System and method for providing access to co-located operations data for an electronic display

Information

  • Patent Grant
  • 10908863
  • Patent Number
    10,908,863
  • Date Filed
    Thursday, July 11, 2019
    6 years ago
  • Date Issued
    Tuesday, February 2, 2021
    4 years ago
Abstract
A system and method for providing access to co-located operations data for a number of electronic display assemblies is provided. A network monitoring center electronically communicates with a number of electronic display assemblies, each comprising sensors measuring operations data, which is stored at a database but electronically partitioned by client identifier. A client identifier is assigned to the operations data. Upon receipt of an operations data request, operations data associated with a client identifier matching a received identifier is summarized in a report which is transmitted to a client device which sent the request.
Description
TECHNICAL FIELD

Exemplary embodiments relate generally to a system and method for providing access to co-located operations data, particularly with regards to operation of an electronic display assembly.


BACKGROUND AND SUMMARY OF THE INVENTION

The use of electronic displays has increased in recent years. Beyond personal use, these electronic displays are sometimes placed in an enclosure, which may be ruggedized, for both indoor and/or outdoor use. For example, without limitation, such display assemblies may be placed outdoors, such as on sidewalks or on the tops of vehicles to name some examples, to display advertisements or other information. Oftentimes these display assemblies are associated with other electronic equipment to provide features such as, but not limited to, video conferencing, web browsing, way finding, image capture, emergency notification, and the like. It is desirable to provide owners, manufactures, operators, renters, or the like of such display assemblies with access to operations data regarding the status and operation of such display assemblies. Furthermore, these display assemblies consume a significant amount of power during operation. A significant amount of the energy consumption of such display assemblies comes from operation of the backlight. Particularly as the use of such display assemblies has increased, it is desirable that such operations data include data regarding the energy consumption of the display, including but not limited to, status and operation of the backlight. Such operations data may be stored and presented to display owners and other relevant parties such that energy consumption and reliability may be tracked. Certain operations parameters may be adjusted in response to the presented data. For example, without limitation, backlight levels may be adjusted downward to reduce energy consumption or maintenance frequencies may be increased in response to reported display assembly downtime.


However, for many such display assemblies, multiple parties may have an interest in the operations data. For example, a display assembly manufacturer may have an interest in monitoring its tens, hundreds, thousands, tens of thousands, etc. of display assemblies. Each owner or renter of one or more such display assemblies might likewise have an interest in monitoring the display assemblies it owns. While the manufacturer may already have access to this operations data, the operations data may include data for all owners or renters. Thus, the operations data may be co-located with operations data for other owners or renters. Allowing complete access to such data may create privacy concerns. However, individual storage of each client's information would potentially require multiple storage devices, increasing complexity and expense. Therefore, what is needed is a system and method for providing access to co-located operations data for a display assembly.


The present disclosures provide a system and method for providing access to co-located operations data for a display assembly. The system may comprise one or more client devices in communication with a centralized monitoring center via a network. Multiple display assemblies may likewise be in communication with the monitoring center via the network. In exemplary embodiments, each display assembly comprises one or more electronic displays and other electronic components for operation of the display assembly in electrical connection with a display controller. The display controller may likewise be in electrical connection with a network interface device. The network interface device may likewise be in communication with the centralized monitoring center via the network.


Operations data may be continually gathered and transmitted to the central monitoring center for storage. The received operations data may be processed. Such processing may determine which client(s) are associated with the operations data and what the operations data represents. The operations data may be summarized and presented in a visual depiction. Upon receipt of a client request for operations information, client specific information may be retrieved and presented to the client in the visual depiction. In other exemplary embodiments, upon login, a client may be permitted to remotely operate or modify display assemblies associated with the client.





BRIEF DESCRIPTION OF THE DRAWINGS

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:



FIG. 1 is a simplified plan view of an exemplary system;



FIG. 2 is a detailed view of an exemplary display assembly of FIG. 1;



FIG. 3 is a detailed view of an exemplary monitoring center of FIG. 1;



FIG. 4 is a detailed view of an exemplary client device of FIG. 1;



FIG. 5 is a flow chart of exemplary logic for use with the system of FIG. 1;



FIG. 6 is a flow chart of other exemplary logic for use with the system of FIG. 1;



FIG. 7 is an exemplary user interface for use with the system of FIG. 1;



FIG. 8 is another exemplary user interface for use with the system of FIG. 1;



FIG. 9 is another exemplary user interface for use with the system of FIG. 1;



FIG. 10 is another exemplary user interface for use with the system of FIG. 1; and



FIG. 11 is another exemplary user interface for use with the system of FIG. 1.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)

Various embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed configuration and components are merely provided to assist the overall understanding of these embodiments of the present invention. Therefore, it should be apparent to those skilled in the art that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.


Embodiments of the invention are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.



