1. Field of the Invention
The present invention relates to structural assemblies and, more particularly, relates to a system and method for forming, bonding, or otherwise processing a preform in a vacuum vessel to form a structural assembly.
2. Description of Related Art
Superplastic forming (“SPF”) generally refers to a process for forming metals, including titanium, aluminum, and alloys of such metals, that exhibit superplastic behavior at certain temperatures, i.e., large elongations (up to about 2,000 percent). The SPF process can be used for forming a single SPF sheet or an SPF pack that includes multiple layered sheets. During the SPF process, the SPF sheet or pack is placed into a shaping die set and heated to a sufficiently high temperature within the superplasticity range of the material to soften the material. Pressurized gas is then injected against the material, and possibly into the pack, if applicable, thereby causing the sheet or pack to be urged against the dies. In some cases, portions of the sheets that form into contact are joined through brazing or diffusion bonding. The formed sheet or pack is then cooled and removed from the die set and final machining steps are performed, such as edge trimming. Advantageously, the SPF process can be used to form structures that can satisfy narrow shape and tolerance requirements without substantial additional machining. Superplastic forming is further described in U.S. Pat. Nos. 3,927,817; 4,361,262; 4,117,970; 5,214,948; 5,410,132; 5,700,995; 5,705,794; 5,914,064; 6,337,471, each of which is incorporated by reference.
In a conventional SPF process, the shaping die set includes first and second dies that cooperably define a die cavity, and which can be adjusted between open and closed positions. The dies are opened to receive the sheets or pack to be formed, and then closed for the forming operation. A hydraulically actuated press is used to maintain the dies in the closed position. That is, the dies are positioned in the press, and the press resists the force generated by the forming operation, which would otherwise open the dies during forming.
The press is typically a large device that requires a large workspace. In addition, the press is typically expensive, thereby adding to the cost for manufacturing parts by this operation. Further, the dies must be no larger than the maximum size that can be accommodated in the press. The geometry to be formed and the size of the dies are typically related to the number and thickness of the sheets that are to be formed. For example, a relatively larger die set is typically required to form multiple sheets simultaneously against the inner surfaces of the two opposed dies than is required for forming a single sheet against a single inner surface of the die set. Similarly, thicker sheets typically require dies of greater strength and, hence, greater size. Thus, the size of the press available for a production process may limit the type of parts that can be produced.
The press can also include an oven for heating the sheet or pack. In some cases, the oven is not sealed, and the sheet or pack is exposed to atmospheric elements during processing that can affect the resulting quality. Further, the entire oven is typically heated, even for processing small dies. The thermal mass of a large press can limit the speed at which the temperature can be adjusted, thereby preventing a reduction in processing time and possible improvement in quality that might result with faster temperature adjustments.
Alternatively, the dies can be connected to one another and prevented from opening, such as by pins inserted through bores that extend through interlocking connection portions of each of the dies. One such self-contained die is described in U.S. Pat. No. 5,823,034 to Nelepovitz. A preform assembly can be provided in the die, and the die can then be heated in a vacuum furnace, without requiring a press for maintaining the die in a closed configuration. However, the die must be specially formed with the connection portion, and the pins must be inserted and removed between forming operations.
Thus, there exists a need for an improved system and method for processing a preform to produce a structural assembly. The system and method should be capable of forming and/or bonding one or more members to form the assembly, and should be compatible with the production of large and/or complex structural members such as by superplastic forming, diffusion bonding, or brazing.
The present invention provides a system and method for processing a preform in a vacuum vessel to produce a structural assembly. For example, the preform can be formed, bonded, or otherwise processed in a die set that is disposed in a vacuum vessel. A pressurized fluid can be provided to the preform, e.g., to an interior space of the preform, and the vacuum vessel can be evacuated so that the die set and the preform are exposed to a pressure that is reduced relative to the ambient pressure. The vacuum can constrain the vacuum vessel, and hence the die set, in a closed position and/or otherwise facilitate the processing of the preform.
