the biocide in the tablets typically will be too dilute to provide a desired biocide disinfection unless the biocide tablets when first used were impractically large. Another issue with biocide tablets is that they must be secured or weighted to prevent them from flowing into the flow path and restricting the condensate flow to the point of plugging the drain flow path.
Ideally a biocide or other line cleaning treatment, should last a minimum of the air conditioning season. An even better result would be a tablet that can last for a year, that is typically until the next annual AC check-up. It is also far better to locate the biocide treatment, such as a biocide tablet, in the condensate pan, rather than the condensate line because location of the biocide tablet in the pan allows both the pan and the lines to be treated for biological growth. Furthermore, biological growth in the pan means that potentially harmful biological allergens are continuously exposed to the conditioned air flowing in the house.
Although placing the biocide directly into the drain pan rather than the drain line is clearly preferred, a homeowner may not be willing or capable of unscrewing and opening a sheet metal panel of the air conditioner to place a tablet into the pan at some common interval, e.g. monthly.
It is well also known in the art to place a float switch in at least one of the condensate pan, the condensate drain line, the condensate overflow port, or a secondary containing pan and/or to place a moisture indicating switch in at least one of the condensate overflow port, secondary containing pan or the floor under the air handler of the air conditioner to assure that the air conditioner or the compressor of the air conditioner is deactivated should the condensate water back up and activate one of these types of alarm switches due to a failure of the condensate to properly drain. The float switch is typically a magnetic reed switch surrounded by a magnet in a float, configured so that once the liquid level rises the reed switch opens and the low-voltage circuit controlling the power to the entire air conditioner or the power to the compressor is opened. The moisture indicating switch is typically a form of electrical conductivity probe where electrically conductivity between electrodes indicates the presence of water across the probes, and then low-voltage circuit is opened to deactivate the air conditioning system. Either way, these switches are used to stop the cooling action of the air conditioner and thereby prevent the formation of additional condensate as well as prevent any flooding or additional flooding. One such float switch is the “SAFE-T-Switch” (http://www.rectorseal.com/safe-t-switch-model-ss2/) manufactured by Rectorseal (Houston, Tex.).
There are some disadvantages to the use of such float switches. For example; biological growth sometimes impedes the switch's free movement so the float is restrained from floating and the unit is not shut off to prevent an overflow. The movement of the float which is necessary to open the switch occasionally exceeds the pan height or the float is improperly adjusted, with the result that the water overflows before the float rises sufficiently to turn the unit off. This is, of course, the reason why a secondary float switch is used and is mandatory in some jurisdictions.
A conductivity detecting circuit, referred to as a moisture or water indicating switch or water-detecting switch, has been employed in which the presence of water across two electrodes completes a circuit and shuts off the air conditioner or compressor. Although mounting of a float switch is typically more involved than that of such circuits, the challenge with the latter, however, is to provide a device that is as cost competitive as a conventional float switch.
A secondary float switch is sometimes located in a secondary pan under the air handler. This configuration can be impractical where the air handler flow direction is upwards from below, making it difficult to place a secondary pan in this air flow path to catch any overflow of water. In those cases, a moisture- or water-indicating sensor is commonly used. This type of sensor is activated by the presence of water and is typically located on the on the floor either below or adjacent to the air conditioner's air handler like the conductivity detecting circuit previously discussed. The moisture or water indicating sensor serves as a back-up technique to detect any condensate water that might be leaking out of the air conditioner. They are typically some form of a conductivity sensor surrounded by a wicking material to accumulate the water around the two electrodes of the conductivity sensor. One such water detecting switch is the Wet Switch® which is manufactured by Diversitech (Duluth, Ga.) described on its website (http://media.diversitech.com/doc/DOC00015.pdf) as a solid state device designed to detect the presence of condensate water overflow.
A first object of the present invention is to provide a low-cost way to dispense a periodic shock loading and/or an intermittent or continuous preventative dosage of a biocide or other liquid line cleaning solution into the vapor compression system, where the quantity of liquid cleaning solution being dispensed can be optionally adjusted when a blockage is detected.