FIG. 1 is a simplified block diagram of an exemplary system. A number of display assemblies 30 may be in communication with a monitoring center 20. Similarly, a number of client devices 10 may be in communication with the monitoring center 20. The display assemblies 30 may be located remote from the monitoring center 20. Likewise, the client devices 10 may be located remote from the monitoring center 20. The communication between the display assemblies 30, the monitoring center 20, and the client devices 10 may be made by way of a network 80. The network 80 may be any network such as a cellular network, internet, intranet, world wide web, or the like. The network 80 between the client devices 10 and the monitoring center 20 may be the same or may be different from the network 80 between the monitoring center 20 and the display assemblies 30.


Each of the display assemblies 30 may be any kind of display assembly 30, such as but not limited to, a free-standing display kiosk configured for placement on a sidewalk, a wall-mounted display unit, a vehicle topper unit, or the like. Each of the client devices 10 may be a personal electronic device such as, but not limited to, a smartphone, tablet, smartwatch, laptop, desktop computer, some combination thereof, or the like.



FIG. 2 is a detailed view of an exemplary display assembly 30 of FIG. 1. Each display assembly 30 may comprise one or more electronic displays 70 in electrical connection with a display controller 50. Each electronic display 70 may comprise a backlight for illuminating the electronic display 70. The electronic display 70 may comprise one or more a liquid crystal displays, light emitting diode (“LED”) displays, organic LED displays, plasma displays, some combination thereof, or the like. One or more of the electronic displays 70 may comprise touch capabilities. The backlight may be comprised of a number of LEDs arranged in a directly backlit, edge-lit, or other orientation.


In exemplary embodiments, the display controller 50 may be in electrical connection with other components 60 for operating the display assembly 30. Such components 60 may include, but are not limited to, fans, temperature sensors, light sensors, fan speed sensors, power consumption, air quality sensors, weather sensors, other sensors, telephone equipment, video conferencing equipment, VOIP equipment, touch screens, camera, microphones, emergency notification devices, processors, electronic storage devices, wayfinding equipment, location detection devices, video players, proof of play devices, and the like. Any number, combination, and/or type of components are contemplated.


The display controller 50 may be configured to gather operations data from the electronic display 70. The display controller 50 may, alternatively or additionally, be configured to gather operations data from the components 60. Such operations data may include, but is not limited to, proof of play data, fan speed data, temperature data, humidity data, power consumption data, ambient light data, weather data, backlight data, electronic display data, status data, emergency notification data, air quality data, sensor readings, camera images or video recordings, microphone audio recordings, use history, and the like. The operations data for multiple clients may be co-located at the electronic storage device 52 located at the display assembly 30. Portions of the operations data may be associated with one or more client identifiers. For example, without limitation, operations data associated with a particular image displayed on the electronic display 70 may be associated with a particular client identifier. Alternatively, or in addition, all operations data originating from one or more display assemblies 30 may be associated with one or more client identifiers. This may permit for specific clients to access and retrieve only the operations data associated with the particular client—permitting the co-location of such operations data while maintaining privacy. The association with a client identifier may be performed at the display assembly 30 or at the monitoring center 20. The client identifiers may be, without limitation, unique alphanumeric serial numbers.


The display controller 50 may be in electrical communication with a network connection device 40. The network connection device 40 may be configured to transmit information to the monitoring center 20, including but not limited to, the operations data. In exemplary embodiments, the network connection device 40 may likewise be configured to receive information from the monitoring center 20, including but not limited to, operation instructions. Such operations instructions may comprise remote login capabilities, remote viewing, fan speed instructions, backlight adjustment instructions, video or image files for display on the electronic displays 70, some combination thereof, or other instructions for operation of the display assembly 30. The network connection device 40 may transmit and/or receive such information by way of the network 80.


The display controller 50 may comprise an electronic storage device 52 for storing the operations data and/or operations instructions. The display controller 50 may also comprise a processor 54 for processing the operations data and/or operations instructions. The electronic storage device 52 may comprise software instructions, which when executed, configure the processor 54 to perform various steps and processes described herein.



FIG. 3 is a detailed view of an exemplary monitoring center 20 of FIG. 1. The monitoring center 20 may comprise an electronic storage device 52 for storing the operations data and/or operations instructions. The monitoring center 20 may also comprise a processor 54 for processing the operations data and/or operations instructions. The electronic storage device 52 may comprise software instructions, which when executed, configure the processor 54 to perform various steps and processes described herein. The processor 54 may be the same or different from the processor 54 of the display assembly 30.


The monitoring center 20 may further comprise a network connection device 40. The network connection device 40 may be in electrical communication with the processor 54 and the electronic storage device 52. The network connection device 40 may be in electrical communication with one or more of the display assemblies 30. The network connection device 40 may be configured to receive operations data from the one or more display assemblies 30. The network connection device 40 may also be configured to transmit operations instructions to one or more of the display assemblies 30.


