This application is related to U.S. patent application Ser. No. 15/077,250, entitled SYSTEM AND METHOD FOR INDUCING FLUTING IN A PAPER PRODUCT BY EMBOSSING WITH RESPECT TO MACHINE DIRECTION, filed 22 Mar. 2016, and is related to U.S. patent application Ser. No. 15/088,999, entitled SYSTEM AND METHOD FOR PRODUCING MULTI-LAYERED BOARD HAVING A CORRUGATED MEDIUM AND AN EMBOSSED MEDIUM, filed 1 Apr. 2016, further, the present application is also related to U.S. patent application Ser. No. 15/134,106, entitled SYSTEM AND METHOD FOR PRODUCING A MULTI-LAYERED BOARD HAVING A MEDIUM WITH IMPROVED STRUCTURE filed 20 Apr. 2016 (now U.S. Pat. No. 10,328,654), and is related to U.S. patent application Ser. No. 15/134,153 entitled SYSTEM AND METHOD FOR PRODUCING A FACING FOR A BOARD PRODUCT WITH STRATEGICALLY PLACED SCORES filed 20 Apr. 2016 (now U.S. Pat. No. 10,800,133); and is related to U.S. patent application Ser. No. 15/134,176 entitled SYSTEM AND METHOD FOR PRODUCING AN ARTICULATING BOARD PRODUCT HAVING A FACING WITH SCORE LINES IN REGISTER TO FLUTING filed 20 Apr. 2016, all of the foregoing applications are incorporated hereby reference in their entireties.
Modern paper-making techniques use paper machines at paper mills to produce rolls of paper that, in turn, can be used by board makers to produce board products (i.e., corrugated board). As a result, rolls of paper may be produced from machines that operate continuously. Modern paper machines typically produce paper from a number of substances including wood pulp that comprise wood fibers (although other fibers may also be used). These fibers tend to be elongated and suitable to be aligned next to one another. The fiber starts as a slurry that can be fed onto a moving screen from a head box of the paper machine. In modern paper machines, the fibers tend to align with each other and align with a direction in which the screen is moving. This alignment direction of underlying fibers is called the major direction of the paper and is in line with the machine direction. Thus, the major direction is often simply called the machine direction (MD) and the paper that is produced has an associated MD value.
When paper is used to make a board product, portions or layers of the board product may be corrugated. Traditional corrugating machines will corrugate the underlying paper product in the cross direction (CD) of the paper thereby failing to take advantage of the natural strength bias of the paper in the machine direction. Further, the greater natural strength qualities of paper in the machine direction are left unharnessed by cross corrugation techniques in board making solutions. As a result, companies that produce conventional board products remain entrenched in old production processes that limit the strength of the board product.
Aspects and many of the attendant advantages of the claims will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The following discussion is presented to enable a person skilled in the art to make and use the subject matter disclosed herein. The general principles described herein may be applied to embodiments and applications other than those detailed above without departing from the spirit and scope of the present detailed description. The present disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed or suggested herein.
By way of overview, the subject matter disclosed herein may be directed to a system and method for producing a board product made from paper products that have two corrugated mediums (sometimes called corrugated fluting) and at least one embossed medium (sometimes called embossed fluting). Because of these three mediums, this board product may sometimes be called a Triple Wall™ board. The board product may further include one or more facings (sometimes called liners or walls) that are adhesively coupled to the corrugated medium, the embossed medium, or both. Generally speaking, a corrugated medium may be characterized as a paper product that exhibits flutes induced by a corrugating process such that the induced flutes are perpendicular (or at least not congruent) with the machine direction of the paper product. That is, the corrugated medium has flutes in the cross direction of the paper. An embossed medium may be characterized as a paper product that exhibits flutes induced by an embossing process such that the induced flutes are aligned with the machine direction of the paper product.
When a board product is produced such that a corrugated medium and an embossed medium are adhesively coupled and flanked by a facing on either outside surface, the resultant characteristics of the board product is superior to conventional board product that use only corrugated medium. This is because the embossed medium is produced using a linear embossing process that takes advantage of the natural strength of the machine direction of the paper product. Additional permutations of the underlying concept of having a cross-corrugated medium and a linearly embossed medium in the same board product are possible, including disposing a facing between the corrugated medium and the embossed medium and having facings on one or both outer walls of the board product. These advantages and additional aspects of various embodiments of the subject matter disclosed herein are discussed below with respect to
Prior to discussing the various embodiments, a brief discussion about cross corrugating and linear embossing is presented. As has been briefly stated above, conventional board products include a conventionally produced corrugated medium, e.g., a cross-corrugated medium. A cross-corrugated medium has flutes formed perpendicular to most underlying fibers of the paper product. This results in flutes that are not aligned with the majority of underlying fibers and, therefore, do not take advantage of the natural strength of the MD value of the paper (when compared to the CD value). Such a failure to harness the MD value of the paper leads to loss of opportunity in the manufacturing of board products when specific board strength is to be realized. That is, it will necessarily take more paper (heavier paper, larger flutes, and the like) to realize the required board strength.
