The present invention relates, generally, to collation and selective insertion of imaged material, and more particularly, to systems and methods for dynamic insertion and custom finishing of printed material.
With the advent of computer technology, a wide variety of processing and handling system are now available to produce customized printed material. High volume production of selectively inserted printed material and packaging of the printed material can now be performed by computer-controlled equipment. Large volume production of advertising materials, account statements, and bulk mailing can be carried out using high-volume collation and packaging systems. For example, bulk mailing systems can place several enclosures or inserts into packages intended for mailing to selected recipients. The packages typically include common items that are sent to all recipients and additional items inserted into the package for selected recipients. The creation of mailing packages containing individualized inserts can only be realized on a cost-effective basis through the use of automated, high-speed equipment.
The preparation of individualized packages of printed material requires the use of scanning technology for product quality control. Typically, selective insertion systems employ machine readable indicia printed on control documents to ensure the proper printed materials are enclosed within a designated package. In one such system, selected inserts are placed into billing statements under the control of an integrated system controller. The controller directs selective insertion of enclosures into the billing statements. The system controller directs the inserter to selectively include inserts with the billing statement according to instructions from a data processor.
Selective insertion systems are also used to place inserts into bulk mailing items, such as advertising mailers and advertising inserts within newspapers. In one such system, newspapers are collated with materials that vary depending upon the product interest of selected newspaper subscribers. In addition to placing selective inserts within the newspaper, the system also prints indicia identifying the selected subscriber on a jacket of the newspaper.
High-speed, computer-controlled processing equipment is also used for permit and pre-sort bulk mailing for delivery to the U.S. Postal Service. Scanning equipment is used to pre-sort bulk mailings and to inspect and verify that mail pieces have been properly pre-sorted and proper postage applied. Such systems include stacking structures for accommodating a plurality of like stationery items. Printing systems are used to print various parts of information stored by a computer system on selected stationery items from the stacking structure. Identification marks are placed on the stationery items for use by the U.S. Postal Service for marking and identifying pre-sorted letters.
Automated systems have also been developed that validate the sequence and package completeness of output from a high-speed printer. The equipment can add covers and inserts and, if required, bind the printed material together in a variety of ways and place the printed material in a package. The systems are configured to assemble a variety of documents, such as insurance policies, contracts, instructional materials, parts and repair manuals, and business reports of various types. For example, the system can place particular clauses within insurance policies that are to be selectively mailed to policy holders residing in a particular state. The automated printing and assembly equipment thus enables large volume distribution of insurance policies and other documents that contain particular information relevant to selected recipients.
Although computer controlled systems have enabled development of high-volume printed material handling systems, systems and methods have yet to be developed to address the particular need for individualized finished printed material. Further, advancements in system configuration are necessary to fully realize the potential of advanced printing and handling systems. Accordingly, a need existed for systems and methods to address a wide variety of applications for personalized printed material and finishing of the printed material.
In an embodiment of the invention, a method for producing personalized imaged material includes selectively ejecting predetermined stock sheets from a plurality of sheet feeders. The stock sheets are sequentially processed to image personalized information onto the stock sheets to form personalized sheets and the personalized sheets are sequentially finished.
In another embodiment of the invention, a method for producing personalized printed material includes selectively gathering stock sheets and assembling the stock sheets into designated sets of sheets. The stock sheets in each designated set of sheets are sequentially processed to image personalized information onto the stock sheets. The stock sheets are then re-gathered into the designated sets of sheets and packaged with additional items.
In yet another embodiment of the invention, a method for producing personalized printed material includes selectively gathering stock sheets and assembling the stock sheets into designated sets of sheets. Each stock sheet is sequentially processed into a feeding system and personalized information is imaged onto the stock sheets. The stock sheets are re-gathered into the designated sets of sheets presented for final processing.
In still another embodiment of the invention, a method for producing personalized imaged material includes selectively ejecting predetermined stock sheets from a plurality of sheet feeders to form a sequential order of stock sheets. Each stock sheet contains specified indicia thereon. The stock sheets are sequentially processed to image personalized information onto the stock sheets to form personalized sheets. Each personalized sheet is associated with an additional item, where a feature of the additional item is related to one or both of the specified indicia or the personalized information.