A second object of the present invention is to provide a low-cost way to provide an accurate and controlled release of biocide or other liquid line cleaning solution into the vapor compression system.
A third another object of the present invention is to provide a method of releasing the biocide or other liquid line cleaning solution into the vapor compression system at a time when dilution of the cleaning solution by the condensate flow will be minimized, such as when the air conditioner's cooling operation is just beginning.
A fourth object of the present invention is to combine a high condensate alarm, secondary water overflow alarm and anti-clogging biocide or other liquid line cleaning solution dispersion into a single electronic device to reduce cost and simplify installation.
A fifth object of the present invention is to provide a system that will advantageously deliver the biocide directly by any route to the condensate pan such as through the main condensate drain line, the overflow drain line, or other simple ingress path to the condensate pan like a drilled hole. While our currently preferred approach is to deliver the biocide through the drain line, one skilled in the art with the benefit of our teachings would now understand that numerous piping connections could be used to route the flowing liquid condensate to the drain pan without significant or costly modifications to the air handler within the scope of our invention.
A sixth object of the present invention is to automatically prevent biological formation and protection, for extended periods of time without user intervention, thereby eliminating the need to repeatedly place any biocide or other liquid line cleaning solution product in the drain line, in an in-line dispenser, or directly in the condensate pan and without the need to remove any panels on the unit.
A seventh object of the present invention is to provide a variable and adjustable quantity dispersion method for the biocide or other liquid line cleaning solution chemical such that a lethal concentration is provided when needed as determined by the status of the overflow protection sensor, lower dosages are dispersed for preventative purposes and no biocide is dispersed at other times.
An eight object of the present invention is to integrate the liquid line cleaning solution dispersion with primary condensate overflow protection using a singular connection to the drain pain, using either the secondary overflow connection or the primary flow connection.
A ninth object of the present invention is to integrate secondary condensate overflow protection into the device using one of a sensor in the secondary overflow connection, in the secondary drain pan or on the floor surface below the air conditioner.
A tenth object of the present invention is to prevent false alarms of water overflow, such as condensate, from unnecessarily halting the cooling operation of the air conditioner or the humidifier.
An eleventh object of the present invention is to use the injection of the biocide or other liquid line cleaning solution, when an overflow condition is detected, in an effort to clear a clogged flow path. We have recognized that if both secondary and primary overflow are monitored separately and the primary overflow sensor has detected water, then in addition to stopping operation of the unit, the injection of clog clearing solution is continued for an additional dose of cleaner up to a maximum dosage which is determined by the detection of moisture at the secondary overflow sensor. Use of the secondary sensor to detect overflow will maximize the quantity of clog-clearing cleaner used and increase the likelihood of clearing any clog in the flow path while keeping the unit from producing additional condensate since the unit is off. With no additional condensate being generated, the biocide is not further diluted.
A twelfth object of the present invention is to monitor for the overflow of the air conditioner condensate drain system and/or the heating or humidifier system. The present invention allows any desired number of low-cost additional conductivity sensors to be placed in overflow locations of the heating and/or cooling systems, all wired in parallel, to shut off either humidification operation during heating season and/or cooling operation, and to dose additional biocide or other liquid line cleaning solution if water is detected.
A thirteenth object of the present invention is to prevent false alarms caused by moisture or water droplets bridging the moisture detecting electrodes, namely that condensate overflow is being detected at the sensor location. One method to achieve this object is to use more than two conductivity electrodes (wired in series or monitored separately), a second method is to provide a more tortuous path for the liquid water to reach one or more of the electrodes, and a third method is to exploit the differential pressure that exists between the drain pan and the interior of the home to flow air over one or more electrodes to prevent the accumulation of moisture on the electrodes that could result in false alarms.