The network connection device 40 may be receive the operations data and pass it to the electronic storage device 52 for storage. The operations data for multiple display assemblies 30 may be co-located at the electronic storage device 52 located at the monitoring center 20. Co-location may be accomplished by associating portions of the operations data with one or more client identifiers. Each portion of the operations data associated with a particular client identifier may be stored on a common electronic storage device 52, but electronically partitioned to ensure that the operations data associated with each particular client is maintained separate.


Alternatively, or in addition, all operations data originating from one or more display assemblies 30 may be associated with one or more client identifiers. This may permit for specific clients to access and retrieve only the operations data associated with the particular client—permitting the co-location of such operations data while maintaining privacy. The network connection device 40 may transmit and/or receive such operations data and/or operations instructions by way of the network 80.


The gathering, transmitting, storing, receiving, and retrieving of operations data and/or operations instructions as shown and described herein may be accomplished, wholly or in part, by the use of a microservices architecture. Any of the other steps or methods described herein may likewise be accomplished, wholly or in part, by the use of a microservices architecture.


The monitoring center 20 may be a brick-and-mortar location staffed with a number of monitoring personnel, though such is not required. In exemplary embodiments, the monitoring center 20 may comprise one or more rooms with one or more displays which may provide status and/or operations information for one or more display assemblies 30. For example, without limitation, a complete or partial list of display assemblies 30 and status information for each display assembly 30 may be shown. Information for a subset of display assemblies 30 may be shown in a rotating, scrolling, or other fashion. Detailed information regarding one or more display assemblies 30 may be shown on the same or a separate screen. A number of personal electronic devices, such as but not limited to, smartphone, tablet, smartwatch, laptop, desktop computer, some combination thereof, or the like may likewise display some or all of the information and may be configured to receive user input comprising operational instructions for one or more of the display assemblies 30.



FIG. 4 is a detailed view of an exemplary client device 10 of FIG. 1. The client device 10 may be any personal electronic device, including but not limited to, a smartphone, tablet, smart watch, laptop, desktop computer, some combination thereof, or the like. The client device 10 may comprise an electronic storage device 52 for storing the operations data and/or operations instructions. The client device 10 may also comprise a processor 54 for processing the operations data and/or operations instructions. The electronic storage device 52 may comprise software instructions, which when executed, configure the processor 54 to perform various steps and processes described herein. The processor 54 may be the same or different from the processor 54 of the client device 10.


The client device 10 may further comprise a network connection device 40. The network connection device 40 may be in electrical communication with the processor 54 and the electronic storage device 52. The network connection device 40 may be in electrical communication with the monitoring center 20. The network connection device 40 may be configured to receive operations data from the one or more display assemblies 30 by way of the monitoring center 20. In exemplary embodiments, the network connection device 40 may be receive such operations data and store it on the electronic storage device 52. The network connection device 40 may be configured to transmit operations instructions to the monitoring center 20. The network connection device 40 may transmit and/or receive such information by way of the network 80. In exemplary embodiments, the receipt of operations data and/or transmission of operations instructions is accomplished by use of an internet browsing application and an internet-based user interface 90.



FIG. 5 is a flow chart of exemplary logic for use with the system of FIG. 1. The display controller 50 may gather operations data the one or more electronic displays 70 and/or the other components 60 of the respective display assembly 30. The operations data may be associated with one or more client identifiers. This operations data may be stored on the electronic storage device 52 of the respective display assembly 30. The operations data may be transmitted by way of the network connection device 40 and the network 80 to the monitoring center 20 where it may be stored on one or more electronic storage devices 52 at the monitoring center 20. In exemplary embodiments, the processor 54 at the monitoring center 20 may associate the operations data with one or more client identifiers. The processor 54 may electronically partition the electronic storage device 52 such that operations data associated with each particular client identifier is kept separate from operations data associated with other client identifiers. This process may be repeated continuously or at any interval. Alternatively, or in addition, a client identifier may be associated with the operations data when transmitted to the monitoring center 20.


A client request for operations data may be received from one or more of the client devices 10 at the monitoring center 20. The monitoring center 20 may retrieve the operations data associated with the client. In exemplary embodiments, this may involve retrieving all operations data associated with one or more of the display assemblies 30 associated with the client. Alternatively, or in addition, operations data specific to the client from a particular display assembly 30 may be retrieved. Stated another way, any single display assembly 30 may comprise operations data for multiple clients and only the operations data specific to the particular client may be retrieved. The retrieved operations data specific to the client may then be transmitted to the appropriate client device(s) 10. In exemplary embodiments, data specific to the client may be identified by way of the client identifiers. Operations data may be requested from each electronic display assembly 30 periodically, continuously, sequentially, in a particular order, some combination thereof, or the like.