In a further embodiment of the invention, a method for producing personalized imaged material includes providing a multi-bin collator, where each bin contains stock sheets having predetermined indicia thereon. Selected bins are activated in response to control signals from a control system and one or more stock sheets are fed from the selected bins onto a conveyance device. The stock sheets are sequentially processed to image personalized information onto the stock sheets to form personalized sheets and the personalized sheets are sequentially finished.
a is a front view of an exemplary pre-printed sheet that may be used as a stock sheet in accordance with the invention;
b is a front view of the stock sheet illustrated in
a is a front view of an insert sheet that may be used as an addressing vehicle in accordance with the invention;
b is a front view of the insert sheet illustrated in
a is a schematic block diagram of a control system arranged in accordance with the invention;
b is a schematic block diagram of a general information file structure in accordance with the invention;
c is a schematic block diagram of customer data files in accordance with the invention;
a is a schematic diagram of two exemplary collation systems arranged in accordance with the invention;
b is a schematic diagram of a re-feeder, an imaging system, and a re-gathering system arranged in accordance with the invention;
c is a top view of the schematic diagram illustrated in
d is a schematic diagram of an insertion and imaging system arranged in accordance with the invention;
a-16c are top views illustrating a sequential imaging and finishing process in accordance with an embodiment of the invention.
It will be appreciated that for simplicity and clarity of illustration, machine elements shown in the Figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to others for clarity. Further, where considered appropriate, reference numerals have been repeated among the Figures to indicate corresponding elements.
The present invention provides a system and method for low-cost, high-volume production of personalized printed materials. A computerized processing system enables a wide range of imaged materials to be automatically processed and packaged for delivery to recipients. The system and method of the invention can be utilized to address numerous applications including, but not limited to, direct marketing, invoice preparation, customized documentation preparation, and the like. The computer control processing system enables the storage of large quantities of information concerning various aspects of the recipients of the personalized imaged materials. The computerized control system also enables storage of user information that can be selectively coupled with recipient information to provide personalized imaged materials to selected recipients based on user criteria and recipient data files.
As will become apparent from the following description, the various embodiments of the invention are designed with maximum flexibility to enable the use of the system for a wide variety of applications and the preparation of small and large volume imaged material production. Although the exemplary embodiments of the invention described below generally relate to direct marketing, those skilled in the art will appreciate that the system and method of the invention can equally be applied to a wide variety of different imaged materials.
Shown in
b is a front view of pre-printed sheet 20 after processing in the system of the invention to image personalized information thereon. In accordance with one aspect of the invention, pre-printed sheet 20 has been subjected to an imaging process to place customized indicia 26 and 28 on coupon blank 24. As a result of the imaging process, coupon blank 24 now includes a particular value, shown as indicia 26, and a barcode, shown as indicia 28, for identification and tracking purposes. By processing pre-printed sheet 20 through the imaging system of the invention, a stock sheet has been processed to place personalized information onto the stock sheet. In accordance with the invention, numerous additional customized or personalized indicia can be imaged onto pre-printed sheet 20. For example, specific products, additional pricing information, and the like, could also be imaged on pre-printed sheet 20.
A front view of an exemplary insert sheet 30 is illustrated in
A computer control system for preparing personalized printed material in accordance with the invention is illustrated in
In accordance with the invention, the assembled information in information database 42 is organized into general information files 44 and specific information files 46.
Specific information files 46 can include numerous data relating to specific recipients of the personalized printed materials. As illustrated in
Those skilled in the art will appreciate that the architecture of data structure 38 described above is but one of many different possible architectures of a data structure for the present invention. Depending upon the particular application of the present invention, data structure 38 can have additional information files from those described above. For example, additional information files can include regulatory information, statutory information, and the like. In accordance with the invention, as illustrated in
Operations controller 40 provides command and control instructions to one or more collators 52, refeeders 54, imaging systems 56, inserters 58, and finishing systems 60. Operations controller 40 responds to commands to provide personalized printed materials intended for particular recipients as requested by specific users.