Embossing is a process that stretches and deforms the paper going through the embossing rolls. As the paper is squeezed through an embossing roll that is closely aligned with a counterpart embossing roll, the paper tends to stretch away from the contact points between the embossing rolls and. The resultant embossed paper now has a width that is greater due to the stretching of the paper in the lateral direction. But, the embossed paper now includes fluting such the original width of the pre-embossed paper is almost equivalent to the width of the resultant fluted medium. Further, the length of the paper (as defined by the machine direction of the paper) also remains unaffected by the embossing process.
A linearly-embossed medium is different from a cross-corrugated medium in that the induced flutes are aligned with the MD value of the paper product. This results in flutes that are aligned with the majority of underlying fibers and, therefore, take full advantage of the natural strength of the MD value of the paper (when compared to the CD value). Harnessing the MD value of the paper leads to efficiencies in the manufacturing of board products when specific board strength is to be realized. That is, it will necessarily take less paper (lighter paper, smaller flutes, and the like) to realize the required board strength. Aspects of making, producing, and using linearly embossed mediums are discussed in greater detail in U.S. patent application Ser. No. 15/077,250 entitled “SYSTEM AND METHOD FOR INDUCING FLUTING IN A PAPER PRODUCT BY EMBOSSING WITH RESPECT TO MACHINE DIRECTION” and filed on Mar. 22, 2016, which is incorporated herein by reference in its entirety and for all purposes. Thus, the aspects of linearly-embossed mediums will not be discussed further for brevity as the discussion now turns to
Notwithstanding its failure to harness the natural strength of the paper in the machine direction 122, the cross-corrugated medium 120 of
Embossing is a process that stretches and deforms the paper going through the embossing rolls. As the paper is squeezed through an embossing roll that is closely aligned with a counterpart embossing roll, the paper tends to stretch away from the contact points between the embossing rolls and. The resultant embossed paper now has a width that is greater due to the stretching of the paper in the lateral direction. But, the embossed paper now includes fluting such the original width of the pre-embossed paper is almost equivalent to the width of the resultant fluted medium. Further, the length of the paper (as defined by the machine direction of the paper) also remains unaffected by the embossing process.
The embossing process results in almost no take-up factor, and in some applications, zero take-up factor. This is because the flutes are not simply formed around corrugating ribs, but are actually stretched to result in a desired pattern. The embossed pattern then yields a fluted pattern similar to corrugating. Therefore, inducing fluting through embossing leads to a large increase in efficiency (e.g., reduction in take-up factor by as much as 43% in the case of a C-flute profile) while also taking advantage of the MD value of the paper that makes up the fluted medium.
Likewise, a second facing 150 may form a bottom-side outer wall (again, the top/bottom direction reference is arbitrary) that is coupled to one side of the second corrugated medium 140. The coupling may be through an adhesive applied to the apex of each flute on the bottom-side of the second corrugated medium 140 such that the second facing 150 is glued to the second corrugated medium 140 where adhesive is applied. In other embodiments, glue may be applied to the entirety of the second facing 150 prior to being coupled to the second corrugated medium 140.
Further, the first corrugated medium 120 and the embossed medium 130 may be glued to each other using adhesive. Because the flutes of the first corrugated medium 120 are aligned in the cross direction and the flutes of the embossed medium 130 are aligned in the machine direction, the contact points between these two mediums will be at the crossings of the apexes of the respective flutes. In this manner, the first corrugated medium 120 and the embossed medium 130 are affixed with respect to one another because of the adhesive holding one medium directly to the other. Similarly, the second corrugated medium 140 and the embossed medium 130 may also be glued to each other using adhesive. The flutes of the second corrugated medium 140 are aligned in the cross direction as well and the contact points between these two mediums will be at the crossings of the apexes of the respective flutes. In this manner, the second corrugated medium 140 and the embossed medium 130 are affixed with respect to one another because of the adhesive holding one medium directly to the other.
