Vehicles typically have an associated vehicle identification number (VIN). The VIN may provide basic information about the vehicle. This information is encoded into the VIN by the manufacturer of the vehicle. The information may include, for example, the country of origin, manufacturer, year of manufacture, manufacturing assembly plant, make and model, etc., but may not include information regarding the trim details and/or any options/upgrades related to the vehicle. As a result, entities, such as dealers, banks, customers, insurance companies, auction houses, government entities, etc., have to visually verify certain vehicle features, such as trim levels, transmission, optional packages, and/or other equipment for the vehicle, to make an accurate identification and/or appraisal of the vehicle. Such visual verification may be quite difficult or even impossible to do in cases. For example, the vehicle may be in another location distant from the party that is to inspect the vehicle. Moreover, the party may not know exactly what to look for or may not be being willing to spend the time to examine the appropriate portions of the vehicle. In some cases, these entities end up asking another party for the information, or otherwise proceed without getting the additional information regarding the vehicle.
Often manufacturers offer vehicles with packages such as “sport” or “convenience” and trim levels such as “touring” or “grand touring” that can equate to hundreds or even thousands of dollars in additional value relative to lesser offerings of the vehicles. Indeed, these packages, trim levels, etc. are often not designated on the vehicle and/or may not be coded in the VIN. In addition, details on the meaning of these package or trim level designators are often not readily ascertainable without vendor specific knowledge or visual inspection. Hence, these vehicle details are not readily ascertainable based on the VIN or even vehicle inspection. This results in misrepresentations or errors in determining values for certain vehicles. Such errors and/or misrepresentations can lead to added exposure, risk, liability, and lost revenue to parties involved, such as lenders, dealers, auction houses, sellers, buyers, government agencies, and/or any entity that derives business based on vehicle evaluation. In other words, loan approvals, loan terms, pricing and buying decisions, auction reserve pricing or description, insurance policy premiums, property/excise/other vehicle tax premiums, etc. are determined from a value of the vehicle, which relies to some extent on vehicle information not encoded in the VIN. Inaccurate vehicle descriptions in this regard leads to inaccurate vehicle valuation, and thus inaccurate loan approval/terms, pricing, insurance policy coverage, property tax computations, etc.
The following presents a simplified summary of one or more aspects to provide a basic understanding thereof. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that follows.
According to an example, a system for determining additional vehicle data is provided. The system includes processing circuitry configured to execute a vehicle identifying component for obtaining a vehicle identifier related to a vehicle, a manufacturer data obtaining component for retrieving a plurality of manufacturer codes indicating a build level configuration of the vehicle based at least in part on the vehicle identifier, an additional data determining component for determining a list of vehicle options corresponding to the plurality of manufacturer codes, and a vehicle data outputting component for communicating the additional vehicle data representative of the list of vehicle options to an application.
In another example, a system for determining vehicle data for evaluating a vehicle is provided. The system includes processing circuitry configured to execute a vehicle identifier obtaining component for receiving a vehicle identifier of a vehicle, a vehicle data obtaining component for retrieving additional vehicle data regarding the vehicle indicating one or more codes related to a build level configuration of the vehicle from a vehicle information system based on the vehicle identifier, and a vehicle data/information outputting component for outputting vehicle data evaluated based at least in part on the vehicle identifier and the additional vehicle data.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations may denote like elements.
Reference will now be made in detail to various aspects, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation, and not limitation of the aspects. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the described aspects without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one example may be used on another example to yield a still further example. Thus, it is intended that the described aspects cover such modifications and variations as come within the scope of the appended claims and their equivalents.
Described herein are various aspects relating to associating additional vehicle data with a vehicle identifier in evaluating vehicles in various applications. For example, a vehicle identifier, such as a vehicle identification number (VIN), can be associated to a model code, a set of manufacturer codes, or other information received from a manufacturer of the vehicle. A set of options, trim level, or other information can be determined using the model code, manufacturer codes, etc. The set of options can be provided to an application for use in determining vehicle value, insurance policy premium, lien amounts, proper identification, etc. for the vehicle. In one example, the set of options determined based on model code, manufacturer code, etc. can be formatted for input to a particular application. For example, vehicle sales applications can use the additional information in obtaining vehicle value for determining an asking price, include the option information in a descriptive listing of the vehicle, and/or the like.
As used in this application, the terms “component,” “module,” “system,” “device,” “application” and the like are intended to include a computer-related entity, such as but not limited to hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
Furthermore, the subject matter can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick, key drive . . . ). Additionally it is to be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the subject matter.
Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form. Throughout the specification and claims, the following terms take at least the meanings explicitly associated herein, unless the context dictates otherwise. The meanings identified below do not necessarily limit the terms, but merely provide illustrative examples for the terms. The meaning of “a,” “an,” and “the” may include plural references, and the meaning of “in” may include “in” and “on.” The phrase “in one embodiment,” as used herein does not necessarily refer to the same embodiment, although it may.
Various aspects or features will be presented in terms of systems that may include a number of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. A combination of these approaches may also be used.
Terms such as “providing,” “processing,” “supplying,” “determining,” “calculating” or the like may refer at least to an action of a computer system, computer program, signal processor, logic or alternative analog or digital electronic device that may be transformative of signals represented as physical quantities, whether automatically or manually initiated.
Referring generally to
Referring first to
The hosted system 10 is embodied by or within either of a central hosted server 12 or a plurality of servers 12 functionally linked and collectively defining a distributed host network (not shown). The server 12 as represented in
The term “processor” as used herein may refer to at least general purpose or specific-purpose processing devices and/or logic as may be understood by one of skill in the art, including but not limited to single- or multithreading processors, central processors, parent processors, graphical processors, media processors, and the like.
The host server 12 may be accessible by or otherwise linked to various external and third party platforms via a communications network 34 and in accordance with these links is effective to collect, obtain, receive, transmit and/or share data using various communications protocols as are well known in the art.
The term “computer-readable memory medium” as used herein may refer to any non-transitory medium 16 alone or as one of a plurality of non-transitory memory media 16 within which is embodied a computer program product 18 that includes processor-executable software, instructions or program modules which upon execution may provide data or otherwise cause a computer system to implement subject matter or otherwise operate in a specific manner as further defined herein. It may further be understood that more than one type of memory media may be used in combination to conduct processor-executable software, instructions or program modules from a first memory medium upon which the software, instructions or program modules initially reside to a processor for execution.
“Memory media” as generally used herein may further include without limitation transmission media and/or storage media. “Storage media” may refer in an equivalent manner to volatile and non-volatile, removable and non-removable media, including at least dynamic memory, application specific integrated circuits (ASIC), chip memory devices, optical or magnetic disk memory devices, flash memory devices, or any other medium which may be used to stored data in a processor-accessible manner, and may unless otherwise stated either reside on a single computing platform or be distributed across a plurality of such platforms. “Transmission media” may include any tangible media effective to permit processor executable software, instructions or program modules residing on the media to be read and executed by a processor, including without limitation wire, cable, fiberoptic and wireless media such as is known in the art.
The term “communications network” 34 as used herein with respect to data communication between two or more parties or otherwise between communications network interfaces associated with two or more parties may refer to any one of, or a combination of any two or more of, telecommunications networks (whether wired, wireless, cellular or the like), a global network such as the Internet, local networks, network links, Internet Service Providers (ISP's), and intermediate communication interfaces as are known in the art.
The term “platform” as used herein may typically refer to a website, network, or alternative but equivalent interfaces for supporting multimedia interactivity consistent with the described features. The I/O platform 22 represented in
A “client” as referred to herein may refer to any entity obtaining or seeking to obtain vehicle information utilizing the system and associated features, including without limitation lenders, dealers, auction offices, auto evaluators, insurance agencies, automobile websites, law enforcement agencies or officers, individual consumers, etc.
A “vehicle source” may typically refer to a vehicle manufacturer but may further refer to any entity providing verifiable and comprehensive original vehicle data in accordance with aspects described herein.
“Comprehensive original vehicle data” as used throughout this description (and also referred to herein as “original data”) includes all vehicle data which is made available by the source and is relevant to the vehicle build data, trim, any optional detail information, vehicle valuation, etc., and generally includes information which is both coded and noncoded with respect to the vehicle identifier, and verifiable or non-verifiable by a user. Examples of such vehicle data may include standard information such as without limitation year, make and model of the vehicle. Other examples include factory information such as without limitation equipment, trim details, color, transmission details, drivetrain, factory packages, and factory options. Other examples include drivetrain information such as without limitation whether the vehicle is a four-wheel drive (4WD), a two-wheel drive (2WD), automatic 4WD, or all-wheel Drive (AWD). The data is comprehensive in that it provides detailed information regarding vehicle build configuration, though the information may require resolving some coding to obtain a level of desired granularity. In addition, the data is original in that it is generated at or near the time the vehicle is built to include information regarding options, equipment, color, etc. as applied at the factory.
“Supplemental vehicle data” may include data such as current aftermarket replacements, upgrades, and the like with respect to a vehicle. Such data can be specified by vehicle service providers, as defined below, to indicate data beyond the comprehensive original vehicle data.
“Additional vehicle data” can refer to data beyond the VIN and data encoded in the VIN that can be discerned from the comprehensive original vehicle data. For example, additional vehicle data can include trim level, options, etc. that can be determined by mapping codes received in the comprehensive original vehicle data to one or more data sources that associated the codes with descriptive terms or other values associated with applications that utilize codes in assessing the vehicle.