A system manager 62 responds to input instructions from operations personnel and instructs operations controller 40 to prepare sets of personalized printed material using particular data files maintained in data structure 38. System manager 62 initiates and maintains all of the data files within data structure 38 and, accordingly, maintains an awareness of the status of all data files in data structure 38.
Those skilled in the art will appreciate that the functions of system manager 62 and operations controller 40 can be carried out by electronic devices, such as microprocessors, microcontrollers, and the like. Further, the databases maintained in data structure 38 can be stored in hard memory devices, such as dynamic-random-access-memory (DRAM), static-random-access-memory (SRAM), on-board memory structures, and the like. System operators can enter command instructions to system manager 62 and data into data structure 38 through any of a number of different input/out devices, such as computer terminals, voice-activated systems, scanning devices, and the like.
Upon receiving instructions in the form of a job request from system manager 62, operations controller 40 matches the job request information with user profile data 48 and topic category files 50 with one or more recipient data files in specific information files 46. Once the user information and recipient information is matched, operations controller 40 relays command signals to the various operating equipment to produce the requested personalized printed material.
a-4d illustrate one embodiment of a single-lane machine for practicing the present invention. The various components making up the single-lane machine include a collator 70, a re-feeder 72, an imaging system 74, a re-gathering system 76, and a finishing system 78. The single-lane machine can also include an insertion system 80 and a second imaging system 82.
In accordance with the invention, collator 70 can be one of several different types of collators. Two exemplary collators are schematically illustrated in
In accordance with one embodiment of the invention, a number of rotary feed systems 84 are positioned above and laterally distributed along conveyor system 96. Each of the rotary feed systems supplies a stock sheet from its bin onto select spaces on conveyor system 96. After a select space has passed beneath several rotary feed systems 84, a designated set of sheets 100 is assembled on a select space of conveyor system 96. The make-up of designated set 100 depends upon the particular activation sequence of rotary feed system 84 as conveyor system 96 moves in a generally left to right direction. Those skilled in the art will recognize that rotary feed systems 84 could also be positioned along side of conveyor system 96 and feed stock sheets either at a right angle to the direction of motion of conveyor system 96 or in the same direction of motion. As described above, operations controller 40 responds to commands from operations personnel and uses information in data structure 38 to initiate activation signals to the various rotary feed systems of the collator.
A friction feed collator 102 is also illustrated in
Collator 70 can deliver a varying number of stock sheets into the space between lugs 94 on conveyer system 96. In this method, the feed device delivers multiple copies of the stock sheets in its bin into the same space on conveyor system 96. Accordingly, a designated set of sheets at a specific location on conveyer system 96 can have a number of sheets from the same bin. Collator 70 can also delivery multiple sheets from more than one bin into the same space on conveyor system 96. Thus, the make up of a designated set of sheets can also include multiple sheets from several bins. The ability to feed multiple sheets from the same bin is advantageous, for example, in the case where a designated set of sheets include admission tickets to an event, such as a sporting event, or fine arts event, or the like.
Conveyor system 96 transfers designated set 100 to a pick-up system 112. As illustrated in
In accordance with one embodiment of the invention, re-feeder 72 is configured to operate at transfer rates substantially greater than the operational rate of collator 70. In a preferred embodiment of the invention, re-feeder 72 operates at a rate that ranges from about the same rate as collator 70 (about a 1 to 1 operating speed ratio) to about 2 to about 50 times faster than collator 70. The high operating speed of re-feeder 72 ensures that designated sets 100 transferred from collator 70 can be sequentially processed at a rate that will accommodate the large number of stock sheets 88 contained within each designated set 100.
Those skilled in the art will recognize that other types of feeding systems can be used to assemble the designated sets of sheets prior to imaging. For example, a continuous rotary feed system can be used to collect the sets of sheets from the collator and sequentially deliver the individual sheets to aligning system 120. Further, an operator can manually collect the sets of sheets and deliver the sets of sheets to aligning system 120. Accordingly, the present invention contemplates human intervention where necessary or where cost effective to provide interfacing between operating systems.