According to one embodiment of the present invention, the die set includes first and second dies configured to cooperably define a die cavity for receiving the preform. One or both of the dies define a contour surface corresponding to a desired contour of the structural assembly. A heater device is configured to heat the preform in the die cavity, and a fluid source is configured to provide a pressurized fluid to the preform in the die cavity to thereby urge the preform against the contour surface of the die set. For example, the heater device can include heating components, such as electrically resistive elements, that are disposed in the dies. The die set is disposed in a sealed vessel cavity that is cooperably defined by first and second portions of the vacuum vessel. A vacuum device in fluid communication with the vessel cavity is configured to evacuate gas from the vacuum vessel and reduce the pressure in the vacuum vessel to less than the ambient pressure. Fluid and/or electrical connectors can extend into the vacuum vessel, e.g., to connect the fluid source to the preform and to connect an electrical power supply to the heater. At least one of the dies can be adjustably connected to the vacuum vessel so that the die set can be opened by opening the vacuum vessel and the vacuum vessel can be partially opened with the die set closed.
A controller can be configured to control the operation of the fluid source according to the temperature of the preform and the pressure in the vacuum vessel. In some cases, the vacuum device can reduce the pressure in the vessel cavity to less than about 200 Torr. An electrical power source of the heater can be configured to selectively heat according to the pressure in the vacuum vessel, e.g., to avoid electrical arcing within a predetermined range of operating pressure.
According to one method of the present invention, the preform is superplastically formed, diffusion bonded, brazed, or otherwise processed in the die cavity. In some cases, the preform can be purged before or after being disposed in the die cavity by providing an inert gas to an interior space of the preform via at least one gas connection extending from the vessel cavity and evacuating the inert gas from the preform. The preform is disposed in the die cavity of the die set, and the die set is disposed in the vacuum cavity of the vacuum vessel. The preform is heated, gas is evacuated from the vacuum cavity, and a pressurized fluid is provided to the preform in the die cavity to urge the preform against a contour surface of the die set. The vacuum in the vacuum cavity can prevent the die cavity from opening during processing. Thermocouples can be disposed in the die set to detect the temperature of the preform to control the temperature of the preform. The preform can be heated according to the pressure in the vacuum vessel to thereby prevent application of power to the heater at predetermined pressures to thereby prevent electrical arcing. The pressurized fluid can be provided to the preform in the die cavity according to the temperature of the preform and the pressure in the vacuum vessel.
Advantages and features of the invention, and the manner in which they are accomplished, will become more readily apparent upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings, which illustrate preferred and exemplary embodiments and which are not necessarily drawn to scale.
The present invention now will be described more fully with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth. Like numbers refer to like elements throughout.
Referring now to the drawings, and in particular to
The system 10 can produce structural assemblies of various configurations using various types of preforms. In particular, the preform 20 illustrated in
In other embodiments of the present invention, the preform 20 can include more than two members that define two or more interior spaces that can be expanded separately or in combination. For example, the preform 20 can include two outer face members or skins with one or more additional members disposed in the interior space(s) for connecting the face members such that the preform 20, when expanded, defines a plurality of internal cells. Thus, in some cases, the preform 20 can be used to form a structural assembly that defines a cellular core, such as a honeycomb panel. The formation of cellular assemblies by superplastic forming and diffusion bonding or brazing is further described in U.S. Pat. Nos. 4,117,970; 5,420,400; 5,700,995; 5,705,794; 5,914,064; and 6,337,471, each of which is incorporated by reference.
In any case, the structural assemblies produced according to the present invention can be used in a variety of industries and applications including, but not limited, in connection with the manufacture of aircraft and other aerospace structures and vehicles. Further, the structural assemblies can be used individually or in combination with other structures and devices. For example, the structural assemblies can be used to form an inlet for an aircraft engine as described in U.S. Pat. No. 6,371,411, which is also incorporated by reference.
The members 22, 24 of the preform 20 can be formed of various materials including, but not limited to, aluminum, titanium, alloys that include aluminum or titanium, and the like. Further, the members 22, 24 can be formed of similar or dissimilar materials. For example, according to one embodiment of the present invention, the members 22, 24 can each be formed of Ti-6A1-4V. The particular materials to be used for the preform 20 can be selected to facilitate the manufacture of the assembly 40 and to provide in the finished assembly 40 the desired material properties and characteristics including strength, corrosion resistance, and the like.
