1. Field of the Invention
This invention relates to devices for printing a continuous web and more particularly to devices that print using ink-jet pens.
2. Background Information
Electronic inline printing and processing of a continuous web of paper has become ubiquitous in recent years for a variety of purposes and industries. Such industries include publishing and “print-on-demand,” direct mail marketing, billing and the like. Typically, a web is directed from a large stand-mounted roll to one or more high-speed (typically greater than 100 pages per minute) electronic printers that deposit and fuse toner to the web. The web is then directed to further processing units that variously print, emboss, cut, sort, stack and fold the web, among other possible processes.
It is often desirable to apply a color heading, logo, decoration or other device to the web either before or after the electronic printer has applied toner print. One technique for applying variable colored printing is to employ a color toner print engine. Such engines typically employ one or more individual toner sources that feed one or more image-transfer elements. The image transfer elements lay the toner onto the web and fuse it via heating. However, this approach uses expensive color toner and may be prone to speed and reliability limitations.
A more efficient and cost-effective technique to applying colored print is to employ a so-called “ink-jet” pen or “cartridge.” The ink jet cartridge defines an ink source contained within a unitary housing. The ink source is an impelled fluid that is dispensed as droplets at a print head located at the bottom end of the cartridge (also referred to as a pen) through a microscopic gridwork of nozzles that define the print pixels of the cartridge. The nozzles are individually addressed through a print controller so that they dispense ink at an appropriate time with respect to the movement of the printing media (paper, etc.).
In a conventional ink-jet printer, the nozzle grid is relatively small (less than one-inch square), and the printing media is driven through the printer at a rate that allows the cartridge(s) to traverse the width of the media on a motorized carriage so as to provide a print line of a given thickness. In general, the cartridge's inherent speed of ink deposition and the carriage speed both serve to limit the throughput rate of the print media. This throughput rate is typically significantly slower that 100 pages per minute. Hence, a conventional ink-jet printer with traversing head(s) is seldom suitable for providing color print to a high-speed moving web.
In addition, the internal ink supply of even the largest, commercial ink-jet cartridge is relatively small, requiring cartridges to be frequently replaced and/or manually refilled. The replenishment of ink/cartridges would, thus, prove inconvenient and time-consuming for a large production run—particularly where only a small number of cartridges on a traversing carriage are used.
Accordingly, it is highly desirable to provide a system and method for applying color print to a high-speed moving web that is efficient and low maintenance. This system and method should allow for large production runs without requiring replenishment and should allow variable printing across the entire width of a web without halting the feed of the web. The system and method should support printing in a large array of possible colors that may be combined on a single web when desired.
This invention overcomes disadvantages of the prior art by providing a system and method for printing continuous web that employs an array of interleaved ink-jet pens that are arranged to receive bulk ink through a manifold. The manifold and pens are mounted on a framework in groups of imagers suspended over the web feed path. The manifold includes a plurality of self-sealing quick-disconnect couplings that each serve a discrete ink-jet pen. The pens are also interconnected with a data connector that provides clock signals from a controller also interconnected with the web feed drive. In this manner, the pens lay down ink in a registered manner across the full width of the web. In an illustrative embodiment, the pens are organized into two parallel, multi-pen arrays that are each diagonally oriented with respect to the feed direction. The feed path allows for duplex printing with a second web-side's array located on a lower level of the device, generally beneath the first-side's array. Each level of the device maintains the flatness of the web using a vacuum surface comprising a plurality of holes in communication with a vacuum source. Duplex printing is facilitated due to the inherent length of the feed path. The printed part of the web is free of contact over predetermined lengths that ensure sufficient time for the drying of ink, typically achieved through a combination of absorption into the paper and some evaporation into the atmosphere.
A set of optional, movable, spot-printing ink-jet arrays can be located in an imager units that ride on carriages, which are movable in a widthwise direction. These movable arrays include an ink-feed mechanism for bulk ink and appropriate quick-disconnect couplings for ease of cartridge/pen replacement. In an illustrative embodiment, the movable arrays can be interconnected to a system for determining/reporting the widthwise location of the array. Each fixed array or group of movable arrays is interconnected with a discrete quick-change manifold that defines a channel in communication with a plurality of dripless quick-disconnect couplers. The couplers allow the feed tubes of individual cartridges/pens to be attached and detached for servicing, color change, etc. Each manifold is fed by a pressurized supply of bulk ink provided by a sealed ink bag via a pump and a pressure regulator. The pressure regulator includes a bleed valve. The manifold is also connected to a vacuum sensor assembly having a check valve that communicates with a vacuum sustaining draw pump. The draw pump withdraws excess ink and maintains the needed negative pressure to prevent ink from seeping out of pen nozzles.