FIG. 6 is a flow chart of other exemplary logic for use with the system of FIG. 1. One or more display assemblies 30 may be associated with one or more clients. A client login request may be received by way of one or more client devices 10 at the monitoring center 20. If the client login is not successful (e.g., if the user name and/or password are incorrect) the request may be denied. If the client login is successful (e.g., the user name and password are correct) the client may be permitted to remotely access one or more display assemblies 30 associated with the client. In exemplary embodiments, client login may be made by way of user name and password, one time use codes, biometric information, some combination thereof, or the like. Any method or system for verifying client identity is contemplated. Such access may be made by way of the monitoring center 20. The client may be able to view and retrieve operations data for the one or more display assemblies 30 associated with the client. The client may also be permitted to submit operation instructions for the one or more display assemblies 30 associated with the client. The operations of the one or more display assemblies 30 associated with the client may then be modified to reflect the received client operation instructions. Permissions may be tailored on a per client basis such that only certain display assemblies 30 may be accessed and/or modified when particular client login information is provided.



FIG. 7 is an exemplary user interface 90 for use with the system of FIG. 1. The user interface 90 may display overview information regarding a number of display assemblies 30, each of which may be associated with a particular client though such is not required. Information about each display assembly 30 may include, but is not limited to, the serial number, description information, site information, and status information of each display assembly 30. Status information, current and/or historical, may also be provided.


As shown in FIG. 8, event information for each of the display assemblies 30 associated with a particular client may be depicted under an events tab 92. The event information may include, but is not limited to, errors and warnings associated with one or more particular display assemblies 30. An option to automatically generate a repair request ticket 94 may be provided for each event.



FIG. 9 is another exemplary user interface 90 for use with the system of FIG. 1. A visualization 96 of current and historical operations data may be displayed. Such operations data may comprise data from one or more sensors associated with a display assembly 30. In exemplary embodiments, the visualization 96 may be displayed in tabular form or a graphical representation such as, but not limited to, a line chart, bar chart, scatter diagram, or the like. Various categories of data may be depicted in the visualization 96 as selected by use of a menu 98. Such categories may be displayed in a color-coded fashion.



FIG. 10 is an exemplary summary dashboard 91, which may be configured to display summary information regarding a particular display assembly 30. Environmental information 102 may be displayed such as, but not limited to, the average power supply temperature and average backlight temperature. Display status information 104 may also be displayed such as, but not limited to, the software version, the system run time, the backlight run time, and the brightness of each display. Additional information 106 may also be displayed such as, but not limited to, the status and resolution of various inputs, the inlet power supply, and the fan speed of various fans in the display assembly 30. Any open repair request tickets may be displayed at an open ticket information area 108. A screen capture 110 of what is currently being displayed, was previously displayed, and/or is scheduled to be displayed next on the display assembly 30 may also be provided.



FIG. 11 is another exemplary summary dashboard 93, which may be configured to display summary information regarding all display assemblies 30 associated with a particular client identifier. The number of display assemblies 30 with some downtime event may be depicted in a downtime visualization 112. In exemplary embodiments, the downtime visualization 112 is a bar graph tracked by date, though any form of visualization is contemplated. A listing of top display assemblies with events 114 may be provided. A summary of repair ticket requests 116 may also be provided depicting all open repair ticket requests. A summary of the most reported events 118 may list the event(s) in question and the number of display assemblies 30 affected by the given event(s). The summary of the most reported events 118 may be presented in tabular form, though such is not required. Finally, a status summary 120 of all display assemblies 30 associated with a given client identifier may be provided. The status summary 120 may include, but is not limited to, the number of display assemblies 30 associated with the given client identifier which are playing video, not playing video, having no or limited network connectivity, in good condition, in critical condition, or having one or more warning events.


The information displayed and the manner in which it is displayed is merely exemplary and is not intended to be limiting. It is contemplated that any kind of data may be displayed in any format.


Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.


Certain operations described herein may be performed by one or more electronic devices. Each electronic device may comprise one or more processors, electronic storage devices, executable software instructions, and the like configured to perform the operations described herein. The electronic devices may be general purpose computers or specialized computing device. The electronic devices may be personal computers, smartphone, tablets, databases, servers, or the like. The electronic connections described herein may be accomplished by wired or wireless means.