Regardless of the method used to collect the designated sets of sheets, aligning system 120 aligns each stock sheet 88 to position each stock sheet at a proper orientation for imaging by imaging system 74. Once aligned by alignment system 120, stock sheets 88 are transferred to a vacuum belt 124 in imaging system 74. As each stock sheet 88 is transferred to vacuum belt 124, a scanning device 126 scans the stock sheet for a code or other graphic indicia to ensure that the correct stock sheet will be presented to imaging system 74. Scanning device 126 sends optical signals to a digital signal converter 128 that relays scan information to operations controller 40. Operations controller 40 verifies that the stock sheet 88 is a proper member of designated set 100 prior to imaging personalized indicia onto stock sheet 88 by imaging system 74. If scanning device 126 detects an incorrect sheet, imaging system 74 diverts the entire set of sheets from which the incorrect sheet originated to a waste bin (not shown) and operations controller 40 reorders the set of sheets containing the incorrect sheet.
While the foregoing processing sequence envisions that all of the stock sheets will be imaged with personalized information, the present invention also contemplates processes in which not all of the sheets in a set of sheets are imaged. In some cases it may not be desirable to image personalized information on each sheet within a set of sheets. For example, cover and end sheets within a set may have a different format than the remaining sheets within a set. Accordingly, it is within the scope of the present invention that certain ones of designated set 100 are transferred through imaging system 74 without being imaged.
In accordance with the inventive process, vacuum belt 124 positions stock sheet 88 within the imaging field of an imaging device 130. Imaging device 130 can be one of a number of different imaging devices including a variable data imaging system, a laser printer, an ink jet printer, and the like. In a preferred embodiment of the invention, imaging device 130 is a solvent-based ink jet system that can image stock sheets at a conveyor speed of about 500 to about 1000 linear feet per minute. Imaging system 130 is preferably a system configured to image stock sheets 88 from a position immediately above the stock sheets. Alternatively, imaging system 130 can also image stock sheets 88 from a position immediately below the stock sheets. In accordance with the invention, imaging device 130 also includes an imaging control system 131 and vacuum system 132 that provides vacuum pressure for vacuum belt 124.
Preferably, re-feeder 72 and imaging system 74 operate at a speed that is consistent with the demand for individually processing the stock sheets within a designated set 100 that contains a maximum number of stock sheets. At such an operating speed, the number of stock sheets in each designated set can vary, while the linear speed of vacuum belt 124 remains constant. For example, where a designated set 100 contains three stock sheets and another designated set 100 contains seven stock sheets, operations controller 40 will instruct re-feeder 72 to skip four feeds, plus a number for buffer purposes when processing the three-sheet designated set. Operations controller 40 also instructs refeeder 72 to skip a certain number for buffer purposes when processing the designated set containing seven stock sheets. The insertion of buffers when processing designated sets 100 having different numbers of stock sheets allows time, if needed, for the re-gathering of the designated sets and transferring the designated sets to final processing. The number of buffer positions depends on the overall operating speed of the single-lane machine.
Those skilled in the art will recognize that a wide variety of personalized indicia can be imaged onto the stock sheets by imaging system 74. The type of information can vary depending upon the nature of the material being imaged. For example, in the case of invoice preparation, the personalized information can include usage of services, such as utility services including, electricity, water, and the like, and for communications services, such as television, telephone, internet services, and the like. In addition to advertising mailers, the as described above the stock sheets can include admission tickets to various events. In this case, there can be multiple tickets for a given event date and imaging system 74 can image each ticket for a given date with seat number, ticket price, and the like. Accordingly, it is within the scope of the present invention that all such printed materials be processed by the system and method of the invention.