These and other objects, features and advantages of the present invention will become more apparent from the following detailed description thereof when taken in conjunction with the accompanying drawings wherein:
Referring now to
In general, the use of a pump instead of a solenoid valve can provide a far more accurate dosage when the diameter and length of hoses 104, 114 as well as the hose flow path, elevation of the dispensing tank (relative to the dispensing fitting 120) and other installation variables are considered as well as other fluid flow considerations, such a viscosity changes with temperature and viscosity of different biocides to name just a few. It is also well known in the art that a positive displacement pump, or some other metering pump can provide the most exact and prescribed flow rate especially in conjunction with a feedback control so that the exact dosage is always known. However, to reduce cost, and because utmost accuracy is not needed, other lower-cost pumps are anticipated for this application. In our preferred embodiment, a peristaltic pump is contemplated, since the biocide fluid then only contacts the tubing and no moving parts of the pump, except the tubing which is being squeezed, is exposed to the fluid.
Having explained the present invention thus far, it should now be clear to one skilled in the art that the moisture sensor with the biocide dispensing tube 120 can be connected to either the primary or secondary drain pan access fittings or the condensate drain line itself with a plumbing tee fitting as shown in
When electrical conductivity across the two electrodes 105 is detected by the electronic circuit 102, a switch or contact in the electronic control 102 is opened to open a low-voltage control circuit of the existing air conditioner, furnace or heat pump unit shutting off the unit and stopping the production of additional condensate or humidifier water. The specific control circuit that is interrupted can be either the low-voltage control circuit controlling the contactor (relay) for the compressor or all low-voltage power to air conditioner, humidifier, dehumidifier, furnace, heat pump or the like, which generates water, such as condensate from the air conditioner or water for the humidifier in the case of a furnace with humidifier. The operation of the low voltage control circuit and methods to open the circuit to either stop the compressor or stop all operation of the air conditioner or furnace are well known in the art.
The control electronics 102 can be continually powered by a low-voltage 24 VAC transformer of the control circuit of the air conditioner system (anytime the AC air handler unit is powered) or the control electronics 102 can be powered only when a low voltage control signal is sent to activate the compressor contactor (relay), that is for example when the “Y” or yellow compressor control circuit is activated in an air conditioner or heat pump. The control electronics 102 can be equipped with a battery, capacitor or the like to keep the timing circuit or clock operating even if the control electronics 102 are not powered in order to maintain the timing interval for dosing biocide.
The control electronics 102 can be wired into the air conditioner's low voltage control circuit to cut power to the entire control circuit or only to the compressor anytime conductivity is detected across any number of pairs of electrodes which are wired in parallel or any number of separate inputs designed into the control electronics, or a combination of both. In either case, the control electronics 102 can contain a timer which is continually powered as discussed above to assure that the biocide is dosed at a prescribed interval, e.g., no more frequently than once per month, if the air conditioner is activated (or the heat pump in cooling mode is activated) and not at all if the air conditioner is never activated such as during the winter months when heat is activated or the heat pump is in heating mode. Alternatively, the discharge of a battery or capacitor can be used to determine if a sufficient time has passed when the control electronics are once-again reactivated by low-voltage being applied to a control line, such as the Y compressor activation control circuit. That is, when the control electronics are reactivated by the control circuit and if the capacitor or battery is discharged, the control electronics can assume significant time has passed for the next dose to be administered.
Monthly biocide dosing is currently our preferred timing frequency. Of course, in geographical areas where biological growth is more active (such as warmer climates) the timing could be every two weeks or even every few days (even if only for certain periods of the year). The frequency of biocide dosing and the quantity of biocide distributed during a single dose could be adjusted depending not only on the time of the year but also depending on the outdoor temperature, i.e., more frequently during the warmest part of the year when biological growth is worse. We also contemplate that a user input could be made available where the user can adjust the frequency and/or quantity of biocide dosage by adjusting a control such as one or more potentiometers (e.g., duration and frequency) in the control electronics 102.