Each manifold receives ink via a regulator tank that maintains a predetermined ink level using a float switch. The level falls as ink is drawn and the switch activates the bulk-ink-supply feed pump to restore the level. A headspace containing air resides above the ink, with a small pinhole to allow for air replacement as the level rises and falls, but most air is unchanged and saturated with ink vapor to prevent ink-dryout. Each manifold also includes a standpipe that exhausts any air bubbles present in the manifold's supply of ink through a check valve arrangement. The standpipe is in communication with a connection from the vacuum sustain pump. The vacuum sustain pump also connects to a downstream waste tank with an overflow sensor. Any ink flushed through the vacuum sustain line is exhausted in the waste tank. A variety of other level sensors at various locations in the ink-feed fluid circuit are used to monitor levels and detect failures to feed/clogs. The ink controller uses this information to control the pumps and/or issue alarm/stop signals to the printer controller and operator. Also, the use of quick-disconnect fittings, removable manifolds/pens, and peristaltic pumps with removable wetted elements, makes changing ink colors on the fly possible and relatively easy to accomplish.
The invention description below refers to the accompanying drawings, of which:
The web 102 is fed (arrow 128) from the upper printing array 110 to a lower printing fixed array 130 that supports a second array of pens 132, fed by respective manifolds 134 and 136. Both the upper and lower printing arrays direct ink downwardly (in the direction of gravity (G) However, the lower printing array 130 faces the opposing web face due to the (approximately) 180-degree turn in the web path following the upper printing array 110.
Downstream of the lower printing fixed array 130, the web path again turns 180 degrees and passes over the bottom surface 140 of a lower vacuum box 142 (described below) and downstream (arrow 242) toward the outlet 144, where the web can be directed (arrow 146) to a further processing device (e.g. a printer, cutter, folder, stacker and/or inspection station, etc.). The multi-turn arrangement of web feed can be alternately termed a “Z-pattern” herein.
The printer 100 includes a display/user interface 150, which may be a touch screen, or it may include a separate keyboard, mouse, etc. The interface enables the operator to monitor and control the operation of the print process. The display also provides indications for such parameters as web speed, ink level, pen status, and other information of importance to the user. The control circuitry and power supply components 160 for the printer are located beneath the lower printing array 130 in this example.
The web feed path is shown in further detail in the simplified side view of
In another embodiment, it is contemplated that a braking/torque roller can be located at or near the position of the encoder wheel assembly 220, just upstream in the path of travel from the upper array 110. This would allow for tensioning of the web closer to the actual print region of the printer.
The web 102 is further stabilized by a vacuum feed surface 230 of an upper vacuum box 231. The surface 230 is defined by a plurality of small diameter ports (ports 320 in
The web, hence, passes through the turn roller 232 and down a substantially unsupported incline section to an undriven input roller that contacts the new upper side 262 of the web. This is, in fact, the lower side the web.102 as it is initially input to the printer 100, but, by turning at the roller 232 it is now the upper side. The initial upper side 264 is now the lower side. This new lower (initially upper) side 264 enters the lower printing array in contact with a vacuum feed surface 270 while the former lower side 262 faces the lower array of pens 132. Thus, the initial lower side is now printed, thereby affording duplex printing that is applied to both web sides 262, 264 in turn. The web exits the array and passes through a pair of vertically stacked undriven 180-degree turn rollers 280, 282 that allow the web to span the gap defined by the lower vacuum box 142 so that the web passes without resistance along the lower box surface 140. Another undriven guide roller 284 supports the long run of web 102 between the lower turn roller 282 and the drive roll idler 252.