After stock sheets 88 are imaged to contain personalized information, they are transferred to re-gathering system 76 and reassembled into the original designated sets initially prepared by collator 70. Where needed for final processing purposes, re-gathering system 76 can include a rotary indexing device 134 that delivers re-gathered designated sets 100 to a conveyor 136. Stations 138 within rotary indexing device 134 rotate into alignment with vacuum belt 124 and receive personalized sheets 89 from imaging system 74. Alternatively, another type of indexing and turn over device, such as a belt system and the like can also be used. In yet another alternative, re-gathering system does not include a turn over device. Those skilled in the art will appreciate that the re-gathering system illustrated in
In an alternative embodiment, collator 70, re-feeder 72, imaging system 74, and re-gathering system 76 can all operate at variable transfer rates. These systems can be independently controlled by, for example, servo motors that are electronically linked to operations controller 40. Operations controller 40 monitors the numbers of sheets in the sets and the operating speed of each operating system. By varying the operating speeds through an interlinked control system, a relatively constant throughput can be obtained where the number of sheets in consecutive sets varies. In synchronizing the operating speeds, one system can be instructed to operate at a higher transfer rate than an adjacent system, and visa versa. The use of electronically-linked, machine speed controls can be broadly employed to synchronize the collator operating speed and the various interface components and processing components in the finishing operations. Accordingly, an interlinked operating speed control system that independently varies the transfer rates of the various process systems is contemplated by the present invention.
Once re-gathered and indexed, the designated sets of personalized sheets 101 can be transferred to a number of finishing operations. Those skilled in the art will appreciate that numerous types of finishing procedures can be carried out to organize the designated sets of sheets into a user specified format. For example, the designated sets of sheets can be bound together or attached using some other physical attachment means, such as clips, pins, staples, glue, and the like. Also the designated sets of sheets can be packaged by overwrapping, or shrink wrapping, or the like. Additionally, the designated sets of sheets can be inserted into an envelope suitable for mailing with the U.S. Postal Service or another document delivery service. In the machine embodiment illustrated in
As described above, the single-lane machine can also include insertion system 80 and second imaging system 82. Insertion system 80 includes a bin 142 that contains insert sheets 144. Insert sheets 144 can be any of a number of different types of sheets having a variety of information imaged thereon. In the embodiment of the invention described with reference to
Upon receiving control signals from operations controller 40, system relay 146 commands insertion system 80 to transfer an insert sheet 144 from bin 142 through transport system 148 to second imaging system 82. Second imaging system 82 includes an imaging device 150 that receives image control commands from operations controller 40 through imaging control system 152. Second imaging system 82 also includes an alignment system 154 to properly align insert sheets 144 within the imaging field of imaging device 150. In similarity with imaging device 130, imaging device 150 can be a variable field imaging system, or printing system, such as a laser printer or an inkjet printer, or the like. In a preferred embodiment of the invention, imaging device 150 is an inkjet printing system.
Once personalized information has been imaged onto insert sheet 144, the second imaging system 82 transfers the insert sheet to a selected station within rotary indexing 134. As a result of the operation of insertion system 80 and second imaging system 82, designated sets of sheets 101 each contain an insert providing address information to selected recipients.
Although the single-lane machine described above has been set forth with respect to particular machine components, those skilled in the art will appreciate that numerous different mechanisms exist for performing the various operations described above. For example, in addition to rotary indexing systems, other types of vertical stacking indexing systems and lateral stacking indexing systems could also be used. Further, in addition to the rotary feed and friction feed collators described above, a swing arm collator could also be used to prepare designated sets of sheets for delivery to the re-feeding system. Further, the single-lane machine described above can include additional sensing devices and electronic control and relay systems to send information to the operations controller and to receive instructions from the operations controller. Additionally, although the single-lane machine described above has been illustrated with reference to conveyor belt systems for transferring the stock sheets and designated sets of sheets, other types of conveyance mechanisms can also be used. For example, rollers, air bearing systems, vibrating systems, and the like.