Claims
  • 1. A system for providing access to co-located operations data for a number of electronic display assemblies for a number of different clients, said system comprising: a network monitoring center in electronic communication with each of the number of electronic display assemblies, wherein each of the electronic display assemblies comprise one or more sensors configured to measure operations data for the respective electronic display assembly;a number of client devices in electronic communication with the network monitoring center;a database at the network operations center configured to receive operations data from each of the electronic display assemblies; andat least one electronic storage device located at the network operations center and comprising software instructions, which when executed, configure at least one processor to: store operations data received from each of the electronic display assemblies at the database;assign a client identifier to each portion of the received operations data, including at least: assign a first client identifier to a first portion of the received operations data for a first one of the electronic display assemblies:assign a second client identifier to a second portion of the received operations data for the first one of the electronic display assemblies;electronically partition the stored operations data by assigned client identifier;monitor for operations data requests from any of the number of client devices, wherein said operations data requests comprise one of said client identifiers;upon receipt of an operations data request, query the database for operations data associated with the received client identifier;summarize the operations data retrieved from the database into a summary report; andtransmit the summary report to the client device which sent the operations data request.
  • 2. The system of claim 1 wherein: a particular one of said electronic display assemblies is associated with a particular one of said client identifiers; andthe particular client identifier associated with the particular electronic display assembly is automatically assigned to all operations data received from said particular electronic display assembly.
  • 3. The system of claim 1 wherein: a particular client identifier is automatically assigned to all operations data received from any of the number of electronic display assemblies scheduled to display a particular image.
  • 4. The system of claim 1 wherein: electronic communication between the network operations center and each of the electronic display assemblies is made by way of a network and a network connectivity device provided at the network operations center and each of the electronic display assemblies.
  • 5. The system of claim 1 wherein: said operations data comprises fan speed, ambient temperature readings, internal temperature readings, ambient light levels, backlight levels, power consumption information, air quality readings, and ambient weather conditions.
  • 6. The system of claim 1 wherein: said operations data comprises one or more images displayed at each of said electronic display assemblies.
  • 7. The system of claim 1 wherein: said at least one electronic storage device comprises additional software instructions, which when executed, configure the at least one processor to verify received login information, wherein said login information includes one of said client identifiers.
  • 8. The system of claim 7 wherein: said at least one electronic storage device comprises additional software instructions, which when executed, configure the at least one processor to:receive updated operations instructions, wherein said updated operations instructions are associated with the client identifier provided with said login information; andtransmit said updated operations instructions to the electronic display assembly associated with the client identifier provided with said login information.
  • 9. The system of claim 8 wherein: said operations instructions comprise fan speed instructions and backlight level instructions.
  • 10. The system of claim 7 wherein: said operations data comprises status information; andsaid summary report comprises a listing of, and status information for, each electronic display assembly associated with the client identifier provided with said login information.
  • 11. The system of claim 10 wherein: said operations comprises event information; andsaid summary report comprises a listing of events experienced within a predetermined time period for each of said electronic display assemblies.
  • 12. The system of claim 11 wherein: said operations data comprises fan speed, ambient temperature readings, internal temperature readings, ambient light levels, and backlight levels; andsaid summary report comprises a visual depiction of said fan speed, ambient temperature readings, internal temperature readings, ambient light levels, and backlight levels.
  • 13. The system of claim 12 wherein: said visual depiction comprises a line graph.
  • 14. The system of claim 12 wherein: said operations data comprises air quality readings and ambient weather conditions; andsaid summary report comprises said air quality readings and ambient weather conditions.
  • 15. A method for providing access to co-located operations data for a number of electronic display assemblies comprising: placing a network monitoring center in electronic communication with each of the number of electronic display assemblies;measuring, by way of one or more sensors at each of the electronic display assemblies, operations data at each respective electronic display assembly;placing a number of client devices in electronic communication with the network monitoring center;storing, at a database located at the network operations center, operations data received from each of the electronic display assemblies;assigning a client identifier to each portion of the received operations data;electronically partitioning the stored operations data by assigned client identifier;receiving an operations data requests from one of the client devices, wherein said operations data requests comprise an identifier;querying the database for operations data associated with a client identifier matching the received identifier;generating a summary report comprising the operations data retrieved from the database; andtransmitting the summary report to the client device which sent the operations data request;verifying received login information, wherein said login information includes one of said client identifiers;receiving, at the network monitoring center, updated operations instructions, wherein said updated operations instructions are associated with the client identifier provided with said login information; andtransmitting said updated operations instructions to the electronic display assembly associated with the client identifier provided with said login information.