Notably, the uncontacted span of web between the upper turn roller 232 and the lower vacuum surface 270 allows time for the first (upper) printed web side 264 to dry before it comes into contact with the surface 270 or any other component. Otherwise, the ink would smear, degrading print quality. Conventional, commercially available water-based ink-jet inks exhibit finite dry times that are influenced by primarily by absorption into the paper print media together with some exposure to air. When sufficient exposure time has elapsed, the ink is sufficiently dry for handling. The uncontacted distance is set so that, at the chosen feed rate, the web has an uncontacted period sufficient to enable handling of the selected ink. In one embodiment a span of 2-3 feet (approximately 1 meter) is sufficient for a web traveling at 60-100 standard pages per minute. Other drying-span lengths are expressly contemplated in connection with the use of different inks and/or web feed speeds.
Likewise, the opposing, second printed side 262 passes out of the lower array 130 and remains uncontacted over the entire length of the printer 100. While less length is needed in most embodiments, the relative long length provided by the embodiment ensures complete drying of both sides prior to downstream handling. In alternate embodiment, the lower uncontacted span can be shortened or again turned to exit form the same side as entry. A variety of other feed path arrangements are contemplated in alternate embodiments. Such path arrangements should allow for appropriate drying of applied ink on a given web side. This is generally achieved through lack of contact with the web by any surface during the specified drying interval. In addition, while a full-duplex printer is shown and described, the concepts employed herein can be applied to a half-duplex printer, applying ink to only one side of the web.
Having described the path,
Two factors dictate the placement and angle of the individual pens. The first factor is the limited printing area of each individual nozzle. In general the nozzle is limited to a rectangular area of approximately ½ to ¾ inch by ½ to ¾ inch. As such, to print across an entire maximum width, a large number of nozzles must be arranged in a side-to side relationship. Also, each nozzle is attached to a cartridge that is wider and longer than the underlying nozzle. Thus, to accommodate an ink housing and mounting assembly, the cartridges cannot be simply arranged side-by-side across the width, as gaps between nozzles would ensue.
Rather, as shown, each cartridge is mounted in a respective assembly 350, 352, 360, 362 so that the nozzles are slightly spaced apart in the downstream direction but fully stitched together (and possibly, slightly overlapped) along the perpendicular widthwise direction. The long axis of each cartridge is, thus arranged along the widthwise direction to facilitate a minimal spacing between cartridges, thereby minimizing the upstream-to-downstream length of the overall pen assembly 350, 352, 360, 362. To further minimize the overall array (110, 130) length in the upstream-to-downstream direction to a manageable dimension, each array 110 and 130 is divided into two angled assemblies (350, 352 and 360, 362, respectively) as shown. Thus, the upstream-most (inboard) cartridge 354 of the pen assembly 350 has a nozzle that stitches together with (overlaps) the nozzle of the downstream-most cartridge 356 of the adjacent (side-by-side) array 352. The precise arrangement and number of individual assemblies in an array is highly variable. For example, in alternate embodiments, arrays can be disposed at opposing angles and/or at relative offsets in the upstream-to-downstream direction. As will be described in detail below, the arrangement of cartridges/nozzles in each array 110, 130 dictates a timed printing of each nozzle as a predetermined location on the web passes through each nozzle as it is fed downstream (in synchronization with the pixel clock encoder). The sequence of printing by each nozzle in an array is described further below. In one embodiment, the locations of the web are tracked, in part by equally spaced registration marks placed, for example, along the side edge of the web 102.
In one illustrative embodiment, both the top array 110 and bottom array 130 include an encoder wheel assembly 222, 260, respectively riding slip-free on the paper surface so that movement of the web through each array is monitored. Another embodiment can employ an encoder assembly within a roller closely engaged with the web. Each encoder generates a pulse based upon a predetermined length increment passing through the array. This pulse allows the printer's control system to accurately track the web as it moves through each array. The pulse further provides a pixel clock that is used by the cartridges to control printing. In addition, an optical “top-of-form” sensor can be provided to each array that senses when the beginning of a web or page length has passed a predetermined location relative to the array. In this embodiment, one imager 410 in each of the upper array 110 and lower array 130 receives the pixel clock and top-of-form signals, and thereby relays these signals to the other imagers in the respective array.