A “vehicle service provider” may typically refer to any party that provides supplemental vehicle data. A service provider may be the manufacturer itself, or more typically may be a third party. Such third parties may in various embodiments be able to provide supplemental vehicle data, but this data may typically be separated from the original data and identified as being less reliable than data from the vehicle source, and even made optional for viewing by clients of the system, as further described below.
Referring now to
In step 102, a host server receives, collects, imports, or otherwise obtains comprehensive original vehicle data directly from a vehicle source (typically the respective manufacturer) to ensure the accuracy of the associated information. The data may be obtained periodically from the source, for example at predetermined intervals, or simply as determined by the source such as where new data has become available. Generally speaking, the vehicle data may be transmitted via the communications network to a dedicated interface (e.g., secured web page, email address, etc.) in the form of an electronic data file, but alternatively may be simply made available for collection from a database residing on a source platform by program modules operating from the host server or otherwise executed by the host system on or within the source platform.
Typically, the comprehensive original vehicle data will include or be provided in association with a unique vehicle identifier, such as for example a Vehicle Identification Number (VIN). In addition, the comprehensive original vehicle data can include data for determining at least some additional vehicle data (e.g., a set of options, drivetrain parameters, model, trim level, color, etc.) of a vehicle given the VIN.
The data may upon importation or collection by the host system then be stored in a database (step 104). In various embodiments, the original data may be raw data from the source which is converted by the host system into a universal format for storage in a collective database. The raw data may be obtained using a predetermined format which merely requires the host system to parse, collate, arrange, etc., the data in order to properly store it within the database. Alternatively, the host system may require the use of algorithms or equivalent programmed functions to identify or characterize the raw data prior to storage. In some embodiments, each source/manufacturer may send raw data in a unique format which is configured to facilitate population of an intended client interface that is particular to the source, such as for example including source-specific trademarks, etc.
In certain embodiments of a host system within the scope of aspects described herein, vehicle service providers such as for example authorized dealers and the like may be allowed to provide supplemental (aftermarket) data to the system via a service provider interface. Where for example a service provider has modified, upgraded or removed some component as originally provided with respect to a particular vehicle, supplemental data may be provided to the system along with the unique vehicle identifier and then stored in the database alongside the comprehensive original vehicle data. The supplemental data will typically be stored in auxiliary portions of the database and not for example over or in place of the original data.
The supplemental data may further be stored in association with a service provider identifier. The particular service provider may in an embodiment be associated by the host system with a reliability score or the equivalent, so as to indicate the likelihood that the information is correct and complete based on prior dealings and/or client comments/feedback, or as a potential reflection on the quality of the vehicle itself after having received aftermarket servicing from that particular service provider, again based on prior dealings and/or client feedback. Algorithms for scoring the service providers, or interfaces for client feedback and association thereof with the particular service providers, may be executed by the host system automatically upon receipt of supplemental data or via a trigger where for example the service provider has previously received negative feedback or otherwise scored below a threshold value.
The client-specific portion of the process (in other words the portion related to a specific transaction or client request) begins with step 106, wherein the host system receives a vehicle information request from a client via a dedicated interface (e.g., web page, pop-up data field, email address, etc.). The request can include a vehicle identifier associated with the vehicle for which information is sought, and additional vehicle data corresponding with the particular vehicle may be identified and retrieved from the database by matching the client-provided identifier with a unique identifier stored in association with the additional vehicle data. The vehicle identifier may be electronically scanned at the client end and submitted to the system interface, or alternatively manually entered via keystrokes and the like, equally within the scope of aspects described herein. Where the identifier is to be electronically scanned, the client-side hardware and associated software module necessary to generate the electronic identifier from (for example) the physical bar code is not itself generally associated with the host system and further description is omitted herein as redundant.
In certain embodiments, the system may generate a client response interface within or upon which is displayed at least a subset of the comprehensive original vehicle data for the identified vehicle (that which is associated with the vehicle identifier provided by the client), which may or may not include valuations or supplemental data. Such an embodiment may be used by an auction house, automobile website, or an equivalent client entity having no need of third party evaluations of the vehicle's value, or no desire to obtain potentially unreliable supplemental data from third party service providers. However, in other embodiments as are contemplated by a method 100 as represented in
Where a client has requested a vehicle valuation from the system (i.e., “yes” in response to the query in step 108), it may further be determined whether an evaluator (e.g., a third party book evaluator) is available to provide valuation with respect to the identified vehicle (step 110). In some embodiments, this step may be redundant where the system is configured to provide all valuations internally and without the option of obtaining such valuations from an external source. In either event, where no evaluator is available or otherwise provided by the system for client selection (i.e., “no” in response to the query in step 110), the method 100 continues to step 112 and generates a vehicle valuation based on the comprehensive original vehicle data stored in the database. Program instructions or program modules which may be executed by the system to determine the value may include proprietary algorithms with respect to the host but are not so limited.
In some embodiments, the system may generate or determine a first vehicle valuation based on the original data and further determine a second vehicle valuation which is based on the original data and any available supplemental data, such that either may be displayed for the client based on client selection.
Where one or more evaluators are available and provided by the system (in for example a list) for client selection (i.e., “yes” in response to the query in step 110), the method 100 continues to step 114 and receives client input data representative of third party evaluator selection or identification. The system then obtains a vehicle valuation from the one or more evaluators selected or otherwise identified by the client (step 116).
As a first example of how the vehicle valuation may be obtained by the host system, as shown in
In a second example, the data field is generated by the system 10 as described above. However, rather than transmitting the data field to the evaluator, the system 10 may generate and transmit a valuation request to the selected third parties via the dedicated interface (e.g., web page, email, direct download, etc.), with the request comprising at least a portion of the comprehensive original vehicle data as determined to be relevant for valuation by the particular evaluators at 204. The system 10 may then receive the requested vehicle valuation data from the third party evaluator 202 in any of a number of available formats, and subsequently populates the data field with a vehicle valuation based on the received vehicle valuation data, or otherwise stores the vehicle valuation data or a valuation derived therefrom in the database.
In a third example, the data field is generated as described above and then transmitted to the one or more selected/identified third party evaluators 202 at 204. Rather than return the data field to the host system 10 at 206, the evaluator 202 may simply provide the requested vehicle valuation data via for example an email or the like. The host system 10 receives the vehicle valuation data and then populates the data field with a vehicle valuation based on the received vehicle valuation data, or otherwise stores the valuation in the database in association with the original vehicle data.
The method 100 as represented in
If supplemental data is available (i.e., “yes” in response to the query of step 118), the method proceeds to step 120 and indicates to the client the presence of supplemental data associated with the identified vehicle. The system may further indicate the service provider that was the source of the supplemental data, and where supplemental data has been provided from more than one service provider, each provider may for example be listed. If the system is programmed or configured to determine a reliability score or otherwise collect feedback regarding the various service providers, such information may be provided as well for review by the client.
In step 122, the client may then provide input to the system representative of selection or rejection of one or more of the service providers and associated supplemental data for inclusion in the final report or displayed results, wherein the method 100 proceeds to step 124 as described above.
As used herein, manufacture code can refer to one or more codes that identify a build level configuration of a vehicle. The codes can be separate from the VIN, and can include information other than that encoded in the VIN, in one example, and can be specified by the manufacturer (e.g., at an assembly location) in the comprehensive original vehicle data. For example, a manufacturer code can include a model to specify a model of a vehicle, a trim code to specify a trim level (e.g., grand touring, limited, etc.), an engine code to specify an engine of the vehicle, a transmission code to specify a transmission of the vehicle, a drive-train code to specify a drive-train of the vehicle, an option code to specify one or more options of the vehicle, an option package code that correlates to a set of options on the vehicle, a color code to specify interior/exterior or other colors of the vehicle, etc. Thus, for example, comprehensive original vehicle data can be determined, at least in part, from the manufacturer codes, as described further herein. In addition, the type of data encoded in the VIN, and also the manufacturer codes, the types of manufacturer codes (e.g., whether trim is encoded in the VIN or presented as a manufacturer code), etc. can vary for a given vehicle manufacturer. It is to be appreciated that certain types of manufacturer code may be referred to herein without limitation, and additional or alternative manufacturer codes may be used in addition or in the alternative. In addition, it is to be appreciated that the manufacturer codes (and/or related codes, such as engine codes, option codes, etc.) can include substantially any value that can map to a description (e.g., an enumeration value, an integer, a string value, etc.), the description itself, and/or the like.
Vehicle information system 404 can include a vehicle identifying component 410 for obtaining a vehicle identifier, such as a VIN, from one or more applications, a manufacturer data obtaining component 412 for determining data from a manufacturer of the vehicle relating to the vehicle identifier, such as the trim level, option codes, or other manufacturer codes, an additional data determining component 414 for generating additional vehicle data for the vehicle based at least in part on the data from the manufacturer, and a vehicle data outputting component 416 for providing the supplemental data and/or the data from the manufacturer to the one or more applications.