One or more additional pairs of electrodes 108 can be wired in parallel to the wiring 109 and therefore electrically in parallel to electrodes 105 shown in
It is important to also understand that the biocide shock treatment effect is mitigated by the quantity (volume) of condensate in the condensate drain pan and the condensate plumbing drain lines. Therefore, the ideal time to inject the biocide is at the start of any air conditioning cycle before condensate has a chance to form on the evaporator coils, since this is the period during the air conditioning cycle when the volume of condensate water in the pan is at a minimum. In this way, the biocide has minimal dilution with the condensate water in that the pan is essentially dry and, if not completely dry, any water that could have drained from the flow path or evaporated from the pan has already done so.
Injecting the biocide at a set frequency, such as monthly but only at the initiation of a thermostatic call for cooling, also provides the potential to clear a clogged line. If the condensate flow path is clogged and keeping the unit from operating, the biocide dosage might clear any clog, and the location of the high-condensate level shut off in the primary condensate drain line can be selected so that the additional small volume of the biocide liquid (on the order of several ounces) is insufficient of a volume to cause an overflow. The logic of the control electronics can be such that if the primary and/or secondary condensate level conductivity electrodes detect water so that air conditioner operation is prevented, an additional dose of biocide is delivered even if the scheduled time to deliver the next dosage has not been reached. This added dosage of biocide may clear the blockage, allowing the unit to once again operate normally. If the primary and secondary conductivity electrodes are not wired in parallel but instead on separate conductivity detection circuits, then the biocide dose could be repeated or increased if overflow to the secondary detector (i.e., water detection at the secondary conductivity sensor) has not occurred. This would allow the biocide concentration to be increased even further with the goal of increasing the odds of clearing the blockage.
The operation of the heating system or the operation of the compressor in heating for a heat pump need not be deactivated, since condensate is not formed in the indoor unit (air handler) during heating. However, to reduce cost and simplify installation, our currently preferred embodiment defeats the air conditioner, heat pump or even if desired a heating operation anytime water is detected at the primary or secondary conductivity electrodes. The moisture sensing system shut off detectors, i.e., the electrodes 105 and 106, could be used to deactivate the heating system humidifier or the entire heating system if an overflow due to faulty operation of the humidifier or failure of the humidifier to property drain should occur. The same control electronics 102 can also monitor for overflow of the air conditioner condensate drain system and/or the heating or humidifier system. One skilled in the art will appreciate that any number of additional conductivity sensors such as 18″ shown in
A conductivity sensor to determine the presence of water, as opposed to a float switch, has the potential for false alarms caused by a small layer or droplet of water that spans between the two electrodes and thereby provides electrical conductivity even though there is essentially no water surrounding the sensor. One way to prevent such false alarms is to use more than just two conductivity electrodes (one sensor), instead using for example two sensors, which could be done with three electrodes (A, B, C), all on or near the same elevation. Then if conductivity is discovered found between all three combinations, i.e., conductivity between A-B, B-C and A-C, then the presence of moisture is far more probable. In addition, to provide a more tortuous path for the liquid water, one or more of the electrodes can be recessed rather that exposed. This will make it less likely that moisture will splash onto that electrode in the same fashion as the other electrodes. For example, if two sensors are located in the sensor housing (120 of
We have also discovered that a superior method to assure that at least one common electrode is prevented from having a residual layer or drop of moisture on the sensor is to allow, using the natural pressure drop that exists between the inside and outside of the air handler, a small quantity of air flow along the electrode pathway in order to keep it dry or free from any residual moisture. The differential pressure that exists between the drain pan and the interior of the conditioned space, (i.e. the house) is caused by the pressure drop of the air flowing through the inlet grill, inlet ductwork and filter and into the region just upstream of the coil. The pressure of the exterior space around the air handler is at a slightly higher pressure than just inside the air handler. By locating a small air flow passageway from the outside to inside in the moisture detecting electrode fitting the electrode surface is therefore swept by a flow of air whenever the air handler is operational, thereby serving to keep the electrode free from any residual water.