The system 10 illustrated in
The die set 50 is received in a vacuum vessel 60 that defines a cavity 66. For example, the vacuum vessel 60 can be a box-like structure that includes two portions 62, 64. As shown in
So that the die set 50 can be opened by opening the vacuum vessel 60, the first die 52 can be connected to the first portion 62 of the vacuum vessel 60, and the second die 54 can be connected to the second portion 64 of the vacuum vessel 60. The dies 52, 54 can be adjustably connected to the respective portion 62, 64 of the vacuum vessel 60 so that the dies 52, 54 are configured to be opened by opening the vacuum vessel 60 and yet the vacuum vessel 60 is configured to be partially opened while the die set 50 remains closed. In particular, the first die 52 and the first portion 62 of the vacuum vessel 60 can be fixedly connected and configured to remain stationary during processing. The second die 54 can be connected to the second portion 64 of the vacuum vessel 60 by one or more adjustable connections 68 so that the second portion 64 of the vacuum vessel 60 can be partially lifted from the die set 50 without moving the second die 54. For example, the second die 54 can be connected to the second portion 64 of the vacuum vessel 60 by one or more mechanical linkages that include rotatable joints, by chains or other flexible connectors, or the like. In this way, the system 10 can be opened by lifting the second portion 64 of the vacuum vessel 60 from the first portion 62, e.g., with a crane, winch, jacks, or other lifting device connected to lifting points 70 on the second portion 64 of the vacuum vessel 60. As the second portion 64 of the vacuum vessel 60 is first lifted from the first portion 62, the dies 52, 54 remain closed as shown in
The dies 52, 54 can be formed of a variety of materials including, e.g., ceramic, metals, and the like. For example, in the embodiment illustrated in
The system 10 can also include a heater 80 for heating the preform 20 during processing. Various types of heaters can be used for heating the preform 20. In fact, in some cases, the preform 20 can be heated before being disposed in the die cavity 56 or in the vacuum vessel 60, such that the heater 80 can be substantially separate from the rest of the system 10. For example, the preform 20 and/or the die set 50 can be disposed in an oven or other heating device before or after the preform 20 is loaded into the die cavity 56. Alternatively, the heater 80 can be integral to the system 10, such as being disposed within the die set 50. In particular, the heater 80 can be embedded in the dies 52, 54 in proximity to the die cavity 56 so that the heater 80 can transfer heat efficiently to the preform 20. The heater can be an induction heater such as is described in U.S. Pat. No. 5,410,132, which is incorporated by reference. Alternatively, as illustrated in
In addition, the system 10 can also be configured to sense the temperature of the preform 20 and provide current to the wires 82 according to the temperature sensed throughout the preform 20. In particular, thermocouples 86 or other temperature sensing devices can be disposed in the dies 52, 54 and configured to sense the temperature in the dies 52, 54 proximate to the preform 20, such that the corresponding temperature of the preform 20 proximate to each thermocouple 86 can be determined. The thermocouples 86 can be configured to communicate with a controller 90, e.g., via electrically conductive wires, and the controller 90 can also be configured to control the supply of electrical current by the power supply 84 to the wires 82 of the heater 80. Thus, the controller 90 can selectively heat the preform 20 to achieve a desired temperature profile throughout the preform 20. The controller 90 can be a computer, programmable logic device, or other processor, and the controller 90 can include input/output devices such as a cathode ray tube, liquid crystal display, keyboard, or the like for communication to and from an operator.
The system 10 is also configured to fluidly communicate with the preform 20 in the die cavity 56 to provide a pressurized fluid for urging the preform 20 against the die set 50. For example, as shown in
As shown in
The vacuum device 110 is configured to communicate with the vessel cavity 66 via one or more ports 112 that extend through the walls of the vacuum vessel 60. For example, the vacuum device 110 can evacuate gas through each of the ports 112, or the device 110 can evacuate gas through one of the ports 112 and monitor the pressure in the vessel cavity 66 via another one of the ports 112. In either case, the vacuum device 110 can also be configured to evacuate other spaces defined by the vessel 60. For example, as shown in
The vacuum vessel 60 can define any number of connectors that extend through the wall(s) of the vacuum vessel 60, i.e., to communicate between the outside of the vacuum vessel 60 and the vessel cavity 66. Electrical connectors 120 extending between the outside of the vacuum vessel 60 and the cavity 66 can include a conduit or other passage, in which electrical conductors such as wires are disposed. Each electrical connector 120 can include terminals 122, 124 on the opposite sides of the wall of the vacuum vessel 60, i.e., a first terminal 122 for connecting to the power supply 84 or other electrical device outside the vacuum vessel 60, and a second terminal 124 within the vessel cavity 66 for connecting to the heater 80, thermocouples 86, or other device inside the cavity 66. The electrical connectors 120 are typically fluidly sealed so that gas cannot leak through the vessel. Thus, the electrical connectors 120 can be used for delivering power to the heater 80, for communicating with the thermocouples 86 in the dies 52, 54, for otherwise controlling or monitoring the system 10, and the like.