According to an example, application 402 can provide a vehicle identifier, such as a VIN, to the vehicle information system. For example, the application 402 can correspond to a client having one or more processors, memory media, etc. to implement components or related functionality as described herein, vehicle information system 404 can correspond to a host server 12 having one or more processors, memory media, etc. to implement components or related functionality as described herein, and/or the like. Vehicle identifying component 410 can receive the vehicle identifier, and manufacturer data obtaining component 412 can query manufacturer database 406 to determine additional manufacturer data for the vehicle based on the vehicle identifier, which can comprise the comprehensive original vehicle data and/or can include supplemental data, as described herein. Mapping database 408 can include one or more mapping tables defining a relationship of the additional manufacturer data to one or more specific properties for a given application, such as application 402. For example, the properties can relate to individual vehicle options defined in the application 402, and can be mapped via the mapping tables in mapping database 408 to the additional manufacturer data. In this regard, additional data determining component 414 can query one or more tables or other structures of the mapping database 408 to receive additional vehicle data for the vehicle, and vehicle data outputting component 416 can report the additional vehicle data (and/or additional manufacturer data) to the application 402.
In one example, the additional manufacturer data received from manufacturer database 406 by manufacturer data obtaining component 412 can relate to an equipment package code. Mapping database 408 can include one or more tables that map the equipment package code to a list of corresponding vehicle options, where the list of options can be separately defined for one or more applications (e.g., and/or can include a generic definition corresponding to a text-based list of the options). For example, the one or more tables may map the equipment package further based on further information in the additional manufacturer data, such as trim level (e.g., an equipment package code may map to different options for different trim levels). In other examples, the one or more tables can map the equipment package code to a valuation for the package code, or other direct relationship between the package code and a property of application 402.
In addition, the one or more tables may be application specific, such that an identifier of application 402 can also be provided to additional data determining component 414 for obtaining the appropriate additional vehicle data for the vehicle (or an appropriate format thereof). For example, referring to system 500 shown in
Application 402 can be substantially any type of application that can provide vehicle information to vehicle information system 404, and receive additional vehicle data from vehicle information system 404. In one example, application 402 can specify an application identifier, output format type, or other parameters to affect the output of the additional vehicle data by vehicle information system 404. In a specific example, application 402 can include a vehicle valuation system that can be used in vehicle transactions, approving credit for vehicle purchasing, etc. It is to be appreciated that multiple vehicle valuation systems and methods may exist and may use varying criteria to define a vehicle for computing a valuation. In this regard, mapping database 408 can include tables for each valuation system that map the additional manufacturer data, such as equipment package code, to options defined in the valuation systems to allow for more accurate valuation of vehicles by the valuation systems. More accurate valuation can lend to improved loan value calculation for approving credit or financing for vehicles, improved insurance rate quotes and liability coverage, more accurate representations of the original manufacturer's suggested retail price (MSRP) for buying/selling used vehicles (e.g., specific to the VIN), etc., as opposed to merely identifying a vehicle by VIN, which may not allow for determining information other than year, make, and model of the vehicle, or other VIN-encoded information.
According to an example, VIN obtaining component 602 can receive a VIN of a vehicle. The receiving can include receiving an input of the VIN via substantially any input interface, such as a keyboard (e.g., an on-screen keyboard, a physical keyboard), microphone and voice recognition processor, barcode scanner, RFID reader and/or another input device that can receive the VIN from manual or automatic input. Thus, in one example, the application 402 can operate on a handheld device, such as a mobile phone or other mobile device that communicates with a communication network, such as a mobile network or other wireless network. In this example, application 402 can operate remotely from vehicle information system 404, and can communicate therewith by using one or more communication networks, as described. Vehicle data obtaining component 604 can communicate the VIN to vehicle information system 404 (e.g., over the one or more networks or otherwise), and vehicle information system 404 can communicate comprehensive original vehicle data, additional vehicle data, additional manufacturer information, etc. regarding the vehicle back to the application 402 based on the VIN. It is to be appreciated that application 402 can execute on substantially any device, such as a computer, tablet, mobile phone, personal digital assistant, barcode scanner, etc., which may include a similar configuration as server 12 including, for example, one or more processors 14 for executing instructions to perform the described functions, a computer-readable memory media 16 for storing the instructions or related information, databases 20, 1/O platforms 22 for facilitating interaction with the application 402 through one or more interfaces, etc., as described.
As described, the data communicated to the application 402 can include additional manufacturer information derived from the VIN, such as year, make, model, etc., of the vehicle. The data communicated to the application 402 can additionally or alternatively include additional vehicle data retrieved by the vehicle information system 404, such as model code, manufacturer codes, or data obtained based on such codes that are associated with the VIN in received manufacturer data. For example, vehicle information system 404 can associate the model code, manufacturer codes, etc. to additional vehicle data using one or more mapping tables. The additional vehicle data can include a text list of vehicle options corresponding to the manufacturer codes, information formatted based on an identifier of application 402, a list of parameter values indicating vehicle options (e.g., as specified in the application 402 or otherwise), and/or the like. In an example, vehicle information determining component 606 can provide the additional vehicle data received by vehicle data obtaining component 604 to one or more services for generating further vehicle-related information, such as a valuation or other information computed based at least in part on at least a portion of the additional vehicle data. As described, in an example, the additional vehicle data can facilitate a more accurate valuation determination for the vehicle, which can improve processes in many industries and applications. The vehicle data/information outputting component 608 can output at least a portion of the additional vehicle data or additional manufacturer information received by vehicle data obtaining component 604, further vehicle-related information computed by vehicle information determining component to application 402, and/or the like.
Provided below are a list of various specific examples of industries and applications that can utilize vehicle information system 404 to obtain additional vehicle data for more accurate determination of a subject vehicle based on providing a VIN. These examples are not exhaustive of the certain applications and industries that can utilize the vehicle information system 404 to improve evaluation or other processing of vehicles.
In the automobile insurance industry, systems exist to originate insurance policies and provide policy premium quotes based on a vehicle. Currently, pricing is based on limited information gathered from the VIN and customer information of the vehicle through a series of questions. Thus, prices are quoted based on a generic model grouping due to the lack of information regarding the vehicle, such as additional information to subdivide based on the vehicle configuration, additional equipment and options, etc., which can equate to value. For example, a insurance quoting system is likely to quote a base model of a certain vehicle with no additional options at the same rate as the same year, make, and model vehicle with several options (e.g., moonroof, navigation, premium sound system, etc.), which may add hundreds or even thousands of dollars to the value of the vehicle. Since insurance premiums are largely based on the value of the item insured, adding this ability to obtain more detailed vehicle information from a vehicle information system 404 allows for more accurate premium quoting, which can save the consumer money for their base model, or more appropriately protect the high-optioned vehicle by offering differing premiums based on value. In this example, application 402 can perform the policy quoting/originating functionality based in part on obtaining the VIN, communicating with vehicle information system 404 to obtain additional vehicle data, optionally obtaining a valuation of the vehicle based on the additional vehicle data, and obtaining the additional vehicle data and/or valuation for determining an insurance premium for the vehicle, as described above.
Insurance companies also use systems to compute total loss and value for processing accident claims. When a claim is incurred and a value of a vehicle needs to be established, current systems are subject to relying on the customer, an agent, other employee, etc., to provide the additional information needed. The need for additional information is a result from the limited information coded into the VIN by the manufacturer. The results of this process can be costly, due to the cost of wages for the time needed to generate, research, and validate information, as well as inaccurate, due to the manual nature of the process. The current systems are also prone to create tension or strained relations between the parties, often resulting in lost revenue due to decreased customer retention. This is a result of a value being used based on a potentially biased user's inputs on items that are not clear, or easily identifiable, such as trim levels that are not designated, packages or options with descriptions like “performance,” “luxury,” and “technology” as their description, etc. Also, the many options or features that are not labeled and are often mechanical in nature (e.g. performance equipment or suspension) are currently identified through a disassembly process, which is not only impractical but also unlikely. Thus, application 402, in an example, can include such systems that can obtain additional vehicle data from a vehicle information system 404, as described, and optionally obtain a valuation based on such data, for more accurately processing accident claims for a given vehicle.
Lender systems also exist in the automobile industry to generate loan originations for vehicles based in part on a valuation of a vehicle. One metric used in loan evaluations is the Loan-To-Value (LTV). The formulas used may be as effective as the accuracy of the information input. Typically, the lender is not onsite or otherwise does not visually inspect or verify information regarding the vehicle, its related trim level, options, etc., and merely uses VIN to determine the LTV. Also, the many options or features that are not labeled and are often mechanical in nature (e.g. performance equipment or suspension) are identifiable mainly through a disassembly process, which is not only impractical but also unlikely. Thus, lenders typically only use VIN to obtain a value (based on information in the VIN itself), and/or otherwise receive vehicle information by relying on the user's knowledge of the product line, ability to visually identify trim level, options, integrity, etc., to provide these details to generate the results. Thus, application 402 can be a system that originates automobile loans based additionally on additional vehicle data from vehicle information system 404 where the lender can enter VIN and/or mileage information (and/or a system at the lender can automatically populate or generate a request to the vehicle information system 404 based on such data) to generate a more accurate value.
Additionally, consumers are currently pre-approved for a vehicle loan, after a qualification process, which may include verifying a credit rating, job type, income, etc. A preapproval can be obtained as part of this qualification process, as the value of a specific vehicle and other details of the vehicle have not yet been determined. Thus, the application 402 can be a system that converts a preapproval and/or approves automobile loans by providing the additional vehicle data from vehicle information system 404 where the user (consumer, lender, etc.) enters the VIN and mileage to generate the value. This can eliminate the need and dependency on a third party, such as the dealer/seller to provide this information, and to do so accurately, automating the process of determining such information.