Optionally, an optical mark or symbol reader (not shown) located at one or more positions along the feed path, communicates with a controller to determine the current position of each web location. Internal and external encoders located for example on feed rollers and in the drive motor assembly can also track web movement. A basic system for tracking a web using registration marks and encoders is taught in U.S. Pat. No. 5,967,394, entitled METHOD AND APPARATUS FOR PINLESS FEEDING OF WEB TO A UTILIZATION DEVICE, the teachings of which are expressly incorporated herein by reference. In general, one sensor tracks movement of the web via reading of marks while the driving of the web is regulated by the drive motor of the printer 100, which can include a pulse encoder within its drive train. The location of a given increment of web with respect to a reference point (for example, the upstream-most nozzles in an array) is calculated by counting a preset number of pulses after reading of a mark. Since the length of an increment of web corresponding to each pulse is known, a certain number of pulses defines a known length travel of the web from the fixed point of the mark reader. Printing by each nozzle can occur in turn as the web moves a predetermined number of pulses, generally corresponding to the upstream-downstream spacing between each adjacent nozzle's leading edge.
Having briefly described the placement and orientation of cartridges in the fixed array further reference is made to on exemplary cartridge/pen assembly 350, shown in greater detail in
Notable, each three-cartridge mounting/imager 110 includes a transport mechanism with a base 510 (
Since a single cartridge contains, on average, only 800 ml of ink, its life in a production environment is highly limited. However, as the average life of a nozzle may exceed 2 million feet of print, the ink of a sealed cartridge is exhausted far faster than the nozzle's useful life. To more effectively equalize the nozzle's life with available ink supplies and support a desirable, relatively infrequent changing of cartridges, each cartridge is fitted with a permanently attached, low-impedance (under ten-inch long) feed tube 420 at a forward angled surface 422 of the cartridge that is readily accessible when the cartridge is locked into the imager mounting 410. The tube affords a continuous flow of ink into each cartridge from each of a plurality of base-mounted ink-supply-bags 120, 122, 124 and 126 (
The manifold ensures a highly uniform feed of the pens in the array due to the manifold's proportionately large-volume chamber, which can be internally shaped to be wider at the bottom than the top, to encourage the buoyant, upward migration of air bubbles to the ink/air-separation standpipe (1580 described in detail below) mounted to the top of the manifold. In this embodiment, each pen is connected by a relatively short run of tubing (approximately 10 inches or less) that is integrated with the respective pen. The relatively low flow-rate through the tubing, combined with the short run provides a low-impedance fluid circuit from the manifold to each pen. This eliminates any tendency for one pen in the array to “rob” ink from another pen due to a difference in draw rate or usage. This problem is more prevalent in ink systems that employ dedicated pressure regulators to feed multiple pens.
Referring now to
Note that in various embodiments, the turn screws 642 can be used to detach the entire manifold from the underlying assembly frame. This facilitates more rapid changeout of the manifold when, for example a color change is needed. In general, the quick disconnects provided to each manifold render a color change relatively easy.
As detailed in
Notably, with reference also to
To further illustrate the printing process reference is now made to the sequence of views shown in
The print head of each cartridge is fired at the appropriate time to generate the complete image, based upon the pixel clock and tracked movement of the web 102. The imager 720 is shown in
Referring to the next sequence view in
The sequence continues as parallel imagers 920 and 922 (
In
Finally, in
As described above, each side of the web can also be printed upon using one or more spot-printing imagers 650, 652. In
Reference is now made to
However, where a continuous feed of ink is provided via the tubes 1520 and interconnected manifolds 430 and 370 (and 380 above), the spring and plunger arrangement are bypassed and a more-comprehensive approach to maintaining a vacuum is desirable. This approach enables the specified hydrostatic pressure of approximately −1.5+/−0.2 in of water to be maintained at the print nozzles.
As shown in
In summary, each array manifold 430 (fixed), 370 (movable) is fed by its own bulk ink supply 1550, 1552, respectively. Each connection contains a respective feed line 1530, 1532 from the regulator tank 1540, 1542. Excess ink from each tank 1540, 1542 is directed through a raised inlet (1618 in
Having described the constituent components for both the fixed array ink-feed circuit and the movable array ink-feed circuit, the following discussion will focus upon the fixed array circuit components. The description is the same for like components in the movable array circuit and for the circuits employed on the lower level.