Fluid connectors 130 also extend to the vessel cavity 66, e.g., for connecting the fluid source 100 to the preform 20 and/or the die set 50. Each fluid connector 130 can define fittings 132, 134 for engaging other fluid communication devices on the opposite sides of the wall of the vacuum vessel 60, i.e., a first fitting 132 for connecting to the fluid source 100 or other fluid device outside the vacuum vessel 60, and a second fitting 134 within the vessel cavity 66 for connecting to the preform 20. The fluid connectors 130 are typically fluidly sealed so that gas cannot leak through to the vessel cavity 66. Thus, the fluid connectors 130 can be used for delivering fluid to, or evacuating fluid from, the preform 20, e.g., during purging.
Electrical lines and fluid tubes 126, 136 can be used to connect the connectors 120, 130 to the respective components. For example, the electrical lines 126 can be heat resistant electrical wires that connect the second terminal 124 of the electrical connectors 120 to the heater 80, the thermocouples 86, or the like within the vacuum vessel 60. The fluid tubes 136 can be flexible, heat resistant tubes, such as pipes with rotatable joints, that fluidly connect the second fittings 134 of the fluid connectors 130 to the preform 20.
In one typical operation, a pressurized fluid is used to form and/or restrain the preform 20 in the die cavity 56 in combination with a heating operation. For example, the preform 20 can define a closed pack, which is to be filled with pressurized fluid and thereby inflated such that the preform 20 is superplastically formed to the desired contour of the finished structural assembly 40. In some cases, tooling or a bladder can be disposed in the die cavity and configured to support or form the sheets 22, 24, as described in U.S. Pat. No. 5,710,414, which is incorporated by reference. In any case, the preform 20 can be heated to a superplastic forming temperature and formed against one or more contoured inner surface of the dies 52, 54. In addition, or alternative, the preform 20 can be diffusion bonded and/or brazed by the temperature and pressure provided in the system 10. In this regard, the various sheets or other members 22, 24 of the preform 20 can be bonded in configurations such as a honeycomb panel or other structural panel.
Diffusion bonding generally refers to a bonding operation in which the members to be bonded are heated to a temperature less than the melting temperature of either material and pressed in intimate contact to form a bond. Brazing generally refers to a bonding operation in which a braze material is provided between the members that are to be joined, and the members and braze material are heated to a temperature higher than the melting temperature of the braze material but lower than the melting temperature of the members being joined. Thus, a diffusion bond can be formed between members of the preform by heating the members and urging them together with sufficient pressure in the die cavity 56. Brazing can be performed similarly, but generally requires that an additional braze material be provided between the members, e.g., at the interface of the members to be joined. The braze material can be selectively provided where joints are to be formed, or the braze material can be provided as an additional sheet of material between the members to be joined.
The operations for processing a preform 20 to produce a structural assembly 40 according to one embodiment of the present invention will now be described. As shown in
The preform 20 can be loaded into the die cavity 56 by further opening the vacuum vessel 60 and thereby opening the die cavity 56, then disposing the preform 20 on the first die 52. The preform 20 can be moved manually or automatically and, in either case, the electrical power supply 84 can be de-energized during loading. For example, the controller 90 can be configured to automatically interrupt the operation of the power supply 84 whenever the die cavity 56 is open or when the vacuum vessel 60 is opened to a particular position. With the preform 20 disposed at least partially in the die cavity 56, the die set 50 and the vacuum vessel 60 can be closed as shown in
With the preform 20 in the system 10 and the system 10 configured in the closed position, the preform 20 can be formed, bonded, or otherwise processed. Typically, the vacuum device 110 is used to evacuate gas from the vacuum vessel 60 to reduce the pressure in the vessel 60. The vacuum device 110 can also evacuate the space 118 between the seals 114, 116 via the port 112a. By virtue of the vacuum formed in the cavity 66 of the vacuum vessel 60, the portions 62, 64 of the vacuum vessel 60 are urged together, thereby restraining the vacuum vessel 60 in a closed configuration.