Additionally, lending applications exist for computing a value of a vehicle for repossession. Currently, vehicle repossession/recovery involves verification of the value that was used in origination. To do this, typically a lender relies on a recovery agent, tow truck driver, or the auction for the description and verification of equipment. This can not only be inconsistent based on multiple persons involved, their knowledge, ability to verify but also the problem with relying on a visual verification, as discussed. Many features or options are not easily verified visually (e.g. performance package, sport package, model description, and other items that are often not labeled on the vehicle), and some features and equipment of the mechanical nature are likely to be identified through a disassembly process, which is not only impractical but also unlikely. Thus, application 402 can be a system for determining a vehicle value for repossession by using the vehicle information system 404 to acquire additional vehicle data based on providing a VIN thereto, as described.
In other examples, lending applications exist for batch processing of VINs and/or related securitization reports based on VINs. Where application 402 can be one or more of these lending applications, additional vehicle data can be obtained from vehicle information system 404, as described, to facilitate more accurate vehicle reporting.
Automobile auction systems also exist to track auction sales and pricing. Auction houses typically provide sales, records and historical data. These records may be as accurate as the details/description that was provided. This typically results in a price that is associated with a basic model description, often leaving out trim and option details that can impact the value significantly. Thus, application 402 can operate to track auction sales and pricing, and can obtain additional vehicle data from vehicle information system 404 based on a received VIN for associating with the recorded historical data. With the ever increasing growth of buyers/dealers using the internet to purchase their vehicles online/simulcast from the auction, the importance of an accurate description can be critical. When vehicle descriptions are inaccurate, it can result in reduced confidence from the buyer, therefore, lower bids and fewer sales. Also, inaccurate descriptions result in large revenue loss (or losses) through arbitration incurred by the auction. Thus, application 402 can be part of an auction system (e.g., a website, an in-house listing, etc.) that obtains additional vehicle data for a vehicle being auctioned from vehicle information system 404, and the vehicle data/information outputting component 608 can provide additional vehicle data to the auction site.
Additionally, descriptive vehicle listing sites allow consumers or dealers to list vehicle for sale. Online listing descriptions similarly rely on input of a person listing the vehicle to obtain the description and details of the vehicle, whether a consumer in a consumer generated ad or a dealer for a dealer ad or website. This again can result in errors or inconsistencies between the listing and the actual vehicle information. For example, buyers may then compare prices of vehicles that are not comparable and should not be included in their search results, which can create consumer frustration and reduced confidence in these results, but also can lead to a consumer purchasing a different vehicle than they thought they were buying. In addition, for dealerships, inputting information for each received automobile can be difficult and time-consuming. Also, dealerships can manually input vehicle data for printing window stickers or other documents related to the vehicle, determining MSRP, etc. Thus, application 402 can be part of a vehicle listing site or dealership system to allow for obtaining additional vehicle data from vehicle information system 404 to mitigate errors in manual entry of descriptive vehicle information.
Additional systems that can utilize application 402 to improve vehicle valuation include true market value applications that retain records of vehicle sales to determine true market value for the vehicle. For example, application 402 can be part of such applications to obtain additional vehicle data for vehicles for which true market value is tracked to allow for more accurate value based on the additional vehicle data. Also, government agencies determine personal property tax amounts, vehicle registration amounts, etc., based on valuation of an automobile. Tax amounts can be referred using various terms, such as property tax, excise tax, or other vehicle taxes. The descriptions herein are intended to apply to any such tax that a government agency applies for a vehicle, the accuracy of which can be improved by determining aspects of the vehicle that impact its market value, purchase price, etc. Thus, application 402 can be part of such systems as well, and the additional vehicle data obtained from vehicle information system 404 based on an inputted VIN can allow for more accurate determination of value of the vehicle for determining property tax or registration fees based on the additional vehicle data.
In yet another example, application 402 can execute on a user device such that a consumer can obtain vehicle information or valuation based on scanning a VIN (e.g., at a dealership or otherwise). For example, VIN obtaining component 602 can receive the VIN (e.g., from a scanner function on the user device, which can include a camera to image the VIN or related barcode). Vehicle data obtaining component 604 can receive additional vehicle data for the vehicle based on providing the VIN to the vehicle information system 404, as described. Vehicle information determining component 606 can determine a valuation for the vehicle based on the additional vehicle data (and/or VIN coded information), and vehicle data/information outputting component 608 can output the valuation and/or a portion of the additional vehicle data. This can provide a consumer with the ability to determine automobile values while on a car lot, which can strength negotiating position of the consumer.
In yet another example, vehicle information determining component 606 can provide the additional vehicle data and/or valuation to other services (not shown), such as an insurance quoting service, a lender service, etc., to receive insurance quotes and/or lending quotes, which can be displayed by vehicle data/information outputting component 608. Thus, the consumer can further estimate cost of insurance and/or payments. In one example, vehicle information determining component 606 can provide additional information regarding the consumer, such as credit history or parameters for determining credit history (e.g., social security number), for more accurate quoting. Vehicle information determining component 606 can receive the additional parameters via input on an interface, obtained from a profile of the user, and/or the like. In one example, application 402 can allow the user to obtain a quoted insurance policy or pursue lending for purchasing the vehicle.
In one example, one or more components of application 402 can execute remotely from other components, on different devices, and/or the like (e.g., as a distributed or multi-tiered application), as described further herein. For example, VIN obtaining component 602 can operate on a mobile device or other personal device of a consumer, allowing the consumer to scan or otherwise obtain VINs of one or more vehicles. The VIN obtaining component 602 can communicate the VIN to vehicle data obtaining component 604, which may be located at an insurance provider, lender, and/or the like. Vehicle data obtaining component 604 can communicate the VIN to vehicle information system 404 to receive additional vehicle data from which a valuation can be determined, a valuation, and/or the like. Vehicle information determining component 606 can obtain other data regarding the consumer or vehicle as previously provided by the consumer (e.g., in a pre-approval process), and can determine information specific to the vehicle and the consumer based at least in part on the additional vehicle data or valuation data, and the other data regarding the consumer or vehicle.
In one example, vehicle information determining component 606 can determine a loan approval information for the consumer (e.g., loan amount, interest rate, etc.) based on the additional vehicle data, valuation data, and/or the other data regarding the consumer or vehicle (which may include a credit report, for example). In another example, vehicle information determining component 606 can determine an insurance quote for the consumer (e.g., premium, coverage amounts, etc.) based on the additional vehicle data, valuation data, and/or the other data regarding the consumer or vehicle (which may include an accident history, driving record, etc., for example). In any case, vehicle data/information outputting component 608 can also operate on the mobile device or other personal device of the consumer, and the vehicle information determining component 606 can provide the determined vehicle information (e.g., loan approval information, insurance quote, etc.) to vehicle data/information outputting component 608 for display on the device. In this regard, for example, the consumer can scan a VIN and obtain the vehicle information in real-time, or near real-time, to determine whether they are approved, potential monthly out-of-pocket expense, etc. related to the vehicle. This gives the consumer confidence in determining whether they wish to purchase the vehicle knowing what sort of loan and/or insurance for which they are approved. It is to be appreciated, for example, that vehicle information determining component 606 can return a list of competing loan approvals, insurance policies, etc., and/or application 402 can allow the consumer to select a loan approval, insurance policy, etc. for purchasing the vehicle.
An option description/application-specific input table 706 is provided to map the option descriptions to application-specific input parameters to allow operability of the additional vehicle data in various systems. The option descriptions may translate to different application-specific input, and thus using a table specific to a given application can ensure option descriptions are properly interpreted for use with the given application. For example, given a VIN, the various tables 702, 704, and 706 are traversed to obtain application-specific input of additional vehicle data corresponding to the vehicle based on the VIN by obtaining one or more manufacturer codes from the VIN using table 702, obtaining one or more option descriptions from the code(s) using table 704, and obtaining application-specific input of additional vehicle data from the descriptions using table 706.
In one specific example, the VIN/manufacturer code table 702 can associate a VIN to certain information encoded in the VIN and other additional manufacturer information, such as model year, make, model, trim, transmission, engine, model code, exterior/interior color, MSRP, and/or a list of option codes. It is to be appreciated that some of this information (e.g., engine, transmission, color, etc.) may be additionally or alternatively coded as an option code. The information and format received from the manufacturer in the VIN/manufacturer code table 702 can greatly vary between manufacturers. As described, some manufacturers may include certain items in the VIN, which may not then be in the VIN/manufacturer code table 702. In one specific example, the VIN/manufacturer code table 702 can have a format similar to the following:
Thus, given the VIN, some additional manufacturer information regarding the vehicle can be determined, in addition to the list of manufacturer codes.
The manufacturer code/option description table 704, for example, can associate the possible manufacturer codes included in the additional manufacturer information with a description of the codes. This table can also be received from the manufacturer, in one example. For example, each code can relate to one or more options. In the example above, a sample manufacturer code/option description table 704 may have a format similar to the following:
Thus, given the list of option codes for the vehicle, a plurality of option descriptions can be identified for the vehicle, which allows for providing a more accurate description of the vehicle, leading to more accurate valuation for insurance quoting, lending, sale descriptions, auction records, tax computation, etc., as described herein.