The exemplary regulator tank 1540 is shown in further detail in
The ink level in the regulator tank 1540 is maintained over a range of +/−0.20 inch of vertical distance (24.23 milliliters volume) by means of the cycling of the peristaltic ink feed pump 1560, whose operation is triggered by a float switch positioned in the tank. The float 1642 rises and falls on a pivot 1644 in response to the level on ink in the tank 1540. As the level falls, the feed pump 1560 is triggered on, and as the level rises the pump is cycled off. This feed pump cycle provides 50 ml of ink at a rate of 130 ml/min, requiring about 22 seconds. The hysteresis that is a characteristic of the float switch, provides for a convenient mechanism to obtain a finite high/low ink level within the tank using only one sensing device. Although other sensor types could be employed, the float switch provides advantages of low cost and insensitivity to the rough handling that may occur during transport of the ink system to and from the machine during a color change.
It is noted that the present specification for ink states that it should not come into contact with unsaturated air so that evaporation of the water component is prevented. The illustrative embodiment serves to substantially contain the 280-milliliter volume of air that is in contact with the ink within the regulator tank 1540, by severely restricting interaction between the air in the tank 1540 and external air. This is accomplished by providing a pin hole entrance (1646 for example) for air into the tank 1540, that is needed to fill the volume vacated by the drawing of ink out of the tank by the pens during operation at a typical rate of 5 ml/minute. Expulsion of air from the tank caused by the peristaltic ink feed pump cycling ink into the tank (50 ml at 130 ml/min, over 22 seconds), is provided for by a very low pressure check valve (0.025 psi cracking pressure) that blocks air transfer to the environment during all but the fill cycle. Thus, each regulator tank 1540, 1542 is interconnected with an air-relief valve 1534, 1536 that exhausts excessive pressure buildup. In an example that is shown in detail in
The pressure regulation tank provides for a “feed pump stuck on” failure with an internal overflow standpipe 1582 which drains to the waste holding tank 1574 located in the bottom section of the printer. The opening of this standpipe is covered by a light plastic, buoyant check ball (not shown) such that it remains sealed from the environment during normal operation. To ensure that a vacuum is maintained, each manifold 430, 370 includes a vacuum sustaining interconnect 1580 along its top end. The standpipe provides a convenient location for the ink level maintenance sensor 1590 (which is a capacitive type sensor in this embodiment. The standpipe's large cross-sectional area (approximately ¾ inch internal diameter) provides for the separation of all air bubbles that might otherwise allow “slugs” of air-mixed-with-ink to return to the vacuum sustain maintenance pump 1586. A common vacuum sustain line 1589 between both manifolds in the array 430 ensures that their levels are maintained in parallel. Any excess ink/air is drawn through a respective pump 1586. From each pump 1586 the excess is driven into the waste tank 1574.
For the array manifolds 430, an equalization line 1578 allows maintenance of an equal pressure between the “master” manifold (for pen assembly 350), which is connected to the regulator tank 1540 and the remote, “slave” manifold (for pen assembly 352). The connection is relatively short (as are others herein) and the ink flow rate is low enough (5 ml/min) so as to provide a low-impedance flow characteristic. Like all other ink-feed/pressure lines shown and described herein this line 1578 is interconnected using dripless quick-disconnect couplers that enable rapid changeout for replacement, cleaning, color change, and the like.
The above-described system, thus maintains the needed vacuum at the manifolds so as to prevent seepage of ink from nozzles, and ensures desired delivery of ink to the manifolds as it is drawn from the nozzles. Each regulator, in particular is adjusted to provide the needed pressure for ink delivery, while the appropriate level of vacuum draw prevents introduction of air to the system.
Each regulator tank 1540, 1542 also communicates with a respective bulk-ink supply 1550, 1552. In this embodiment, the supply is a sealed bag within (for example) a cardboard box enclosure. A cut-away example of a bulk ink container 1550 is shown in
Inline with each bulk supply is a bag-empty detect sensor 1558, which senses the presence of flowing ink in a given quantity. If ink is not sensed, then the sensor informs the device controller, which signals an alarm and/or stops printing. From the sensor 1558, each ink supply 1550, 1552 is fed through the respective ink-feed pump 1660, 1662. The pump can comprise a peristaltic or equivalent pump that efficiently delivers a consistent, low-volume flow to the respective regulator tank 1540, 1542. The regulator tanks 1540 and 1542 each include an accidental discharge line 1570, 1572 that feed to the overflow/waste tank 1574. The waste tank 1574 must be emptied occasionally. It includes an overflow/full-condition sensor 1576 that communicates with the controller, and instructs an alarm/stop condition when triggered.