The die cavity 56 is typically not sealed, even when the die set 50 is in the closed position, and therefore the outside of the preform 20 is subjected to the reduced pressure achieved by the evacuation of the vessel cavity 66. However, in some cases, the die set 50 can seal the die cavity 56 so that the preform 20 is not subjected to the vacuum. In either case, a higher pressure can be provided to the interior space 26 of the preform 20 for inflating the preform 20, i.e., expanding the preform 20 outwards. As noted, the preform 20 can define more than one internal space, and the spaces can be pressurized at different levels. The pressures to be used for processing the preform 20 can be determined according to such factors as the type of processing operation to be performed, the material type and size of the preform 20, the temperature to be used for processing, and the like.
The preform 20 is typically also heated in the die cavity 56, e.g., conductively via the dies 52, 54 by thermal energy provided by the heater 80. The temperature to which the preform 20 is heated also typically depends on the type of processing, the material of the preform 20, and the pressure. For example, in one embodiment of the present invention, a preform 20 formed of titanium sheets with a thickness of about 0.080 inch can be superplastically formed by evacuating the vacuum vessel 60 to a pressure of about 200 Torr, heating the preform 20 to a temperature of about 1600° and 1700° F., and inflating the preform 20 with gas at a pressure of about 30 psi. In other embodiments of the present invention, alternative pack configurations can be provided and can be structured for diffusion bonding of the preform. For example, in one typical operation, a titanium preform can be diffusion bonded by subjecting the preform to a temperature of about 1600° to 1700° F. at a pressure of about 200 to 300 psi for about 3 hours.
The provision of pressurized gas to the preform 20 by the fluid source 100 can be coordinated with the evacuation of the vacuum vessel 60 so that the clamping force provided by the vacuum vessel 60 on the die set 50 exceeds the expansion force of the dies 52, 54 that results from the pressurization of the preform 20 in the die cavity 56. Of course, if the system 10 is configured to open vertically, the weight of the second die 54 and the second portion 64 of the vacuum vessel 60 can also restrain the system 10 in the closed configuration. In this regard, the controller 90 can control the flow of gas from the vessel cavity 66 and the flow of fluid to the preform 20 in the die cavity 56 so that the system 10 is kept closed during processing.
The energizing of the heater 80 can also be coordinated with the temperature, pressure, and configuration of the system 10. For example, the heater 80 can be inactivated by de-energizing the power supply 84 when the die cavity 56 is opened. In addition, the power supply 84 can be de-energized, or the heater 80 otherwise inactivated, at other times during the processing operation. In particular, the controller 90 can control the power supply 84 and the heater 80 to restrict operation of the heater 80 while the pressure in the vacuum vessel 60 has a predetermined value or is in a range of predetermined values. While the present invention is not limited to any particular theory of operation, it is believed that the voltage necessary for electrical breakdown of the gas in the vacuum vessel 60 varies with the pressure in the vessel cavity 66. In particular, according to Paschen's Law, the voltage required for electrical breakdown of a gas between two electrical conductors is determined, at least in part, according to the distance between the two conductors and the density of the gas between the conductors. Thus, under some conditions, the voltage breakdown of the gas in the vacuum vessel 60 can become more likely as the pressure changes. In fact, the required voltage for electrical breakdown in the vacuum vessel 60 typically becomes less as the pressure is reduced, until a minimum voltage is reached. Thereafter, the voltage required for electrical breakdown increases as the pressure is further reduced. Accordingly, the controller 90 can restrict the operation of the heater 80 by de-energizing the power supply 84 whenever the pressure in the vacuum vessel 60 is in a certain range characterized by a low required voltage for electrical breakdown. The required voltage for electrical breakdown can also be dependent on the temperature and the type of gas in the vacuum vessel 60. Therefore, the controller 90 can restrict the operation of the heater 80 based on these characteristics as well. In this way, the controller 90 can prevent arcing between conductive elements in the vacuum vessel 60 that are used to provide power to the heater 80.