When all three mediums are assembled and affixed, the resultant board product 100 is stronger than conventional board product because the linearly embossed medium 130 takes advantage of the superior MD value of the underlying paper product. Further, the three mediums may be flanked by first and second facings 110 and 150. As can also be seen in
In the embodiment shown in
As has been discussed with respect to
Such a board product having a linearly-embossed medium 130 further leads to efficiencies on several levels and succeeds in realigning the interests of paper makers and board/box makers. First, linear embossing allows the paper maker to disregard any need to carefully control the alignment (or rather non-alignment) of the pulp fibers when first poured onto a screen on a paper machine. Paper makers, in order to improve strength in the cross direction, may employ paper machines that include a head box that combats the natural alignment of underlying long fibers in the machine direction. With linear embossing, the need for improved strength in the cross direction is reduced or eliminated. Therefore, the paper-maker can focus on improving the speed of the paper machine.
Second, board makers can produce board products with less paper material. The linearly embossed layer 130 discussed herein lead to a fluted medium that requires less material for production. That is, in conventional corrugating machines, the paper needed for the fluted medium is greater than the paper needed for a facing portion (in linear terms). Thus, the efficiency gain is two-fold: less overall paper used in making corrugated board and greater strength in the resultant board by aligning the MD value in both flutes and facings.
The embodiments as discussed with respect to
The paper from each roll may be unwound from each respective roll and fed toward a combiner 450 that is configured to combine the various layers of paper together to form a resultant board product. In various embodiments, the combination of feed rolls in the machine 400 may be different from what is shown in
Prior to entering the combiner 450, at least some of the paper from the feed rolls may be passed through a stage for forming the paper into a medium. As used herein and in the industry, a medium may refer to a paper product that has been formed into paper having flutes. Thus, the first corrugated medium feed roll 420 may feed paper into first and second corrugating rolls 421a and 421b that are aligned with respect to each other. As the paper exits the first corrugating stage (e.g., corrugating rolls 421a and 421b), it becomes the first corrugated medium 120 as discussed above with respect to
Similarly, the embossed medium feed roll 430 may feed paper into first and second embossing rolls 431a and 431b that are aligned with respect to each other. As the paper exits the embossing stage (e.g., embossing rolls 431a and 431b), it becomes the embossed medium 130 as discussed above with respect to
In the embodiment that produces the board product of
While the subject matter discussed herein is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the claims to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
479999 | Thompson | Aug 1892 | A |
762033 | Ferres | Jun 1904 | A |
1504218 | Crowell | Aug 1924 | A |
1582841 | Lorenz | Apr 1926 | A |
1620367 | Lion | Mar 1927 | A |
1692720 | Cannard | Nov 1928 | A |
1863973 | Ellis, Jr. | Jun 1932 | A |
1924873 | Moone | Aug 1933 | A |
2054867 | Rudin et al. | Sep 1936 | A |
2089898 | Kappler | Aug 1937 | A |