The web loop controller 1914 also communicates with a tension logic controller 1923 that ensures a predetermined level of tension is maintained in the web. In general, the braking torque is provided by an upstream braking torque motor 1925 with another conventional motor controller 1924 interconnected with the tension controller 1923. The braking torque motor controller 1924 is adjusted to cause this torque motor 1925 to run slightly slower than the main drive motor 1921, thereby generating a torque-induced tension in the web path. The operation of the brake motor 1925 is regulated via an internal or external encoder/tachometer 1926 that feeds back movement information to the motor controller 1924.
Because the printer is taking up web at a slower rate than the upstream web source (a driven roll stand or another printer, for example) is delivering it, the loop continues to fall until it moves in front of the second, lower sensor (fast/slow sensor) 1908. This sensor 1908, when activated by the presence of the web loop in its field of view, sends a signal to the web controller 1914, causing it to increase the input of the main drive motor controller 1920, which in turn drives the main drive motor 1921 faster. The main drive motor 1921 then is able to run at a set point set slightly faster than the up-stream device and the printer is therefore able to keep pace with the upstream web source device. The tension logic controller 1923 provides an appropriate speed change to the braking torque motor controller 1924 to correspondingly vary the speed of the braking torque motor 1925 so that the proper level of torque-induced tension is maintained.
A filtering circuit 1909 within the web controller 1914 is used to smooth out the “hunting” of the web loop as it cycles between the two speeds that bracket the speed of the upstream source device.
In an illustrative embodiment, the throughput web speed of the printer can be increased where a lower resolution of print (measured in dpi), particularly in the feed direction, is permitted. For example, where the resolution is maximized at 600×600 dpi, the maximum feed speed is approximately 25 inches per second (125 feet per minute (fpm) or 0.635 m/s). Where the resolution is 600×300 dpi, the feed speed is approximately 50 inches per second (250 fpm or 1.27 m/s). Where the resolution is 600×150 dpi, the feed rate may be as high as 100 inches per second (500 fpm or 2.54 m/s). These values can be varied where the performance characteristics of the pens and their nozzle size differs from those described herein.
The jam signal 1910 from the web loop control 1902 is carried to the ink controller 1930, which operates the ink control system 1904. The jam signal instructs the ink control system to cease feeding ink. In normal, unjammed operation, the system feeds ink at a predetermined rate, as described above. The ink controller can be a microprocessor, or, in an illustrative embodiment, a programmable logic array (PLA) that contains a predetermined instruction set so as to respond to the inputs and outputs described below. The controller can be programmed, monitored and provided with control information via an operator interface 1931. Since ink control is provided separately to the upper and lower sections of the printer, these functions are divided into an upper section box 1932 and a lower section box 1934 as shown. When both the upper and lower sections 1932, 1934 are operated, the printer is running in two-sided or duplex-print mode. When only the upper section 1932 is operating, the printer runs in single-sided or simplex-print mode. Note that simplex-print mode can also be implemented on only the lower section 1934, with the upper section 1932 not operating. For the purposes of this description, simplex is taken to apply to the upper section.