After the preform 20 is processed in the die cavity 56, the pressurized gas in the interior space 26 of the preform 20 can be released, and the vacuum in the vacuum vessel 60 can be released. Thereafter, the vacuum vessel 60 can be opened, e.g., by lifting the second portion 64 of the vessel 60. In particular, the second portion 64 can be opened to at least the position shown in
Regardless of whether the preform 20 is cooled in or out of the die cavity 56, the rate of cooling of the preform 20 can be controlled. For example, the system 10 can include a device for cooling the dies 52, 54 and, hence, the preform 20, such as a pump for circulating a coolant fluid through passages defined by the dies 52, 54. Such a cooling operation is described in U.S. Pat. No. 6,528,771. If the preform 20 is removed from the die set 50 while hot, the preform 20 can be wrapped in blankets or otherwise insulated to limit the rate of cooling. Alternatively, the rate of convective cooling of the preform 20 can be enhanced by inducing air circulation proximate the preform 20.
The preform 20 can also be machined or otherwise trimmed to the desired configuration of the structural assembly 40. For example, the preform 20 can be machined to form one or more structural assemblies, which in some embodiments define complex contours such as a three-dimensionally curved contour, i.e., a contour curved about at least two non-parallel axes. In some cases, the structural assembly 40 can be further assembled with other structural assemblies to form a combined structure.
Many modifications and other embodiments of the invention will come to mind based on these descriptions and the drawings. The invention is not to be limited to the specific embodiments disclosed. Modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3011926 | Rowe | Dec 1961 | A |
3073268 | Cole | Jan 1963 | A |
3091846 | Henry | Jun 1963 | A |
3340101 | Fields, Jr. et al. | Sep 1967 | A |
3585832 | Hinshaw et al. | Jun 1971 | A |
3595060 | Hundy | Jul 1971 | A |
3864176 | Swanson | Feb 1975 | A |
3898827 | Swanson | Aug 1975 | A |
3920175 | Hamilton et al. | Nov 1975 | A |
3927817 | Hamilton et al. | Dec 1975 | A |
3934441 | Hamilton et al. | Jan 1976 | A |
3974673 | Fosness et al. | Aug 1976 | A |
3997369 | Grimes et al. | Dec 1976 | A |
4065302 | Turillon | Dec 1977 | A |
4117970 | Hamilton et al. | Oct 1978 | A |
4137105 | Ness | Jan 1979 | A |
4145903 | Leach et al. | Mar 1979 | A |
4197977 | Deminet | Apr 1980 | A |
4292375 | Ko | Sep 1981 | A |
4304350 | Paez et al. | Dec 1981 | A |
4361262 | Israeli | Nov 1982 | A |
4407682 | Sawa et al. | Oct 1983 | A |
4475624 | Bourland, Jr. et al. | Oct 1984 | A |
4493737 | Banker | Jan 1985 | A |
4587147 | Keith | May 1986 | A |
4769968 | Davis et al. | Sep 1988 | A |
4811766 | Sastry et al. | Mar 1989 | A |
4893743 | Eylon et al. | Jan 1990 | A |
4934580 | Sutton | Jun 1990 | A |
5016805 | Cadwell | May 1991 | A |
5024369 | Froes et al. | Jun 1991 | A |
5025974 | Strickland | Jun 1991 | A |
5122317 | Chen et al. | Jun 1992 | A |
5129787 | Violette et al. | Jul 1992 | A |
5139887 | Sutton | Aug 1992 | A |