  • 16. The method of claim 15 wherein: the step of assigning a client identifier to each portion of the received operations data comprises the sub-steps of: assigning one of the client identifiers to each of the electronic display assemblies; andassociating operations data received from a particular electronic display assembly with the client identifier assigned to the respective electronic display assembly.
  • 17. The method of claim 15 wherein: the step of assigning a client identifier to each portion of the received operations data comprises the sub-steps of: assigning one of the client identifiers to each image scheduled to be displayed on one or more of the electronic display assemblies; andassociating operations data received from all of the electronic display assemblies scheduled to display a particular image with the client identifier assigned to the respective image.
  • 18. The method of claim 15 wherein: said operations data comprises fan speed, ambient temperature readings, internal temperature readings, ambient light levels, backlight levels, and power consumption information; andsaid summary report comprises a graph comprising fan speed, ambient temperature readings, internal temperature readings, ambient light levels, backlight levels, and power consumption information over a predetermined period of time.
  • 19. A system for providing access to co-located operations data for a number of electronic display assemblies comprising: a number of client devices, wherein each of said client devices is a personal electronic device;a network monitoring center in electronic communication with each of the number of electronic display assemblies and each of the client devices by way of a network, wherein each of the electronic display assemblies comprise one or more sensors configured to measure operations data for the respective electronic display assembly;a database at the network operations center configured to receive operations data from each of the electronic display assemblies; andan electronic storage device located at the network operations center and comprising software instructions, which when executed, configure a processor to: assign a unique, alphanumeric client identifier to each electronic display assembly;sequentially request operations data from each of the electronic display assemblies;associate operations data received from a particular electronic display with the client identifier assigned to the respective electronic display assembly;co-locate, but electronically partition, said received operations data based on the client identifier associated with said operations data;upon receipt of an operations data request from one of the client devices, query the database for operations data associated with a client identifier matching an identifier received in the operations data request;generate a summary report comprising the operations data retrieved from the database;transmit the summary report to the client device which sent the operations data request; andupon receipt of operations instructions associated with one of said client identifiers, transmit said operations instructions to each electronic display assembly associated with a client identifier received with the operations instructions;wherein said operations data comprises fan speed, ambient temperature readings, internal temperature readings, ambient light levels, backlight levels, power consumption information, air quality readings, and ambient weather conditions;wherein said operations instructions comprise fan speed instructions and backlight level instructions;wherein said summary report comprises a line chart indicating fan speed, ambient temperature readings, internal temperature readings, ambient light levels, backlight levels, power consumption information, air quality readings, and ambient weather conditions over a predetermined period of time.
  • 20. The system of claim 1 wherein: said at least one electronic storage device comprises additional software instructions, which when executed, configure the at least one processor to: assign the first client identifier to a third portion of the received operations data for a second one of the electronic display assemblies; andassign the second client identifier to a fourth portion of the received operations data for a third first one of the electronic display assemblies.
  • 21. A system for providing access to co-located operations data for a number of electronic display assemblies, said system comprising: a network monitoring center in electronic communication with each of the number of electronic display assemblies, wherein each of the electronic display assemblies comprise one or more sensors configured to measure operations data for the respective electronic display assembly;a number of client devices in electronic communication with the network monitoring center;one or more databases at the network operations center configured to receive operations data from each of the electronic display assemblies; andone or more electronic storage devices located at the network operations center and comprising software instructions, which when executed, configure one or more processors to: store operations data received from each of the electronic display assemblies at the one or more databases;assign a client identifier to each portion of the received operations data;electronically partition the stored operations data by assigned client identifier;monitor for operations data requests from any of the number of client devices, wherein said operations data requests comprise one of said client identifiers;verify received login information, wherein said login information includes one of said client identifiers;upon receipt of an operations data request, query the one or more databases for operations data associated with the received client identifier;summarize the operations data retrieved from the one or more databases into a summary report; andtransmit the summary report to the client device which sent the operations data request.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/697,016 filed Jul. 12, 2018, the disclosure of which is hereby incorporated by reference as if fully restated herein.