Although the machine described and illustrated above sets forth an embodiment in which all machine components are linked together, those skilled in the art will appreciate that the system can be assembled as individual components. For example, a human operator or a mechanical transfer system can provide an interface between the various machine components. In an alternative embodiment, the collator can feed sets of sheets to a collection area and a human operator or a mechanical transfer system can deliver the sets of sheets to the re-feeder. Further, the sets of documents from the re-gathering system can be transported to the finishing system by a human operator or a mechanical transfer system.
Those skilled in the art will appreciate that the machine system described above can be operated under a number of different control programs. The following description sets forth several different program control sequences that can be used for the machine system described above. In accordance with the invention, the following program control sequences can also be employed to operate machine systems that differ from those described above.
One embodiment of a process control sequence for a single-lane machine arranged in accordance with the invention is illustrated in
An additional embodiment of a process control sequence for the single-lane machine described above is illustrated in
In accordance with the invention, an alternative embodiment of a system for producing personalized printed material is illustrated in
In accordance with the embodiment of the invention illustrated in
In accordance with the invention, yet another alternative embodiment of a system for producing personalized printed material is illustrated in
A process control sequence for a dual-lane machine in accordance with another embodiment of the invention is illustrated in
In an alternative embodiment of the invention, stock sheets are individually fed directly from a collator and sequentially imaged. The alternative embodiment differs from the embodiment described above in that the stock sheets are not gathered into sets of sheets nor processed by a re-feeder prior to imaging. Rather than gather the sheets into sets, the sheets are sequentially fed one at a time to the imaging system directly from a collator. In the alternative embodiment, the sheets can be gathered after imaging and before final processing.
The method in accordance with the alternative embodiment further includes sequentially finishing the imaged sheets. In the finishing process, the sheets are processed one at a time. The finishing process can include simply folding the imaged sheets. Also, the finishing process can include placing personalized indicia on either an inner surface of the sheets or an outer surface of the folded sheets, or on both the inner surface and the outer surface. Alternatively, the finishing process can also include packaging the imaged sheets with selectively gathered sheets into a package. Additionally, one or more additional items can be associated with the package. For example, an object such as a promotional item can be associated with package. The sequential processing is controlled by the control system described above.
Illustrated in
Alignment system 302 aligns each sequentially feed sheet and delivers each sheet by means of a conveyor system 312 to imaging system 304. Imaging system 304 is similar to imaging system 74 and includes an imaging device 314 and an optional scanning device 316. In accordance with the previous embodiment described above, personalized indicia is imaged onto the sheets by transferring the sheets past imaging system 314 on a conveyor system 318 to produce personalized sheets 320. Scanning device 316 communicates with the control system and verifies that the correct sheet is about to be imaged. After imaging, personalized sheets 320 are transferred by conveyor system 318 a finishing system, where personalized sheets 320 are sequentially processed into a final form.
As described above, the present invention also contemplates processes in which not all of the sheets are imaged. In some cases it may not be desirable to image personalized information on each sheet. Accordingly, it is within the scope of the present invention that certain ones of stock sheet 308 are transferred through imaging system 304 without being imaged.
The finishing system coupled to imaging system 304 can be similar to finishing system 78 described above, with the exception that the sheets are entirely sequentially processed to their final form. One embodiment of a finishing system is illustrated in
Folding system 322 can be any of a number of different sheet handling systems that manipulate flat sheets into a folded form. In the embodiment illustrated in
A top view illustrating the folding, sealing, and imaging operation is illustrated in
Once the personalized sheets are folded, labeling system 324 forms a wafer seal 330 to secure the fold. In the illustrated embodiment, labeling system 324 is a labeling device that applies wafer seal 330 to the outside edge of the folded sheets opposite from folding line 336.
Following seal formation, imaging system 326 images personal information 332 on an outer surface of folded sheets 334. Imaging system 326 is similar to the imaging systems described above. Information 332 can be a variety of personalized information, such as specialized advertising, discount offers, recipient address information, and the like. Where personalized indicia is to be placed on an inner surface of personalized sheets 320, an additional imaging system (not shown) is employed to place the indicia on the sheets prior to processing the sheets though folding system 322.