The ink controller 1930 receives nine independent inputs from nine corresponding sensors in each section. As stated above each section contains its own version of all the same feed system components. Hence the controller receives input signals from the following inputs on the upper section and a lower section: (a) a fixed array master ink level sensor signal 1940, 1941 from a sensor attached to each fixed array master manifold that ensures an adequate level of ink is received in each master manifold; (b) a fixed array slave ink level signal 1942, 1943 from a sensor attached to each slave manifold, which is connected to the master manifold (via connection 1578, for example); (c) a movable array ink level sensor signal 1944, 1945, which ensures the manifold (370, for example) for each movable array is sufficiently full; (d) a fixed array bulk ink sensor signal 1946, 1947 (see sensor 1558, for example), which ensures a sufficient level of bulk ink is still available in each ink container; (e) a movable array bulk ink sensor signal 1948, 1949; (f) a waste tank overflow sensor signal 1950, 1951 (for example sensor 1576), which detects a near-overflow in the waste tank requiring it to be emptied; (g) a fixed array regulator tank float switch signal 1952, 1953 (for example, switch 1640) that detects the proper level of ink in each fixed array regulator tank; (h) a movable array regulator tank float switch signal 1954, 1955; and (i) a cover interlock switch signal 1956, 1957, which ensures covers are closed and arrays are properly positioned before a print operation can occur. Based upon the input signals provided by the various sensors/input devices, the ink controller 1930 regulates ink feed and, when necessary, shuts down operation and/or issues an alarm. For example, a waste-tank-overflow condition causes a DEVICE NOT READY signal to be sent to the upstream device and posts an alarm message on the operator display. Activation of one of the bulk ink empty sensors causes the feed pump to immediately turn off and a message to be sent to the operator display. The ink controller 1930 provides output control signals to the following components on each of the upper level 1932 and lower level 1934: (a) a fixed array ink supply pump control signal 1960, 1961 (for example, pump 1560); (b) a fixed array vacuum sustain pump control signal 1962, 1963 (for example, pumps 1586); (c) a movable array ink supply pump control signal 1964, 1965 (for example, pump 1562); (d) a movable array vacuum sustain pump control signal 1966, 1967 (for example, pumps 1586); and (e) a deck suction fan control signal 1968, 1969 (e.g. the fans that create a suction in the feed surface vacuum boxes). Power is directed to the vacuum box fans on both the upper and lower surfaces when the controller 1930 receives a cycle up signal from the upstream device or the operator.
These control signals regulate the connected pumps and components to provide ink in accordance with the above-described parameters and to cut off the ink supply in event of an alarm condition or stop command. One particular alarm/stop feature is the watchdog time function built into the ink controller 1930 that monitors the run duration of the vacuum sustain pump cycle and shuts it off if it runs beyond a settable time limit. This action is relayed to the print controller 1972 and used to alert the operator to a possible failure.
The ink controller 1930 is monitored and controlled by the print control system 1906. Data is passed between the ink controller 1930 and the print control system 1906 via a pair of input/output (I/O) interface modules 1970 that communicate with respective upper and lower level printer controllers 1972, 1973. For the purposes of this description, the printer controllers 1972 and 1973 have been divided into functional blocks that respectively serve to control upper level printing (1974) and lower level printing (1975). In this depicted organization, an Ethernet or bus link 1976 is shown between the upper level printer controller 1972 and the lower level printer controller 1973. In some embodiments, the link can be a logical connection, and these controllers 1972 and 1973 can reside within the same processor and/or computer. In this embodiment, the computer is a personal computer (PC) running any acceptable operating system and printing application(s). A graphical user interface is provided on a display monitor 1977. The printing and printer control functions can be selectively displayed and controlled via the interface using an attached keyboard 1978, mouse and/or another interface device (such as a conventional touchscreen). Typically, only one computer of the pair (1972, 1973) would link to the user interface, which allows control and monitoring of both computers and their processes. In this embodiment, the interfaced print controller's (1972) internal software provides the operator with the menu-driven graphical user interface to set up and control the printer system during normal operation. Also, password protected maintenance operation menus can be provided for servicing and diagnostics.
An Ethernet switch 1977, 1978 connected to the gigabit (base 1000T) Ethernet port of each controller computer 1972, 1973 provides print data 1983, 1984 in an appropriate format to all the imagers 1979, 1980, of each level, respectively. The data required by each imager, other than the pixel clock and top of form signals, is provided through a dedicated Ethernet port of the respective switch 1977, 1978. Print job information including the bitmap data, is transferred to each imager through the computer controller via an Ethernet connection to the imager. Each imager receives a discrete input from a port of the switch and is appropriately addressed by the imager's controlling software on the controller computer 1972, 1973.
The upper and lower levels are independent and have their own paper movement encoder (pixel clock) 1981, 1982, respectively, and top of form sensor 1983, 1984. In some cases, an optical symbol reader for page identification is provided and/or mark sensor for registration control (for what is to be printed relative to what is already present on the web) and information triggering).
One imager on each deck receives the pixel clock and top of form signals from the encoder and sensor, respectively. These signals are then daisy-chained to the remaining imagers using a circuit board that allows them to be interconnected. A respective imager control bus 1985, 1986 interconnects each of the imagers on each level. Image synchronization with the moving web is accomplished by the software using signals from the respective encoder and predetermined imager position information which is established during system setup. DC power 1987, 1988 required to operate each imager is also chained to each imager in each level.