US Referenced Citations (180)
Number Name Date Kind
5162785 Fagard Nov 1992 A
5351201 Harshbarger, Jr. et al. Sep 1994 A
5590831 Manson et al. Jan 1997 A
5751346 Dozier et al. May 1998 A
5786801 Ichise Jul 1998 A
5952992 Helms Sep 1999 A
6144359 Grave Nov 2000 A
6157143 Bigio et al. Dec 2000 A
6215411 Gothard Apr 2001 B1
6222841 Taniguchi Apr 2001 B1
6259492 Imoto et al. Jul 2001 B1
6384736 Gothard May 2002 B1
6421694 Nawaz et al. Jul 2002 B1
6509911 Shimotono Jan 2003 B1
6546294 Kelsey et al. Apr 2003 B1
6553336 Johnson et al. Apr 2003 B1
6556258 Yoshida et al. Apr 2003 B1
6587525 Jeong et al. Jul 2003 B2
6753842 Williams et al. Jun 2004 B1
6771795 Isnardi Aug 2004 B1
6812851 Dukach et al. Nov 2004 B1
6850209 Mankins et al. Feb 2005 B2
6968375 Brown Nov 2005 B1
7038186 De Brabander et al. May 2006 B2
7064672 Gothard Jun 2006 B2
7319862 Lincoln et al. Jan 2008 B1
7330002 Joung Feb 2008 B2
7369058 Gothard May 2008 B2
7380265 Jensen et al. May 2008 B2
7391317 Abraham et al. Jun 2008 B2
7451332 Culbert et al. Nov 2008 B2
7474294 Leo et al. Jan 2009 B2
7577458 Lin Aug 2009 B2
7581094 Apostolopoulos et al. Aug 2009 B1
7595785 Jang Sep 2009 B2
7612278 Sitrick et al. Nov 2009 B2
7614065 Weissmueller, Jr. et al. Nov 2009 B2
7636927 Zigmond et al. Dec 2009 B2
7675862 Pham et al. Mar 2010 B2
7751813 Varanda Jul 2010 B2
7764280 Shiina Jul 2010 B2
7774633 Harrenstien et al. Aug 2010 B1
7795821 Jun Sep 2010 B2
7949893 Knaus et al. May 2011 B1
8212921 Yun Jul 2012 B2
8218812 Sugimoto et al. Jul 2012 B2
8248203 Hanwright et al. Aug 2012 B2
8441574 Dunn et al. May 2013 B2
8601252 Mendelow et al. Dec 2013 B2
8689343 De Laet Apr 2014 B2
8983385 Macholz Mar 2015 B2
9026686 Dunn et al. May 2015 B2
9812047 Schuch et al. Nov 2017 B2
10325536 Schuch et al. Jun 2019 B2
10593175 Jennings Mar 2020 B1
20020019933 Friedman et al. Feb 2002 A1
20020026354 Shoji et al. Feb 2002 A1
20020112026 Fridman et al. Aug 2002 A1
20020120721 Eilers et al. Aug 2002 A1
20020147648 Fadden et al. Oct 2002 A1
20020152425 Chaiken et al. Oct 2002 A1
20020163513 Tsuji Nov 2002 A1
20020163916 Oskouy et al. Nov 2002 A1
20020164962 Mankins et al. Nov 2002 A1
20020190972 Ven de Van Dec 2002 A1
20020194365 Jammes Dec 2002 A1
20020194609 Tran Dec 2002 A1
20030031128 Kim et al. Feb 2003 A1
20030039312 Horowitz et al. Feb 2003 A1
20030061316 Blair et al. Mar 2003 A1
20030097497 Esakov May 2003 A1
20030098881 Nolte et al. May 2003 A1
20030115591 Weissmueller, Jr. et al. Jun 2003 A1
20030117714 Nakamura et al. Jun 2003 A1
20030161354 Bader et al. Aug 2003 A1
20030177269 Robinson et al. Sep 2003 A1
20030192060 Levy Oct 2003 A1
20030196208 Jacobson Oct 2003 A1
20030214242 Berg-johansen Nov 2003 A1
20030230991 Muthu et al. Dec 2003 A1
20040036697 Kim et al. Feb 2004 A1
20040138840 Wolfe Jul 2004 A1
20040158872 Kobayashi Aug 2004 A1
20040194131 Ellis et al. Sep 2004 A1
20040243940 Lee et al. Dec 2004 A1
20040252400 Blank et al. Dec 2004 A1
20040253947 Phillips et al. Dec 2004 A1
20050033840 Nisani et al. Feb 2005 A1
20050070335 Jitsuishi et al. Mar 2005 A1
20050071252 Henning et al. Mar 2005 A1
20050073518 Bontempi Apr 2005 A1
20050088984 Chin et al. Apr 2005 A1
20050123001 Craven et al. Jun 2005 A1
20050132036 Jang et al. Jun 2005 A1
20050179554 Lu Aug 2005 A1
20050184983 Brabander et al. Aug 2005 A1
20050216939 Corbin Sep 2005 A1
20050231457 Yamamoto et al. Oct 2005 A1
20050267943 Castaldi et al. Dec 2005 A1
20050289061 Kulakowski et al. Dec 2005 A1
20050289588 Kinnear Dec 2005 A1
20060007107 Ferguson Jan 2006 A1
20060022616 Furukawa et al. Feb 2006 A1
20060150222 McCafferty et al. Jul 2006 A1
20060160614 Walker et al. Jul 2006 A1
20060269216 Wiemeyer et al. Nov 2006 A1
20070039028 Bar Feb 2007 A1
20070154060 Sun Jul 2007 A1
20070157260 Walker Jul 2007 A1
20070168539 Day Jul 2007 A1
20070200513 Ha et al. Aug 2007 A1