Referring now more specifically to
When 24 volts AC is applied to the Y_IN and B terminals from a system control transformer (not shown), the voltage is rectified and filtered to create a raw DC voltage using resistor R1, diode D1, and capacitor C1, which is well known in the art. This raw DC supplies the power to the moisture sensing circuits.
E1, E2, and E3 are electrodes in water sensor S1 and E2 is the common electrode. The electrodes E1, E2 and E3 could, for example, equate to the electrodes 425, 325, 525, respectively, of
If the condensate bridges the gap between E2, E3 or between E5, E6, for example, then current through one or both of the emitter-follower amplifier circuits will increase. This will cause the current through resistor R5 to increase and the node that both resistors R5, R7 share will rise in voltage. When this voltage exceeds the forward voltage of the base-emitter junction of the transistor Q2, the latter will turn on and provide a path for emitter-base current to flow through transistor Q1 and latch both transistors Q1, Q2 on. This is the first water detecting latching circuit.
If the condensate bridges the gap between E1, E2 or between E4, E5, for example, then current through one or both of the emitter-follower amplifier circuits will increase causing the current through resistor R5a to increase, and the node that both resistors R5a, R7a share will have a voltage rise. When this voltage exceeds the forward voltage of the base-emitter junction of the transistor Q2a, it will turn on providing a path for emitter-base current to flow through transistor Q a and latch both transistors Q1a, Q2a on. This is the second water detecting latching circuit.
Only one of the latching circuits being energized means that only one pair of electrodes is bridged (showing conductivity between them) and not both pairs. As stated earlier, to prevent false alarms both pairs of electrodes (where E2, E5 are common to each of the two pairs) in a water sensor (or one pair from each water sensor, as discussed earlier, because of the parallel wiring arrangement) must be bridged.
When both latching circuits described above are energized, the latching circuits will cause the transistors Q3, Q4 to turn on and allow current to flow through the coil of relay K1. The normally closed contacts on K1 will open and turn off and open the Y_in −Y_out connection. The K1 contacts being wired in series with the low-voltage compressor control wire (typically referred to in the trade as the Yellow wire or “Y” wire) which activates the contactor (not shown) which, when closed, activates the vapor compression system compressor (not shown). Therefore, breaking the Y wire control circuit will shut off the compressor, thereby preventing any further production of condensate.
When used with a humidifier instead of a condensing unit, the wire in the circuit of
Q1, R2, R3, R4 and R5 make up a well-known emitter-follower amplifier which amplifies the current flowing from SEN+ to the SEN− terminals. C2 provides both a power on reset and slows the response of the emitter-follower amplifier. Q2, D2, R6, and R7 make up a latch circuit. Transistors Q3, Q4 drive the coil of K1.
K1 is a normally closed relay that switches the compressor control voltage flowing from the YIN terminal to the YOUT terminal. D3 is a free-wheeling diode which protects transistors Q3, Q4 from voltage kickback from the coil of relay K1. U1 is an AC-to-DC converter that takes in 24 VAC and provides a lower DC voltage to power the biocide pump BP1 (assuming the biocide pump is a DC pump as in this embodiment) and microprocessor U2. The microprocessor U2 is used among other things to; turn on/off relay K2 for controlling the biocide pump BP1, keep track of when and for how long to activate the biocide pump BP1 based on preprogrammed commands, record any alarms states and predict and avoid false alarms from keeping the air conditioner from operating.
For example, the microprocessor U2 can use an internal clock to determine if the air conditioner has not been used for a certain period of time. The microprocessor is powered from the low-voltage power (R and B terminals in
Examples of other intelligent decisions that could be programmed into the microprocessor U2 include how to deal with periodic water alarms. For example, if the water sensors are periodically turning the air conditioning unit off (due, say, to a water alarm) then back on again in some repeated fashion, this could signify a slow draining condensate drain line. That is, the air conditioner is producing more condensate than can flow out of the drain pan and out the condensate drain line system one possible cause being a restriction in the condensate drain line flow path caused by biological growth. The microprocessor U2 could then “shock” the condensate drain flow path with a dramatic increase the amount of biocide administered into the drain line, for clearing the line with the large one time increase biocide concentration.