In addition, in an example, the option description/application-specific input table 706 can associate the option descriptions with alternate descriptions or other input strings compatible with certain applications. It is to be appreciated that the option description/application-specific input table 706 can also associate a model code or other information from the VIN/manufacturer code table 702 with application-specific input. For example, the option description/application-specific input table 706 can have a format that associates the year, make, model, trim, model code, and option codes, to specific parameter strings for use with a certain valuation system. For instance, the option description-application specific input table 706 can list possible option descriptions for the valuation system, which may differ in name from the option descriptions in the manufacturer code/option description table 704. Thus, for a given year, make, model, trim, and model code of a vehicle, the option description-application specific input table 706 can indicate the application-specific descriptions to specify given one or more option codes for the vehicle. In the example above, the option description/application-specific input table 706 may associate option code MS1 for the example MakeA ModelB, trim level 4D Grand Touring AWD, and model code MAMB4GT vehicle with the application-specific descriptions “Powered Sunroof,” “6-Disc Changer/MP3,” and “Premium Sound” and so on. In this example, the application-specific input can be provided to the application to perform operations relating to the vehicle based on the additional vehicle data.
It is to be appreciated, however, that the option description/application specific input table 706 can include inputs other than alternate descriptions, depending on the input the application desires to receive. For example, the inputs mapped to the option descriptions in the table 706 can relate to another certain string, code, enumeration, etc. operable to identify the options to the application. The input can additionally or alternatively be specified as a related dollar value in the table 706 (e.g., MS1 for the vehicle above may relate to an extra $600 in value). Thus, the option description/application-specific input table 706 can be defined specific to the application to provide desired input based on determining options on the identified vehicle.
Referring to
At 908, the vehicle option information can be mapped to application-specific input based on the application identifier. This can include querying a database that maps the option information to the application-specific input. For example, a certain manufacturer code may be used to indicate presence of a moon roof on some models. Thus, at 906, the moon roof option can be determined based on the manufacturer code(s) (e.g., alone or in conjunction with trim level or other vehicle information obtained based on the vehicle identifier). The application, however, may use the term “sunroof” to describe all such roofs, and thus at 908, the moon roof option can be mapped to “sunroof” (e.g., or a related application-specific code for the sun roof option). At 910, the application-specific input can be outputted. The application, for example, can utilize this input to perform one or more functions using the additional vehicle data. As described, the application can relate to a vehicle valuation system that determines vehicle value based in part on the additional vehicle data, an insurance policy quoting, underwriting, etc. system that determines insurance policy information based at least partly on additional vehicle data, lending systems for determining loan origination, repossession value, securitization reporting, etc. based in part on the additional vehicle data, auction listings that list vehicles for auction and/or systems that track auction sales and pricing based at least in part on the additional vehicle data, descriptive listing systems that depict vehicles for sale, their related options, NSRP, etc., determined based in part on the additional vehicle data, government agency systems that compute personal property tax or vehicle registration fees or other information based at least in part on the additional vehicle data, consumer systems that allow for rapid vehicle valuation based on entering a vehicle identification number (and/or can obtain related insurance or lending quotes, etc.), and/or substantially any application that can derive value from obtaining the additional vehicle data.
At 1106, an auto insurance rate quote or total loss amount can be generated based on the vehicle valuation/configuration. In this regard, the rate quote or total loss amount is based on the additional vehicle data, whether based on the data itself or a valuation computed therefrom, to provide a more accurate value in determining the rate quote or loss amount. Generating the rate quote or total loss amount can include specifying the valuation or the additional vehicle data, VIN-encoded data, etc., to a backend system that determines rate quotes or total loss amounts. At 1108, the rate quote or total loss amount is outputted. For example, this can include displaying the rate quote or total loss amount on a display, indicating the rate quote or total loss amount to another system, etc.
At 1206, a loan origination value or repossession value can be generated (or verified—e.g., for a previous valuation) based on the vehicle valuation/configuration. In this regard, the loan origination or repossession value is based on the additional vehicle data, whether based on the data itself or a valuation computed therefrom, to provide a more accurate value in determining the value. Generating the loan origination or repossession value can include specifying the valuation or the additional vehicle data, VIN-encoded data, etc., to a backend system that determines values for loan origination or repossession. At 1208, the loan origination value or repossession value is outputted. For example, this can include displaying the value on a display, indicating the value to another system, etc.
At 1506, a property tax or vehicle registration fee can be generated based on the vehicle valuation/configuration. In this regard, the property tax or vehicle registration fee is based on the additional vehicle data, whether based on the data itself or a valuation computed therefrom, to provide a more accurate value in determining the tax or fee. Generating the property tax or vehicle registration fee can include specifying the valuation or the additional vehicle data, VIN-encoded data, etc., to a backend system that determines values for property tax or vehicle registration fees. At 1508, the property tax or vehicle registration fee is outputted. For example, this can include displaying the tax or fee on a display, indicating the tax or fee to another system, printing a remittance indicating the tax or fee, etc.
At 1804, the VIN can be transmitted to acquire vehicle information for potentially purchasing the vehicle. For example, this can include transmitting the vehicle information to an insurance system that provides insurance quotes for certain drivers and certain vehicle, a lending system that generates loan approvals from consumer pre-approvals and based on an actual vehicle, and/or the like. It is to be appreciated that the entity receiving the VIN at 1804 can generate or otherwise obtain a vehicle valuation and/or configuration as described herein in generating the vehicle information relating to purchase. Thus, for example, a lending system may obtain a vehicle valuation for the vehicle specific to the VIN (e.g., based on additional vehicle data, etc.) and consider a credit report of a specific consumer in generating the vehicle information, which may include approved loan amount, interest rate, etc.