20070214812 Wagner et al. Sep 2007 A1
20070237636 Hsu Oct 2007 A1
20070268241 Nitta et al. Nov 2007 A1
20070273519 Ichikawa et al. Nov 2007 A1
20070274400 Murai et al. Nov 2007 A1
20070286107 Singh et al. Dec 2007 A1
20070291198 Shen Dec 2007 A1
20080008471 Dress Jan 2008 A1
20080019147 Erchak et al. Jan 2008 A1
20080024268 Wong et al. Jan 2008 A1
20080034205 Alain et al. Feb 2008 A1
20080037466 Ngo et al. Feb 2008 A1
20080037783 Kim et al. Feb 2008 A1
20080055297 Park Mar 2008 A1
20080096559 Phillips et al. Apr 2008 A1
20080104631 Krock et al. May 2008 A1
20080111958 Kleverman et al. May 2008 A1
20080112601 Warp May 2008 A1
20080136770 Peker et al. Jun 2008 A1
20080163291 Fishman et al. Jul 2008 A1
20080185976 Dickey et al. Aug 2008 A1
20080218501 Diamond Sep 2008 A1
20080246871 Kupper et al. Oct 2008 A1
20080266554 Sekine et al. Oct 2008 A1
20080267328 Ianni et al. Oct 2008 A1
20080278099 Bergfors et al. Nov 2008 A1
20080281165 Rai et al. Nov 2008 A1
20080303918 Keithley Dec 2008 A1
20080313691 Cholas et al. Dec 2008 A1
20090009997 Sanfilippo et al. Jan 2009 A1
20090015400 Breed Jan 2009 A1
20090036190 Brosnan et al. Feb 2009 A1
20090079416 Vinden et al. Mar 2009 A1
20090104989 Williams et al. Apr 2009 A1
20090129556 Ahn May 2009 A1
20090152445 Gardner, Jr. Jun 2009 A1
20090164615 Akkanen Jun 2009 A1
20090273568 Milner Nov 2009 A1
20090315867 Sakamoto et al. Dec 2009 A1
20100017526 Jagannath et al. Jan 2010 A1
20100037274 Meuninck et al. Feb 2010 A1
20100060550 McGinn et al. Mar 2010 A1
20100083305 Acharya et al. Apr 2010 A1
20100149567 Kanazawa et al. Jun 2010 A1
20100177157 Stephens et al. Jul 2010 A1
20100177158 Walter Jul 2010 A1
20100177750 Essinger et al. Jul 2010 A1
20100198983 Monroe et al. Aug 2010 A1
20100231563 Dunn et al. Sep 2010 A1
20100237697 Dunn et al. Sep 2010 A1
20100238299 Dunn et al. Sep 2010 A1
20100299556 Taylor et al. Nov 2010 A1
20110019636 Fukuoka et al. Jan 2011 A1
20110047567 Zigmond et al. Feb 2011 A1
20110078536 Han et al. Mar 2011 A1
20110283199 Schuch Nov 2011 A1
20120105424 Lee et al. May 2012 A1
20120203872 Luby et al. Aug 2012 A1
20120302343 Hurst et al. Nov 2012 A1
20120308191 Chung et al. Dec 2012 A1
20130162908 Son et al. Jun 2013 A1
20140002747 Macholz Jan 2014 A1
20150250021 Stice et al. Sep 2015 A1
20160034240 Kreiner et al. Feb 2016 A1
20170075777 Dunn et al. Mar 2017 A1
20170163519 Bowers et al. Jun 2017 A1
20170315886 Helmick et al. Nov 2017 A1
20180061297 Schuch et al. Mar 2018 A1
20180181091 Funk Jun 2018 A1
Foreign Referenced Citations (22)
Number Date Country
203277867 Nov 2013 CN
0313331 Feb 1994 EP
1821538 Aug 2007 EP
2351369 Aug 2011 EP
2396964 Dec 2011 EP
3347793 Jul 2018 EP
61-234690 Oct 1986 JP
61-251901 Nov 1986 JP
7-74224 Mar 1995 JP
2000122575 Apr 2000 JP
2002064842 Feb 2002 JP
2002209230 Jul 2002 JP
2005-211449 Aug 2005 JP
2005-211451 Aug 2005 JP
2005236469 Sep 2005 JP
2005333568 Dec 2005 JP
2010282109 Dec 2010 JP
2018537876 Dec 2018 JP
WO9608892 Mar 1996 WO
WO2008050402 May 2008 WO
WO2011106683 Sep 2011 WO
WO2017044952 Mar 2017 WO
Non-Patent Literature Citations (6)
Entry
Photo Research, PR-650 SpectraScan Colorimeter, 1999, 2 Pages.
Texas Advanced Optoelectronic Solutions, TCS230 Programmable Color Light-to-Frequency Converter, 2007, 12 Pages.
Don Methven, Wireless Video Streaming: An Overview, Nov. 16, 2002, 7 Pages.
Outdoorlink, Inc., SmartLink One, One Relay, http://smartlinkcontrol.com/billboard/one-relay/, retrieved Apr. 17, 2019, 2007-16, 6 pages.
Outdoorlink, Inc., SmartLink Website User Manual, http://smartlink.outdoorlinkinc.com/docs/SmartLinkWebsiteUserManual.pdf, 2017, 33 pages.
Outdoorlink, Inc., SmartLink One Out of Home Media Controller, 2016, 1 page.
Related Publications (1)
Number Date Country
20200019363 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62697016 Jul 2018 US