RE20970 | Rowe et al. | Jan 1939 | E |
2359314 | Klein et al. | Oct 1944 | A |
2409195 | Crawford | Oct 1946 | A |
2474381 | Bergstein | Jun 1949 | A |
2485020 | Staude | Oct 1949 | A |
2503874 | Ives | Apr 1950 | A |
2651448 | Dusseault | Aug 1950 | A |
2547880 | Meyer et al. | Apr 1951 | A |
2576278 | Bode | Nov 1951 | A |
2758047 | Dowd | Aug 1956 | A |
2960145 | Ruegenberg | Nov 1960 | A |
3002876 | Rosati | Oct 1961 | A |
3011602 | Ensrud et al. | Dec 1961 | A |
3039372 | La Bombard | Jun 1962 | A |
3122300 | La Bombard | Feb 1964 | A |
3156599 | Ceesee | Nov 1964 | A |
3178494 | Tisdale | Apr 1965 | A |
3290205 | Goldstein et al. | Dec 1966 | A |
3449157 | Wandel | Jun 1969 | A |
3526566 | McIlvain, Jr. et al. | Sep 1970 | A |
3529516 | Dorsey et al. | Sep 1970 | A |
3542636 | Wandel | Nov 1970 | A |
3735674 | Haddock | May 1973 | A |
3773587 | Flewwelling | Nov 1973 | A |
4034135 | Passmore et al. | Jul 1977 | A |
4126508 | Hoelzinger | Nov 1978 | A |
4140564 | Schrader | Feb 1979 | A |
4179253 | Lightfoot | Dec 1979 | A |
4259950 | Klippel | Apr 1981 | A |
4268555 | Kantz | May 1981 | A |
4285764 | Salvai | Aug 1981 | A |
4437850 | Ono | Mar 1984 | A |
4437851 | Salenbo | Mar 1984 | A |
4541895 | Albert | Sep 1985 | A |
4544597 | Peer, Jr. et al. | Oct 1985 | A |
4618391 | Torti et al. | Oct 1986 | A |
4657611 | Guins | Apr 1987 | A |
46934134 | McFarland et al. | Sep 1987 | |
4748067 | Cline | May 1988 | A |
4800286 | Brears | Jan 1989 | A |
4800826 | Shiskin | Jan 1989 | A |
4886563 | Bennett et al. | Dec 1989 | A |
4931346 | Nogueras Dardina | Jun 1990 | A |
4935082 | Bennett et al. | Jun 1990 | A |
5061232 | Bloch et al. | Oct 1991 | A |
5156901 | Tanaka | Oct 1992 | A |
5316828 | Miller | May 1994 | A |
5339577 | Snyder | Aug 1994 | A |
5356364 | Veith et al. | Oct 1994 | A |
5419796 | Miller | May 1995 | A |
5508083 | Chapman, Jr. | Apr 1996 | A |
5537936 | Cordrey | Jul 1996 | A |
5581353 | Taylor | Dec 1996 | A |
5582571 | Simpson et al. | Dec 1996 | A |
5589257 | Carriker et al. | Dec 1996 | A |
5630903 | Knorr et al. | May 1997 | A |
5687517 | Wiercinski et al. | Nov 1997 | A |
5690601 | Cummings et al. | Nov 1997 | A |
5733403 | Morley | Mar 1998 | A |
5799861 | Bonner et al. | Sep 1998 | A |
5857395 | Bohm et al. | Jan 1999 | A |
5944016 | Ferko, III | Aug 1999 | A |
6056840 | Mills et al. | May 2000 | A |
6139938 | Lingle et al. | Oct 2000 | A |
6143113 | Berube | Nov 2000 | A |
6153037 | Kim et al. | Nov 2000 | A |
6162155 | Gordon et al. | Dec 2000 | A |
6261666 | Enderby et al. | Jul 2001 | B1 |
D467204 | Andresen | Dec 2002 | S |
6508751 | Weishew et al. | Jan 2003 | B1 |
6800052 | Abe | Oct 2004 | B1 |
6836331 | Reis et al. | Dec 2004 | B2 |
6871480 | Goodrich | Mar 2005 | B1 |
7255300 | Johnston | Aug 2007 | B2 |
7413629 | Fisher et al. | Aug 2008 | B2 |
7909954 | Johnston | Mar 2011 | B2 |
7963899 | Papsdorf et al. | Jun 2011 | B2 |
8012309 | Pare et al. | Sep 2011 | B2 |
8771579 | Kohler | Jul 2014 | B2 |
10363717 | Greenfield | Jul 2019 | B2 |
10800133 | Greenfield | Oct 2020 | B2 |
20010001410 | Ishibuchi et al. | May 2001 | A1 |
20030137667 | Reis et al. | Jul 2003 | A1 |
20040076798 | Larsson et al. | Apr 2004 | A1 |
20040089412 | Topolkaraev | May 2004 | A1 |
20040159693 | Adachi | Aug 2004 | A1 |
20040224828 | Nelles | Nov 2004 | A1 |
20050209075 | Kocherga et al. | Sep 2005 | A1 |
20060151655 | Johnston | Jul 2006 | A1 |
20060246261 | Kasabo et al. | Nov 2006 | A1 |
20070098887 | Kohler | May 2007 | A1 |
20080300825 | Ishibuchi et al. | Dec 2008 | A1 |