As yet another example, the water sensors need not be wired in parallel as above described, but instead each circuit could individually alarm the microprocessor so that the microprocessor could detect which water sensor was providing the alarm as shown in
When 24 volts AC is applied to the Y_IN′ and B′ terminals from the system control transformer (not shown) in the circuit of
If the condensate bridges the gap between E2′, E3′ or between E5′, E6′, then current through one or both of the emitter-follower amplifier circuits will increase causing the current through resistor R5′ to increase, and the node that both resistors R5′, R7′ share will have a voltage rise. When this voltage exceeds the forward voltage of the base-emitter junction of the transistor Q2′, that transistor will turn on to provide a path for emitter-base current to flow through transistor Q1′ and latch both transistors Q1′, Q2′ on. When this happens, both latching circuits will turn on which is monitored by the digital input DI3′ of the microprocessor U2′.
Likewise, if the condensate bridges the gap between E1′, E2′ or between E4′, E5′, then current through one or both of the emitter-follower amplifier circuits will increase to cause the current through resistor R5a′ to increase, and the node that both resistors R5a′, R7a′ share will have a voltage rise. When this voltage exceeds the forward voltage of the base-emitter junction of the transistor Q2a′, that transistor will turn on to provide a path for emitter-base current to flow through transistor Q1a′ and latch both transistors Q1a′, Q2a′ on. When this occurs, both latching circuits will turn on which is monitored by the digital input DI2′ of microprocessor U2′.
The microprocessor U2′, thus having received alarm status on digital lines D12′ and DI3′, will open the normally closed contacts on K1′. That is, the microprocessor U2′ will open the Yin′−Yout′ connection. The K1′ contacts being wired in series with a low-voltage compressor control wire, the vapor compression system compressor (not shown) will be activated when the contactor is closed. Therefore, breaking the Y-wire control circuit will shut off the compressor, thereby preventing any further production of condensate.
When used with a humidifier instead of a condensing unit, the wire that would be wired into the Yin″−Yout connection in the circuit of
As in the circuit of
The microprocessors of
Another type of air conditioner or heat pump gaining wide acceptance is the mini-split. The mini-split air conditioner or heat pump is a smaller air conditioner typically used for cooling a single room (although it can be used with other mini-splits to cool multiple rooms). Unlike a conventional split-system air conditioner or heat pump where the air handler is large and located in an attic, closet or some other out of sight location, the mini-split air handler is located directly on the interior wall of the structure being conditioned. In a conventional split AC unit, the liquid dispenser and monitoring assembly of the present invention can be located out of sight along with the air handler. The mini-split air handler is in full sight, however, and the addition of the present invention to it, while still possible, could be considered an unsightly addition to the interior décor (on difficult to locate in a nearby closet for example). We have discovered how to employ the present invention at an alternate location and with a slightly modified configuration for mini-split and other similar applications.
The condensate drain line 353 inside the umbilical assembly exits outside the structure, so that the condensate 305 can drain to the ground outside the structure. Like other split system air conditioners, the condensate liquid flows by gravity and is easily clogged by biological growth. However, because the min-split is a smaller unit (both in terms of size and cooling capacity) the condensate drain line is also much smaller being typically only ⅜ or ⅝-inch inside diameter, making this small condensate line even more likely to clog when compared to the larger diameter drain lines used in traditional larger split-system air conditioning units.