The system also employs edge detectors 1990, 1991 that sense the widthwise side edges of the web and are used to determine the printing width of the web and location of the edges. This information is passed through each respective I/O module 1970, 1971 back to the respective controller computer 1972, 1973. The imagers 1979, 1980 on each level also pass respective status information 1992, 1993 back to the ink controller 1930 (and also as back to the controller computer 1972, 1973). This status information can be used to trigger a rapid shut down of the ink-feed system if a cartridge has failed.
Each printer controller 1972, 1973 also respectively receives print information and other instructions from an upstream printer or other web utilization device 1994, 1995. The information may be print data, tracking information or other data needed to undertake the print function.
It should be clear that the above-described organization of controllers and the division of responsibilities can be varied in alternate embodiments. Likewise, responsibilities provided to the various controllers can be consolidated into a single controller in alternate embodiments, or distributed among a larger set of localized controllers.
It should also be clear from the foregoing description that a number of significant advantages are provided by the printer of this invention. In accordance with the above described system, all pens can be replaced without the need to “re-stitch” the printing, and because pen life depends on the distribution of use of the individual jets. Moreover, bulk ink supply containers can typically be replaced without stopping the printer due to the system's resident supply of useable ink between the bulk supply and the pens. In addition, the above-described system addresses a key requirement in implementing pen arrays as large as described, namely the need to manage the vast amount of electrical wiring and fluid tubing in a very limited amount of space. To that end, the ink manifold system of this invention is deployed in close proximity to the location of the pens that it supplies. Likewise, two specially-designed printed circuit boards are employed, mounted close to the imagers to allow for manageable transfer of power and control signals. Another notable feature of the ink bulk feeding system is that it allows for quick initial filling of the system with ink. This addresses a disadvantage that has plagued the existing state of the art systems that utilize dedicated, or small manifolded, pens fed by a sealed fluid regulator of the type offered by manufacturer Hewlett Packard. With conventional technology, much time is required to prime the system and remove all of the air from the ink carrying components. The system of this invention provides a reference to atmospheric pressure created within the regulator tank, allowing ink to be drawn into the manifold with the vacuum sustain pump as it removes excess air from the components through this same action. These, and other advantages discussed herein, provide for a highly effective and usable printing system.
The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope thereof. For example the teachings described herein can be applied to a variety of arrangements of ink jet pens, both in a duplex and a single-sided mode. The arrangement of manifolds and the interconnections thereto can be widely varied. In addition, any function described herein can be implemented using electronic hardware components, software, including program instructions executing on a computer processor or a combination of hardware and software. Furthermore, while the printer of this embodiment can print in any color or group of colors desired, it is expressly contemplated that any or all bulk ink supplies described herein can be filled with a basic black ink for straightforward black-and-white (or grayscale) printing. As used herein the term “color” should be taken to include black. Also, it is expressly contemplated that some or all of the pens mounted in the printer can be conventional sealed, non-bulk-supplied pens. For example, where a quick color change is needed on a small job, changing out the ink system may be inefficient, and mounting of sealed pens in selected arrays may be appropriate. Accordingly, this description is meant to be taken only by way of example and not to otherwise limit the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5428375 | Simon et al. | Jun 1995 | A |
5562351 | Uematsu | Oct 1996 | A |
5961228 | Ward et al. | Oct 1999 | A |
5967394 | Crowley et al. | Oct 1999 | A |
6336718 | Blanchard et al. | Jan 2002 | B1 |
7011388 | Lodal et al. | Mar 2006 | B2 |
7278699 | Drake et al. | Oct 2007 | B2 |
20020105571 | Izawa et al. | Aug 2002 | A1 |
20020122093 | Otsuka | Sep 2002 | A1 |
20040246294 | Mitsuzawa | Dec 2004 | A1 |
20050001877 | Chikanawa et al. | Jan 2005 | A1 |
20070059083 | Silverbrook et al. | Mar 2007 | A1 |
20070153035 | Jung et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
0903232 | Mar 1999 | EP |
1063096 | Dec 2000 | EP |
1586451 | Oct 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20090027449 A1 | Jan 2009 | US |