Although the foregoing finishing process is described in the context of a fully automated process, those skilled in the art will recognize that manual handling operations can be performed at various stages of the process. For example, operators can be used to collect stacks of sheets from the previous operation and transfer the sheets to the next operation. As the sheets are imaged by imaging system 304, an operator can collect the sheets and place the sheets in transfer bins. The sheets can then be taken by the operator to a folding system and be sequentially processed from the bins through folding system. Accordingly, the present invention contemplates human intervention to assist processing operations, for example, where machine cost is prohibitive or where mechanical interfacing is impractical.
Those skilled in the art will recognize that the finishing operation illustrated in
As part of the finishing process, the personalized sheets can be packaged with one or more additional items. For example, an object can be attached to the package or inserted into the package with the personalized sheet or sheets. Further, the object can be attached directly to the personalized sheets. The objects can include, for example, product samples, vouchers, marketing aids, such as games, and the like.
A schematic diagram of a system and method for associating an item with the personalized sheets according to one embodiment of the invention is illustrated in
In accordance with an embodiment of the invention, package attaching system 342 can deliver more than one type of object can be attached to the personalized sheets. For example, package delivery system 342 can provide a product sample 352 for attachment to designated personalized sheets 354, while package delivery system 344 provides vouchers 356 for attachment to designated personalized sheets 358. In a process where objects are attached to the personalized sheets, a gluing system 359 applies glue at a designated location on the upper surface of personalized sheets 230 as the sheets are received from the preceding operation and transported by conveyor system 350.
In addition to objects such as product sample, marketing aids, vouchers, and the like, additional personalized sheets can be associated with personalized sheets 374. For example, coupons previously processed to image personalized information for a particular recipient can be inserted into a package and the package attached to personalized sheets 374. Further, instead of attaching an item to personalized sheets 320, the items can be inserted into a package by a package insertion system, or over wrapped or shrink wrapped as described above.
Although only two package delivery systems are illustrated in
A process for sequentially imaging and finishing personalized sheets is illustrated in
An alignment system, such as alignment system 302, aligns the stock sheets on a vacuum belt 370 and a scanning device, such as scanning device 316, communicates with the control system and verifies that the scanned stock sheet is the correct stock sheet for its occupied position in the sequence. An imaging system, such as imaging system 304, images personalized information 372 onto each stock sheet to produce personalized sheets 374. As described above, the present invention also contemplates processes in which not all of the sheets are imaged with personalized information.
Once personalized sheets 374 are imaged, objects are attached to the personalized sheets, as illustrated in
In accordance the illustrated embodiment of the invention, different objects can be attached to personalized sheets 374 depending upon the content of indicia 368 and the content of personalized information 372. For example, object 378 is attached to personalized sheet 380, while object 382 is attached to personalized sheet 384. In this way, a particular recipient can receive a mailing, for example, that contains a personalized advertising sheet having a store logo, a personal message directed to the particular recipient, and an item, such as a product sample, that is related to a particular retailer or to product information in the personal message.
Once objects are attached, personalized sheets 374 are folded using a folding device, such as folding system 322, and sealed using a labeling device, such as labeling system 324, to place wafer seals 330 on folded sheets 386. An imaging system, such as imaging system 304, is used to place information 388, such as name and address information, and the like, on the outer surface of folded sheets 386.
Those skilled in the art will recognize that the order of the process steps described above can be varied to carry out a number of different finishing processes. For example, instead of attaching an object and folding the personalized sheet over the object, the object can be attached to an outside surface of the folded sheets.
Thus is apparent that there has been described a system and method for producing personalized imaged material that fully provides the advantages set forth above. Those skilled in the art will recognize that numerous modifications and variations can be made without departing from the spirit of the invention. For example, the collators and insertion systems can be configured in a variety of layout formats to accommodate varying floor space requirements. Accordingly, all such variations and modifications are within the scope of the appended claims and equivalents thereof.
This application is a continuation-in-part of commonly-assigned, co-pending patent application Ser. No. 10/712,291, filed Nov. 12, 2003, the subject matter of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10712291 | Nov 2003 | US |
Child | 10839880 | May 2004 | US |