At 1806, the vehicle information can be obtained (e.g., from the entity receiving the VIN), and at 1808 the vehicle information can be output. Thus, a consumer can utilize this specific vehicle information in deciding whether to purchase the vehicle (e.g., based on credit approval, insurance rate, etc.). In some examples, as described, outputting the vehicle information at 1808 can include outputting the information to one or more personal devices of the consumer.
While one or more aspects have been described above, it should be understood that any and all equivalent realizations of the presented aspects are included within the scope and spirit thereof. The aspects depicted are presented by way of example only and are not intended as limitations upon the various aspects that can be implemented in view of the descriptions. Thus, it should be understood by those of ordinary skill in this art that the presented subject matter is not limited to these aspects since modifications can be made. Therefore, it is contemplated that any and all such embodiments are included in the presented subject matter as may fall within the scope and spirit thereof.
This application is a continuation of U.S. patent application Ser. No. 18/053,554, filed Nov. 8, 2022, which is a continuation of U.S. patent application Ser. No. 17/650,285, filed Feb. 8, 2022, which is a continuation of U.S. patent application Ser. No. 16/669,250 filed Oct. 30, 2019, which is a continuation of U.S. patent application Ser. No. 14/080,416, filed Nov. 14, 2013, which a continuation-in-part of U.S. patent application Ser. No. 13/297,438, filed Nov. 16, 2011, which claims priority to U.S. Patent Application No. 61/415,207, filed Nov. 18, 2010, the entireties of which are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4989144 | Barnett, III | Jan 1991 | A |
5120704 | Lechter et al. | Jun 1992 | A |
5201010 | Deaton et al. | Apr 1993 | A |
5216612 | Cornett et al. | Jun 1993 | A |
5488360 | Ray | Jan 1996 | A |
5532838 | Barbari | Jul 1996 | A |
5587575 | Leitner et al. | Dec 1996 | A |
5630070 | Dietrich et al. | May 1997 | A |
5748098 | Grace | May 1998 | A |
5765143 | Sheldon et al. | Jun 1998 | A |
5819234 | Slavin et al. | Oct 1998 | A |
5878403 | DeFrancesco | Mar 1999 | A |
5940812 | Tengel et al. | Aug 1999 | A |
5950169 | Borghesi et al. | Sep 1999 | A |
5963129 | Warner | Oct 1999 | A |
5995947 | Fraser et al. | Nov 1999 | A |
6006201 | Berent et al. | Dec 1999 | A |
6038554 | Vig | Mar 2000 | A |
6052065 | Glover | Apr 2000 | A |
6052068 | Price et al. | Apr 2000 | A |
6076064 | Rose, Jr. | Jun 2000 | A |
6126332 | Cubbage et al. | Oct 2000 | A |
6154152 | Ito | Nov 2000 | A |
6182048 | Osborn et al. | Jan 2001 | B1 |
6208979 | Sinclair | Mar 2001 | B1 |
6236977 | Verba et al. | May 2001 | B1 |
6259354 | Underwood | Jul 2001 | B1 |
6278936 | Jones | Aug 2001 | B1 |
6282517 | Wolfe et al. | Aug 2001 | B1 |
6330499 | Chou et al. | Dec 2001 | B1 |
6330546 | Gopinathan et al. | Dec 2001 | B1 |
6430539 | Lazarus et al. | Aug 2002 | B1 |
6516239 | Madden et al. | Feb 2003 | B1 |
6587841 | DeFrancesco | Jul 2003 | B1 |
6609108 | Pulliam et al. | Aug 2003 | B1 |
6714859 | Jones | Mar 2004 | B2 |
6738748 | Wetzer | May 2004 | B2 |
6754564 | Newport | Jun 2004 | B2 |
6760794 | Deno et al. | Jul 2004 | B2 |
6772145 | Shishido | Aug 2004 | B2 |
6804606 | Jones | Oct 2004 | B2 |
6839682 | Blume et al. | Jan 2005 | B1 |
6904359 | Jones | Jun 2005 | B2 |
6938021 | Shear et al. | Aug 2005 | B2 |
6959281 | Freeling et al. | Oct 2005 | B1 |
6980963 | Hanzek | Dec 2005 | B1 |
7024418 | Childress | Apr 2006 | B1 |
7050982 | Sheinson et al. | May 2006 | B2 |
7069118 | Coletrane et al. | Jun 2006 | B2 |
7092898 | Mattick et al. | Aug 2006 | B1 |
7113853 | Hecklinger | Sep 2006 | B2 |
7130821 | Connors et al. | Oct 2006 | B1 |
7181427 | DeFrancesco | Feb 2007 | B1 |
7184974 | Shishido | Feb 2007 | B2 |
7191058 | Laird et al. | Mar 2007 | B2 |
7228298 | Raines | Jun 2007 | B1 |
7288298 | Raines | Jun 2007 | B2 |
7275083 | Seibel et al. | Sep 2007 | B1 |
7366694 | Lazerson | Apr 2008 | B2 |
7392203 | Edison et al. | Jun 2008 | B2 |
7392221 | Nabe et al. | Jun 2008 | B2 |
7418408 | Heppe | Aug 2008 | B1 |
7421322 | Silversmith et al. | Sep 2008 | B1 |
7433891 | Haber et al. | Oct 2008 | B2 |
7444302 | Hu et al. | Oct 2008 | B2 |
7472088 | Taylor et al. | Dec 2008 | B2 |
RE40692 | Rose, Jr. | Mar 2009 | E |
7505838 | Raines et al. | Mar 2009 | B2 |
7561963 | Brice et al. | Jul 2009 | B2 |
7567922 | Weinberg et al. | Jul 2009 | B1 |
7571139 | Giordano et al. | Aug 2009 | B1 |
7580856 | Pliha | Aug 2009 | B1 |
7590589 | Hoffberg | Sep 2009 | B2 |
7593893 | Ladd et al. | Sep 2009 | B1 |
7596512 | Raines et al. | Sep 2009 | B1 |
7603293 | Chenn | Oct 2009 | B2 |
7610257 | Abrahams | Oct 2009 | B1 |
7630932 | Danaher et al. | Dec 2009 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7693896 | Raines | Apr 2010 | B1 |
7739142 | Chand et al. | Jun 2010 | B2 |
7778841 | Bayer et al. | Aug 2010 | B1 |
7788147 | Haggerty et al. | Aug 2010 | B2 |
7835940 | Kowalchuk | Nov 2010 | B2 |
7865409 | Monaghan | Jan 2011 | B1 |
7877320 | Downey | Jan 2011 | B1 |
7925654 | Raines | Apr 2011 | B1 |
7945478 | Hogan et al. | May 2011 | B2 |
7945483 | Inghelbrecht et al. | May 2011 | B2 |
7962404 | Metzger, II et al. | Jun 2011 | B1 |
7966210 | Hall et al. | Jun 2011 | B2 |
7974886 | Coleman | Jul 2011 | B2 |
7991689 | Brunzell et al. | Aug 2011 | B1 |
8005759 | Hirtenstein et al. | Aug 2011 | B2 |
8005795 | Galipeau et al. | Aug 2011 | B2 |
8036952 | Mohr et al. | Oct 2011 | B2 |
8055544 | Ullman et al. | Nov 2011 | B2 |
8078524 | Crawford et al. | Dec 2011 | B2 |
8104671 | Besecker et al. | Jan 2012 | B2 |
8121938 | Zettner et al. | Feb 2012 | B1 |
8185417 | Brown et al. | May 2012 | B1 |
8219464 | Inghelbrecht et al. | Jul 2012 | B2 |
8239388 | Raines | Aug 2012 | B2 |
8244563 | Coon et al. | Aug 2012 | B2 |
8255243 | Raines et al. | Aug 2012 | B2 |
8255244 | Raines et al. | Aug 2012 | B2 |
8285656 | Chang et al. | Oct 2012 | B1 |
8355983 | Parr et al. | Jan 2013 | B1 |
8380594 | Berkman et al. | Feb 2013 | B2 |
8392334 | Hirtenstein et al. | Mar 2013 | B2 |
8438048 | Benavides, III | May 2013 | B1 |
8438170 | Koran et al. | May 2013 | B2 |
8521615 | Inghelbrecht et al. | Aug 2013 | B2 |
8560161 | Kator et al. | Oct 2013 | B1 |
8577736 | Swinson et al. | Nov 2013 | B2 |
8595079 | Raines et al. | Nov 2013 | B1 |
8600783 | Smith et al. | Dec 2013 | B2 |
8600823 | Raines et al. | Dec 2013 | B1 |
8606648 | Bayer et al. | Dec 2013 | B1 |
8626560 | Anderson | Jan 2014 | B1 |
8630929 | Haggerty et al. | Jan 2014 | B2 |
8645193 | Swinson et al. | Feb 2014 | B2 |
8661032 | Otten et al. | Feb 2014 | B2 |
8725584 | Eager et al. | May 2014 | B1 |
8762191 | Lawrence et al. | Jun 2014 | B2 |
8781846 | Swinson et al. | Jul 2014 | B2 |
9020843 | Taira et al. | Apr 2015 | B2 |
9020844 | Taira et al. | Apr 2015 | B2 |
9053589 | Kator et al. | Jun 2015 | B1 |
9053590 | Kator et al. | Jun 2015 | B1 |
9076276 | Kator et al. | Jul 2015 | B1 |
9087335 | Rane et al. | Jul 2015 | B2 |
9105048 | Koran et al. | Aug 2015 | B2 |
9111308 | Taira et al. | Aug 2015 | B2 |
9123056 | Singh et al. | Sep 2015 | B2 |
9129325 | Taira et al. | Sep 2015 | B2 |
9147217 | Zabritski et al. | Sep 2015 | B1 |
9292860 | Singh et al. | Mar 2016 | B2 |
9501781 | Singh et al. | Nov 2016 | B2 |
9646308 | Eager et al. | May 2017 | B1 |
9690820 | Girulat, Jr. | Jun 2017 | B1 |
9697544 | Bayer et al. | Jul 2017 | B1 |
9727904 | Inghelbrecht et al. | Aug 2017 | B2 |