If the prevent invention cannot be used in the previously described location, i.e., in an area near the condensate drain pan, or is simply unsightly in this location an alternative configuration can be employed. Of course, one skilled in the art will now understand that the present invention can be remotely located or located outside at the outdoor unit 303 of
In this alternative installation configuration, the liquid dispensing line 104 in
In the embodiment of
As discussed earlier, the control electronics of
Unlike the embodiment of our invention where the liquid line cleaning solution or biocide is introduced to the drain pan at the initialization of the cooling cycle, so that the strong cleaning solution would become minimally diluted but still flow with the condensate and in the same direction as the condensate, the embodiment of
As discussed previously, if the unit has not detected any liquid condensate after operating for a predetermined period and the line cleaning is to be initiated, the cooling operation is halted until the cleaning operation is completed. In this case, however, the pressure developed by the pump 103 of
While we have shown and described several embodiments in accordance with our invention, we do not intend to be limited to the details but rather intend to cover all changes and modifications that are fairly encompassed by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4787212 | Hessey | Nov 1988 | A |
4937559 | Meacham et al. | Jun 1990 | A |
4987408 | Barron | Jan 1991 | A |
4998412 | Bell | Mar 1991 | A |
5049801 | Potter | Sep 1991 | A |
5294916 | Bolton et al. | Mar 1994 | A |
5341673 | Burns et al. | Aug 1994 | A |
5428347 | Barron | Jun 1995 | A |
5445178 | Feuer | Aug 1995 | A |
5463377 | Kronberg | Oct 1995 | A |
5514344 | D'Agaro | May 1996 | A |
5522229 | Stuchlik, III | Jun 1996 | A |
5632904 | Samad et al. | May 1997 | A |
5755105 | Lacoste | May 1998 | A |
5859536 | Stockton | Jan 1999 | A |
5921094 | Bang et al. | Jul 1999 | A |
6041611 | Palmer | Mar 2000 | A |
6229229 | Sharp | May 2001 | B1 |
6303039 | Back et al. | Oct 2001 | B1 |
6487867 | Herren | Dec 2002 | B1 |
6698215 | Bush et al. | Mar 2004 | B2 |
6798220 | Flanigan et al. | Sep 2004 | B1 |
6892907 | Varney | May 2005 | B2 |
6895770 | Kaminski | May 2005 | B1 |
6904789 | Campbell et al. | Jun 2005 | B2 |
7049969 | Tamai | May 2006 | B2 |
7071830 | Sahlberg et al. | Jul 2006 | B2 |
7392658 | Hardy, III | Jul 2008 | B1 |
7640759 | Robinson | Jan 2010 | B2 |
7686034 | Coogle | Mar 2010 | B1 |
7740025 | Scaringe | Jun 2010 | B2 |
7857004 | Pearson | Dec 2010 | B2 |
8475603 | Kaiser | Jul 2013 | B2 |
8646474 | Pearson | Feb 2014 | B2 |
8840729 | Herren | Sep 2014 | B1 |
9289525 | Mansor et al. | Mar 2016 | B1 |
9289803 | Parks | Mar 2016 | B1 |
9719951 | Woodbury et al. | Aug 2017 | B1 |
9776890 | Patterson et al. | Oct 2017 | B1 |
9975152 | McClarren | May 2018 | B1 |
20030056812 | Baker et al. | Mar 2003 | A1 |
20040250841 | Kimbrough | Dec 2004 | A1 |
20050138939 | Spanger | Jun 2005 | A1 |
20060137127 | Field et al. | Jun 2006 | A1 |
20070119503 | Scaringe | May 2007 | A1 |
20080053134 | Sakashita | Mar 2008 | A1 |
20080149475 | Yamamoto | Jun 2008 | A1 |
20100012291 | Sporie | Jan 2010 | A1 |
20130239991 | Denvir et al. | Sep 2013 | A1 |
20140116530 | Pearson | May 2014 | A1 |
20150048034 | Reinolds | Feb 2015 | A1 |
20160138816 | Flaxer | May 2016 | A1 |
20180112889 | Barker | Apr 2018 | A1 |
20180238029 | Kuhbier | Aug 2018 | A1 |
20180304316 | Khandjian | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1531549 | May 2005 | EP |
WO2006105017 | Oct 2006 | WO |
Entry |
---|
Diversitech (Duluth, Ga) described on its website (http://media.diversitech.com/doc/DOC00015.pdf). |