20090029840 | Chen | Jan 2009 | A1 |
20090117376 | Bloembergen et al. | May 2009 | A1 |
20100028611 | Adie | Feb 2010 | A1 |
20100080941 | McCarville et al. | Apr 2010 | A1 |
20100331160 | Kohler | Dec 2010 | A1 |
20110014433 | Trani et al. | Jan 2011 | A1 |
20110114712 | Malo et al. | May 2011 | A1 |
20110177298 | Gardiner | Jul 2011 | A1 |
20110226847 | Nakano | Sep 2011 | A1 |
20120205429 | Trani et al. | Aug 2012 | A1 |
20120226250 | Sato et al. | Sep 2012 | A1 |
20120276341 | Lake et al. | Nov 2012 | A1 |
20130139837 | Kaljura et al. | Jun 2013 | A1 |
20140044923 | Gelli | Feb 2014 | A1 |
20140141113 | Kohler | May 2014 | A1 |
20140166520 | Hoppe et al. | Jun 2014 | A1 |
20150010734 | Van Berlo | Jan 2015 | A1 |
20150114249 | Comorre | Apr 2015 | A1 |
20150307755 | Krumm et al. | Oct 2015 | A1 |
20160167338 | Greenfield | Jun 2016 | A1 |
20160271897 | Greenfield | Sep 2016 | A1 |
20170157894 | Greenfield | Jun 2017 | A9 |
20170341331 | Greenfield | Nov 2017 | A1 |
20190232600 | Greenfield | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2014232272 | Oct 2015 | AU |
2014265869 | Oct 2015 | AU |
2907431 | Sep 2014 | CA |
2907392 | Nov 2014 | CA |
1997000270 | Oct 1997 | CL |
2004000310 | Mar 2005 | CL |
2012002694 | Mar 2013 | CL |
2014000247 | Jan 2014 | CL |
56755 | Mar 2014 | CL |
2013002596 | Apr 2014 | CL |
2014003401 | Apr 2015 | CL |
2015002781 | Sep 2015 | CL |
2018002987 | Feb 2019 | CL |
2018002988 | Feb 2019 | CL |
2018002989 | Feb 2019 | CL |
2018002990 | Feb 2019 | CL |
1092355 | Sep 1994 | CN |
1126457 | Jul 1996 | CN |
1148360 | Apr 1997 | CN |
1150403 | May 1997 | CN |
1469802 | Jan 2004 | CN |
2806125 | Aug 2006 | CN |
2841324 | Nov 2006 | CN |
101259765 | Sep 2008 | CN |
101772457 | Jul 2010 | CN |
101952120 | Jan 2011 | CN |
102105300 | Jun 2011 | CN |
102470624 | May 2012 | CN |
202986283 | Jun 2013 | CN |
104494211 | Apr 2015 | CN |
105121147 | Dec 2015 | CN |
105121148 | Dec 2015 | CN |
1110709 | Jun 2001 | EP |
2969522 | Jan 2016 | EP |
2969526 | Jan 2016 | EP |
3436649 | Feb 2019 | EP |
3445583 | Feb 2019 | EP |
2596033 | Mar 1986 | FR |
2594160 | Aug 1987 | FR |
594328 | Nov 1947 | GB |
977069 | Dec 1961 | GB |
1542765 | Mar 1979 | GB |
2144077 | Feb 1985 | GB |
2258189 | Feb 1993 | GB |
2301316 | May 1995 | GB |
2368074 | Apr 2002 | GB |
1212298 | Jun 2016 | HK |
1212302 | Jun 2016 | HK |
S4972089 | Jul 1974 | JP |
50-10195 | Apr 1975 | JP |
S51-115191 | Oct 1976 | JP |
S52-156090 | Dec 1977 | JP |
62-116133 | May 1987 | JP |
H02-63358 | Mar 1990 | JP |
02-235623 | Sep 1990 | JP |
H03-106031 | Jan 1991 | JP |
H03-26534 | Feb 1991 | JP |
03-275292 | Dec 1991 | JP |
1996-309889 | Nov 1996 | JP |
H09-39119 | Feb 1997 | JP |
H0948077 | Feb 1997 | JP |
H10-50775 | Feb 1998 | JP |
2003291230 | Jun 2001 | JP |
2005509545 | Apr 2005 | JP |
2007152689 | Jun 2007 | JP |
2009125998 | Jun 2009 | JP |
2009172942 | Aug 2009 | JP |
2011079207 | Apr 2011 | JP |
2011079207 | Apr 2011 | JP |
2013-523492 | Jun 2013 | JP |
2016-519008 | Jun 2016 | JP |
2016515959 | Jun 2016 | JP |
2019514726 | Jun 2019 | JP |
2000-0058870 | Oct 2000 | KR |
20000058870 | Oct 2000 | KR |
100866390 | Nov 2008 | KR |
100866390 | Nov 2008 | KR |
20110104772 | Sep 2011 | KR |
20160008170 | Jan 2016 | KR |
20160008518 | Jan 2016 | KR |
12015502380 | Feb 2016 | PH |
12015502381 | Feb 2016 | PH |
9323241 | Nov 1993 | WO |
9427813 | Dec 1994 | WO |
WO 9535204 | Dec 1995 | WO |
9818614 | May 1998 | WO |
1999047347 | Sep 1999 | WO |
0158679 | Aug 2001 | WO |
2004052635 | Jun 2004 | WO |