9741066 | Eager et al. | Aug 2017 | B2 |
9754304 | Taira et al. | Sep 2017 | B2 |
9818140 | Inghelbrecht et al. | Nov 2017 | B2 |
9904933 | Taira et al. | Feb 2018 | B2 |
9904948 | Taira et al. | Feb 2018 | B2 |
10009432 | Tang et al. | Jun 2018 | B1 |
10162848 | Mohan et al. | Dec 2018 | B2 |
10163156 | Shapley et al. | Dec 2018 | B1 |
10217123 | Taira et al. | Feb 2019 | B2 |
10269030 | Taira et al. | Apr 2019 | B2 |
10269031 | Inghelbrecht et al. | Apr 2019 | B2 |
10380654 | Hirtenstein et al. | Aug 2019 | B2 |
10409867 | Von Busch et al. | Sep 2019 | B1 |
10430848 | Cotton et al. | Oct 2019 | B2 |
10489809 | Inghelbrecht et al. | Nov 2019 | B2 |
10489810 | Taira et al. | Nov 2019 | B2 |
10515382 | Taira et al. | Dec 2019 | B2 |
10565181 | Hjermstad et al. | Feb 2020 | B1 |
10580054 | Cain et al. | Mar 2020 | B2 |
10581825 | Poschel et al. | Mar 2020 | B2 |
10740404 | Hjermstad et al. | Aug 2020 | B1 |
10853831 | Inghelbrecht et al. | Dec 2020 | B2 |
10977727 | Smith et al. | Apr 2021 | B1 |
11017427 | Badger et al. | May 2021 | B1 |
11157835 | Hjermstad et al. | Oct 2021 | B1 |
11176608 | Smith | Nov 2021 | B1 |
11210276 | Smith | Dec 2021 | B1 |
11210351 | Von Busch et al. | Dec 2021 | B1 |
11257126 | Hirtenstein et al. | Feb 2022 | B2 |
11301922 | Smith | Apr 2022 | B2 |
11366860 | Hjermstad et al. | Jun 2022 | B1 |
11481827 | Cain et al. | Oct 2022 | B1 |
11532030 | Smith | Dec 2022 | B1 |
11568005 | Von Busch et al. | Jan 2023 | B1 |
11587163 | Smith | Feb 2023 | B1 |
11640433 | Hjermstad et al. | May 2023 | B1 |
11790269 | Hjermstad et al. | Oct 2023 | B1 |
11836785 | Smith | Dec 2023 | B1 |
11886519 | Von Busch et al. | Jan 2024 | B1 |
20010044769 | Chaves | Nov 2001 | A1 |
20020023051 | Kunzle et al. | Feb 2002 | A1 |
20020042752 | Chaves | Apr 2002 | A1 |
20020072964 | Choi | Jun 2002 | A1 |
20020082978 | Ghouri et al. | Jun 2002 | A1 |
20020091706 | Anderson et al. | Jul 2002 | A1 |
20020099628 | Takaoka et al. | Jul 2002 | A1 |
20020103622 | Burge | Aug 2002 | A1 |
20020128960 | Lambiotte et al. | Sep 2002 | A1 |
20020161496 | Yamaki | Oct 2002 | A1 |
20020193925 | Funkhouser et al. | Dec 2002 | A1 |
20030033242 | Lynch et al. | Feb 2003 | A1 |
20030041019 | Vagim, III et al. | Feb 2003 | A1 |
20030046179 | Anabtawi et al. | Mar 2003 | A1 |
20030101111 | Dang et al. | May 2003 | A1 |
20030105728 | Yano et al. | Jun 2003 | A1 |
20030144950 | O'Brien et al. | Jul 2003 | A1 |
20030177481 | Amaru et al. | Sep 2003 | A1 |
20030187753 | Takaoka | Oct 2003 | A1 |
20030200151 | Ellenson et al. | Oct 2003 | A1 |
20030216965 | Libman | Nov 2003 | A1 |
20030233323 | Bilski et al. | Dec 2003 | A1 |
20040034657 | Zambo et al. | Feb 2004 | A1 |
20040039646 | Hacker | Feb 2004 | A1 |
20040088228 | Mercer et al. | May 2004 | A1 |
20040093286 | Cooper et al. | May 2004 | A1 |
20040107125 | Guheen et al. | Jun 2004 | A1 |
20040128262 | Nafousi | Jul 2004 | A1 |
20040163101 | Swix | Aug 2004 | A1 |
20040193644 | Baker et al. | Sep 2004 | A1 |
20040243506 | Das | Dec 2004 | A1 |
20040249532 | Kelly et al. | Dec 2004 | A1 |
20050010555 | Gallivan | Jan 2005 | A1 |
20050021384 | Pantaleo et al. | Jan 2005 | A1 |
20050038580 | Seim et al. | Feb 2005 | A1 |
20050113991 | Rogers et al. | May 2005 | A1 |
20050173524 | Schrader | Aug 2005 | A1 |
20050177489 | Neff et al. | Aug 2005 | A1 |
20050209892 | Miller | Sep 2005 | A1 |
20050234912 | Roach | Oct 2005 | A1 |
20050246256 | Gastineau et al. | Nov 2005 | A1 |
20050251820 | Stefanik et al. | Nov 2005 | A1 |
20050256780 | Eldred | Nov 2005 | A1 |
20050267754 | Schultz et al. | Dec 2005 | A1 |
20050267774 | Merritt et al. | Dec 2005 | A1 |
20060004731 | Seibel et al. | Jan 2006 | A1 |
20060010052 | Willingham | Jan 2006 | A1 |
20060015425 | Brooks | Jan 2006 | A1 |
20060031182 | Ryan et al. | Feb 2006 | A1 |
20060041443 | Horvath | Feb 2006 | A1 |
20060107560 | Wong | May 2006 | A1 |
20060149674 | Cook et al. | Jul 2006 | A1 |
20060163868 | Baumann | Jul 2006 | A1 |
20060178957 | LeClaire | Aug 2006 | A1 |
20060178973 | Chiovari et al. | Aug 2006 | A1 |
20060202012 | Grano et al. | Sep 2006 | A1 |
20060202862 | Ratnakar | Sep 2006 | A1 |
20060206416 | Farias | Sep 2006 | A1 |
20060218079 | Goldblatt et al. | Sep 2006 | A1 |
20060229799 | Nimmo et al. | Oct 2006 | A1 |
20060242039 | Haggerty et al. | Oct 2006 | A1 |
20060242046 | Haggerty et al. | Oct 2006 | A1 |
20060242050 | Haggerty et al. | Oct 2006 | A1 |
20060277141 | Palmer | Dec 2006 | A1 |
20070011083 | Bird et al. | Jan 2007 | A1 |
20070027791 | Young et al. | Feb 2007 | A1 |
20070043487 | Krzystofczyk et al. | Feb 2007 | A1 |
20070059442 | Sabeta | Mar 2007 | A1 |
20070136163 | Bell | Jun 2007 | A1 |
20070156515 | Hasselback et al. | Jul 2007 | A1 |
20070162293 | Malkon | Jul 2007 | A1 |
20070173993 | Nielsen et al. | Jul 2007 | A1 |
20070179798 | Inbarajan | Aug 2007 | A1 |
20070179860 | Romero | Aug 2007 | A1 |
20070185777 | Pyle et al. | Aug 2007 | A1 |
20070192165 | Haggerty et al. | Aug 2007 | A1 |
20070226131 | Decker et al. | Sep 2007 | A1 |
20070244732 | Chatterji et al. | Oct 2007 | A1 |
20070250327 | Hedy | Oct 2007 | A1 |
20070271178 | Davis et al. | Nov 2007 | A1 |
20070282713 | Ullman et al. | Dec 2007 | A1 |
20070288271 | Klinkhammer | Dec 2007 | A1 |
20070294163 | Harmon et al. | Dec 2007 | A1 |
20080015954 | Huber et al. | Jan 2008 | A1 |
20080016119 | Sharma et al. | Jan 2008 | A1 |
20080059317 | Chandran et al. | Mar 2008 | A1 |
20080071882 | Hering et al. | Mar 2008 | A1 |
20080097663 | Morimoto | Apr 2008 | A1 |
20080120155 | Pliha | May 2008 | A1 |
20080126137 | Kidd et al. | May 2008 | A1 |
20080177590 | Brodsky et al. | Jul 2008 | A1 |
20080183689 | Kubota et al. | Jul 2008 | A1 |
20080183722 | Lane et al. | Jul 2008 | A1 |
20080201163 | Barker et al. | Aug 2008 | A1 |
20080228635 | Megdal et al. | Sep 2008 | A1 |
20080235061 | Innes | Sep 2008 | A1 |
20080255897 | Megdal et al. | Oct 2008 | A1 |
20080294540 | Celka et al. | Nov 2008 | A1 |
20080294546 | Flannery | Nov 2008 | A1 |
20080301188 | O'Hara | Dec 2008 | A1 |
20080312969 | Raines et al. | Dec 2008 | A1 |
20090018996 | Hunt et al. | Jan 2009 | A1 |
20090055044 | Dienst | Feb 2009 | A1 |
20090063172 | Thomas et al. | Mar 2009 | A1 |
20090083130 | Hall et al. | Mar 2009 | A1 |
20090138290 | Holden | May 2009 | A1 |
20090144201 | Gierkink et al. | Jun 2009 | A1 |
20090187513 | Noy et al. | Jul 2009 | A1 |
20090240602 | Mohr et al. | Sep 2009 | A1 |
20090240735 | Grandhi et al. | Sep 2009 | A1 |
20090254856 | Cwajbaum | Oct 2009 | A1 |
20090271296 | Romero | Oct 2009 | A1 |
20090271385 | Krishnamoorthy et al. | Oct 2009 | A1 |
20090287370 | Iwai et al. | Nov 2009 | A1 |
20100030649 | Ubelhor | Feb 2010 | A1 |
20100049538 | Frazer et al. | Feb 2010 | A1 |
20100070343 | Taira et al. | Mar 2010 | A1 |
20100070382 | Inghelbrecht et al. | Mar 2010 | A1 |
20100076881 | O'Grady et al. | Mar 2010 | A1 |
20100082792 | Johnson | Apr 2010 | A1 |
20100088158 | Pollack | Apr 2010 | A1 |
20100094664 | Bush et al. | Apr 2010 | A1 |
20100153235 | Mohr et al. | Jun 2010 | A1 |
20100161486 | Liu et al. | Jun 2010 | A1 |
20100174657 | Stanton, Jr. | Jul 2010 | A1 |
20100179861 | Teerilahti et al. | Jul 2010 | A1 |
20100198629 | Wesileder et al. | Aug 2010 | A1 |
20100217616 | Colson et al. | Aug 2010 | A1 |
20100223106 | Hallowell et al. | Sep 2010 | A1 |
20100293089 | Peterson et al. | Nov 2010 | A1 |
20100293181 | Muller et al. | Nov 2010 | A1 |
20100299190 | Pratt et al. | Nov 2010 | A1 |
20100332292 | Anderson | Dec 2010 | A1 |
20110022489 | Hallowell et al. | Jan 2011 | A1 |
20110022525 | Swinson et al. | Jan 2011 | A1 |
20110040440 | de Oliveira et al. | Feb 2011 | A1 |
20110082759 | Swinson et al. | Apr 2011 | A1 |