5141400 | Murphy et al. | Aug 1992 | A |
5199631 | Anderson et al. | Apr 1993 | A |
5209093 | Cadwell | May 1993 | A |
5214948 | Sanders et al. | Jun 1993 | A |
5214949 | Cadwell | Jun 1993 | A |
5224670 | Padden | Jul 1993 | A |
5226982 | Eylon | Jul 1993 | A |
5240376 | Velicki | Aug 1993 | A |
5273837 | Aitken et al. | Dec 1993 | A |
5275325 | Stracquadaini | Jan 1994 | A |
5287918 | Banks et al. | Feb 1994 | A |
5297937 | Umetani et al. | Mar 1994 | A |
5316203 | Rowe et al. | May 1994 | A |
5343619 | Lardellier | Sep 1994 | A |
5382405 | Lowrance et al. | Jan 1995 | A |
5384959 | Velicki | Jan 1995 | A |
5399215 | Blot et al. | Mar 1995 | A |
5407326 | Lardellier | Apr 1995 | A |
5407727 | Newell | Apr 1995 | A |
5410132 | Gregg et al. | Apr 1995 | A |
5420400 | Matsen | May 1995 | A |
5435226 | McQuilkin | Jul 1995 | A |
5451377 | Asher et al. | Sep 1995 | A |
5467528 | Bales et al. | Nov 1995 | A |
5467626 | Sanders | Nov 1995 | A |
5518383 | Abiven | May 1996 | A |
5556565 | Kirkwood et al. | Sep 1996 | A |
5564066 | Abiven | Oct 1996 | A |
5571436 | Gregg et al. | Nov 1996 | A |
5587098 | Matsen et al. | Dec 1996 | A |
5591369 | Matsen et al. | Jan 1997 | A |
5591370 | Matsen et al. | Jan 1997 | A |
5599472 | Brown et al. | Feb 1997 | A |
5624594 | Matsen et al. | Apr 1997 | A |
5641422 | Matsen et al. | Jun 1997 | A |
5645744 | Matsen et al. | Jul 1997 | A |
5654518 | Dobbs | Aug 1997 | A |
5683607 | Gillespie et al. | Nov 1997 | A |
5683608 | Matsen et al. | Nov 1997 | A |
5688426 | Kirkwood et al. | Nov 1997 | A |
5700995 | Matsen | Dec 1997 | A |
5705794 | Gillespie et al. | Jan 1998 | A |
5710414 | Matsen et al. | Jan 1998 | A |
5715644 | Yasui | Feb 1998 | A |
5723225 | Yasui et al. | Mar 1998 | A |
5723849 | Matsen et al. | Mar 1998 | A |
5725355 | Crall et al. | Mar 1998 | A |
5728309 | Matsen et al. | Mar 1998 | A |
5747179 | Matsen et al. | May 1998 | A |
5793024 | Matsen et al. | Aug 1998 | A |
5808281 | Matsen et al. | Sep 1998 | A |
5821506 | Matsen | Oct 1998 | A |
5823034 | Nelepòvitz | Oct 1998 | A |
5829716 | Kirkwood et al. | Nov 1998 | A |
5841079 | Parente | Nov 1998 | A |
5847375 | Matsen et al. | Dec 1998 | A |
5914064 | Gillespie et al. | Jun 1999 | A |
5981415 | Waku et al. | Nov 1999 | A |
6040563 | Matsen et al. | Mar 2000 | A |
6085965 | Schwartz et al. | Jul 2000 | A |
6087640 | Gillespie et al. | Jul 2000 | A |
6119978 | Kobayashi et al. | Sep 2000 | A |
6136125 | Ihara et al. | Oct 2000 | A |
6144008 | Rabinovich | Nov 2000 | A |
6180932 | Matsen et al. | Jan 2001 | B1 |
6211497 | Matsen et al. | Apr 2001 | B1 |
6264880 | Elmer et al. | Jul 2001 | B1 |
6279228 | Kobayashi et al. | Aug 2001 | B1 |
6337471 | Kistner et al. | Jan 2002 | B1 |
6371411 | Breer et al. | Apr 2002 | B1 |
6457676 | Breer et al. | Oct 2002 | B1 |
6459069 | Rabinovich | Oct 2002 | B1 |
6475637 | Strutt et al. | Nov 2002 | B1 |
6511759 | Schalansky | Jan 2003 | B1 |
6528771 | Matsen et al. | Mar 2003 | B1 |
6582845 | Helfinstine et al. | Jun 2003 | B1 |
6669447 | Norris et al. | Dec 2003 | B1 |
6677011 | Elmer et al. | Jan 2004 | B1 |
6688558 | Breer et al. | Feb 2004 | B1 |