2009101526 | Aug 2009 | WO |
2012128604 | Sep 2012 | WO |
2013019126 | Feb 2013 | WO |
WO 2013098353 | Jul 2013 | WO |
2014146036 | Sep 2014 | WO |
2014186043 | Nov 2014 | WO |
WO 2015128546 | Sep 2015 | WO |
2015178766 | Nov 2015 | WO |
2017184447 | Oct 2017 | WO |
Entry |
---|
U.S. Appl. No. 15/077,250, entitled System and Method for Inducing Fluting in a Paper Product by Embossing With Respect to Machine Direction, filed Mar. 22, 2016; 21 pages. |
U.S. Appl. No. 15/088,999, entitled System and Method for Producing Multi-Board Having a Corrugated Medium and an Embossed Medium, filed Apr. 1, 2016; 22 pages. |
First Examination Report for New Zealand Patent Application Serial No. 712616, New Zealand Intellectual Property Office, dated Nov. 30, 2015, pp. 2. |
First Examination Report for New Zealand Patent Application Serial No. 712611, New Zealand Intellectual Property Office, dated Nov. 30, 2015, pp. 2. |
International Search Report based on PCT/US2014/030916; dated Aug. 22, 2014, pp. 3. |
International Search Report based on PCT/US2014/030909; dated Aug. 20, 2014, pp. 3. |
First Patent Examination Report for Australian Patent Application Serial No. 2014232272, Australian Government, IP Australia, dated Mar. 3, 2016, pp. 3. |
First Patent Examination Report for Australian Patent Application Serial No. 2014265869, Australian Government, IP Australia, Apr. 21, 2016, pp. 2. |
Second Examination Report for New Zealand Patent Application Serial No. 712611, New Zealand Intellectual Property Office, Jul. 6, 2016, pp. 3. |
Internation Search Report & Written Opinion, dated Jul. 21, 2017; PCT/US2017/025531, filed Mar. 31, 2017. |
International Search Report and Written Opinion dated Jul. 6, 2017; PCT Appl. US2017/25491, filed Mar. 31, 2017. |
International Search Report & Written Opinion dated Jun. 15, 2017; PCT Appl. No. US17/23611 filed Mar. 22, 2017. |
International Search Report & WrittenOpinion dated Jun. 27, 2017; PCT Appl. No. US17/25510; filed Mar. 31, 2017 I. |
International Search Report & Written Opinion dated Jun. 30, 2017; PCT Appl. No. US17/027624; filed Apr. 14, 2017. |
Supplementary European Search Report for European application No. EP14762807, European Patent Office, The Hague, dated Jun. 21, 2016, pp. 5. |
First Office Action and Search Report along with English Translation for Chinese Application No. 201480016009X, dated Aug. 3, 2016, pp. 17. |
European Patent Office; Extended European Search Report dated Nov. 27, 2019; EPO Application No. 17786318.0; pp. 1-8. |
European Patent Office; Extended European Search Report dated Nov. 28, 2019; EPO Application No. 17776824.9; pp. 1-7. |
European Patent Office; Extended European Search Report dated Nov. 21, 2019; EPO Application No. 17786382.6; pp. 1-8. |
European Patent Office; Extended European Search Report dated Nov. 21, 2019; EPO Application No. 17786317.2; pp. 1-7. |
European Patent Office; Extended European Search Report dated Nov. 7, 2019; EPO Application No. 17786383.4; pp. 1-7. |
European Patent Office; Extended European Search Report dated Jul. 15, 2019; EP Application No. 17771068.8; pp. 1-6. |
EMS Innovations Inc., “Adult Dispos-A-Board”, published on Youtube.com on Mar. 2, 2012, retrieved from URL https://www.youtube.com/watch?v=Ses-wKU5ht4 on Apr. 29, 2020 (Year: 2012). |
WO dated Aug. 20, 2009 for PCT/IB2009/000271 filed Feb. 13, 2009. |
European Extended Search Report; European Patent Organization; EP 14797031.3; dated Oct. 31, 2016; pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20170305103 A1 | Oct 2017 | US |