20110137758 | Bienias | Jun 2011 | A1 |
20110161115 | Hampton | Jun 2011 | A1 |
20110202471 | Scott et al. | Aug 2011 | A1 |
20110213641 | Metzger, II et al. | Sep 2011 | A1 |
20110264595 | Anspach et al. | Oct 2011 | A1 |
20110270706 | Anspach et al. | Nov 2011 | A1 |
20110270707 | Breed et al. | Nov 2011 | A1 |
20110276467 | Blackburn et al. | Nov 2011 | A1 |
20110320241 | Miller | Dec 2011 | A1 |
20120005045 | Baker | Jan 2012 | A1 |
20120005070 | McFall et al. | Jan 2012 | A1 |
20120005108 | Hollenshead et al. | Jan 2012 | A1 |
20120106801 | Jackson | May 2012 | A1 |
20120109770 | Seergy et al. | May 2012 | A1 |
20120197699 | Snell et al. | Aug 2012 | A1 |
20120221485 | Leidner et al. | Aug 2012 | A1 |
20120239637 | Prakash et al. | Sep 2012 | A9 |
20120254017 | Fusco et al. | Oct 2012 | A1 |
20120265648 | Jerome et al. | Oct 2012 | A1 |
20120271850 | Licata Messana et al. | Oct 2012 | A1 |
20120331010 | Christie | Dec 2012 | A1 |
20130006801 | Solari et al. | Jan 2013 | A1 |
20130006809 | Hollenshead et al. | Jan 2013 | A1 |
20130159033 | Weinstock et al. | Jun 2013 | A1 |
20130173453 | Raines et al. | Jul 2013 | A1 |
20130238455 | Laracey | Sep 2013 | A1 |
20130268298 | Elkins et al. | Oct 2013 | A1 |
20140025681 | Raines | Jan 2014 | A1 |
20140058956 | Raines et al. | Feb 2014 | A1 |
20140082017 | Miller | Mar 2014 | A1 |
20140258309 | Young | Sep 2014 | A1 |
20140278402 | Charugundla | Sep 2014 | A1 |
20140279868 | Astorg et al. | Sep 2014 | A1 |
20140358719 | Inghelbrect et al. | Dec 2014 | A1 |
20150154608 | Raines | Jun 2015 | A9 |
20150213559 | Raines et al. | Jul 2015 | A1 |
20150227942 | Sidman et al. | Aug 2015 | A1 |
20150310865 | Fay et al. | Oct 2015 | A1 |
20150317728 | Nguyen | Nov 2015 | A1 |
20150324400 | Sheck et al. | Nov 2015 | A1 |
20150332411 | Bush et al. | Nov 2015 | A1 |
20150348143 | Raines et al. | Dec 2015 | A1 |
20150348145 | Nakajima | Dec 2015 | A1 |
20160004742 | Mohan et al. | Jan 2016 | A1 |
20160012494 | Lasini | Jan 2016 | A1 |
20160048698 | Sahu et al. | Feb 2016 | A1 |
20160104222 | Savir et al. | Apr 2016 | A1 |
20160217046 | Lamoureux et al. | Jul 2016 | A1 |
20160267588 | Cain et al. | Sep 2016 | A1 |
20160299905 | Geyer et al. | Oct 2016 | A1 |
20160321726 | Singh et al. | Nov 2016 | A1 |
20160379486 | Taylor | Dec 2016 | A1 |
20170052652 | Denton et al. | Feb 2017 | A1 |
20170270490 | Penilla et al. | Sep 2017 | A1 |
20170323295 | Kranzley et al. | Nov 2017 | A1 |
20180018723 | Nagla et al. | Jan 2018 | A1 |
20180107676 | Vora | Apr 2018 | A1 |
20180108189 | Park et al. | Apr 2018 | A1 |
20180157761 | Halstead et al. | Jun 2018 | A1 |
20180165747 | Patten et al. | Jun 2018 | A1 |
20180260838 | New et al. | Sep 2018 | A1 |
20180349988 | Shebesta et al. | Dec 2018 | A1 |
20190295133 | Hirtenstein et al. | Sep 2019 | A1 |
20200051102 | Taira et al. | Feb 2020 | A1 |
20200065885 | Smith | Feb 2020 | A1 |
20200065898 | Forrester et al. | Feb 2020 | A1 |
20200265480 | Swinson et al. | Aug 2020 | A1 |
20220198527 | Hirtenstein et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
0 749 081 | Dec 1996 | EP |
1 122 664 | Aug 2001 | EP |
09-251486 | Sep 1997 | JP |
10-222559 | Aug 1998 | JP |
10-261009 | Sep 1998 | JP |
2000-331068 | Nov 2000 | JP |
2001-297141 | Oct 2001 | JP |
2001-344463 | Dec 2001 | JP |
2001-357256 | Dec 2001 | JP |
2002-149778 | May 2002 | JP |
2002-163498 | Jun 2002 | JP |
2002-259753 | Sep 2002 | JP |
2003-271851 | Sep 2003 | JP |
2003-316881 | Nov 2003 | JP |
2004-245897 | Sep 2004 | JP |
2007-299281 | Nov 2007 | JP |
10-2000-0036594 | Jul 2000 | KR |
10-2000-0063995 | Nov 2000 | KR |
10-2001-0016349 | Mar 2001 | KR |
10-2001-0035145 | May 2001 | KR |
10-2002-0007132 | Jan 2002 | KR |
10-2002-0068866 | Aug 2002 | KR |
503219 | Aug 2003 | NZ |
WO 99004350 | Jan 1999 | WO |
WO 99022328 | May 1999 | WO |
WO 01071458 | Sep 2001 | WO |
WO 01075754 | Oct 2001 | WO |
WO 03101123 | Dec 2003 | WO |
WO 2007149941 | Dec 2007 | WO |
WO 2008022289 | Feb 2008 | WO |
WO 2018199992 | Nov 2018 | WO |
Entry |
---|
“Activant PartExpert with Vehicle Identification Number (VIN) Lookup”, Activant Solutions, Inc., Livermore, CA, Copyright 2006, http://counterworks.com/PartExp_DS_092806.pdf, p. 2. |
“AutoConnect Partners with Organic to Build World's Most Comprehensive Online Emporium of Pre-Owned Vehicles”, PR Newswire, May 19, 1998, p. 2. |
“Auto Market StatisticsSM:Drive Response with Aggregated Motor Vehicle Information”, Experian, Apr. 2007, http://www.experian.com/assets/marketing-services/product-sheets/auto-market-statistics.pdf, p. 2. |
“Appraisal Tool”, VAuto Live Market View, Dec. 14, 2007, http://www.vauto.com/vAuto_solution/appraisal.asp, p. 3. |
Autobytel.com, http://web.archive.org/web/20040806010507//http://autobytel.com/, as archived Aug. 6, 2004, p. 3. |
Bala, Pradip Kumar, “Purchase-Driven Classification for Improved Forecasting in Spare Parts Inventory Replenishment,” International Journal of Computer Applications, Nov. 2010, vol. 10, No. 9, pp. 40-45. |
Bankrate.com, http://web.archive.org/web/20040809000026/www.bankrate.com/brm/default.asp, as archived Aug. 9, 2004, p. 3. |
“Carfax Teams with Esurance”, PR Newswire, May 14, 2001, p. 1. |
Cars.com, http://web.archive.org/web/20041010081241/www.cars.com/go/index.jsp?aff=national, as archived Oct. 10, 2004, p. 2. |
Carsdirect.com, http://web.archive.org/web/20040730142836/www.carsdirect.com/home, as archived Jul. 30, 2004, p. 2. |
Checkbook.org, http://web.archive.org/web/20040604192834/www.checkbook.org/auto/carbarg.cfm, as archived Jun. 4, 2004, p. 1. |
“Consumer Reports Finds American-Made Vehicles Close Reliability Gap with European-Made Vehicle—As Japanese Continue to Set New Benchmarks for the Industry”, Consumer Reports: Consumers Union, Yonkers, NY, Apr. 2003, p. 2. |
Cohen et al., “Optimizer: IBM's Multi Echelon Inventory System for Managing Service Logistics”, Interfaces, vol. 20, No., 1, Jan.-Feb. 1990, pp. 65-82. |
Copeland et al., “Wallet-on-Wheels—Using Vehicle's Identity for Secure Mobile Money”, 17th International Conference on Intelligence in Next Generation Networks, 2013, pp. 102-109. |
“Driveitaway.com Links with AutoCheck to Provide Car Shoppers Vehicle Histories; Consumers Bidding on Driveitaway.com's Used Auto Auctions Can Now Go Online to Research a Specific Vehicle's History”, PR Newswire, Jan. 15, 2001, p. 1. |
“Experian Uses SSA-NAME3 to Match 40 to 50 Million Transactions per Month Against an 11.5 Billion Row Database”, DM Review, Apr. 2001, vol. 11, No. 4, p. 3. |
Farrell et al., “Installed Base and Compatibility: Innovation, Product Preannouncements, and Predation”, The American Economic Review, Dec. 1986, vol. 76, No. 5, pp. 940-955. |
Garcia-Molina et al., “Database Systems: The Complete Book”, Prentice Hall, Inc., Ch. 15, Oct. 1, 2001, pp. 713-715. |
Grange, Frank, “Challenges in Modeling Demand for Inventory Optimization of Slow-Moving Items,” Proceedings of the 1998 Winter Simulation Conference, 1998, pp. 1211-1217. |
Greenlight.com Teams up With Credit Online to Expand Online Financing Options, Published in PR Newswire Association LLC; New York; Aug. 28, 2000 extracted from Dialog on Jun. 14, 2021, p. 3. |
Haffar, Imad, “‘SPAM’: A Computer Model for Management of Spare-Parts Inventories in Agricultural Machinery Dealerships”, Computers and Electronics in Agriculture, vol. 12, Issue 4, Jun. 1995, pp. 323-332. |
Handfield et al., “Managing Component Life Cycles in Dynamic Technological Environments”, International Journal of Purchasing and Materials Management, Tempe, Spring 1994, vol. 30, No. 2, pp. 20-28. |
Inderfurth et al., “Decision Support for Spare Parts Acquisition in Post Product Life Cycle”, Central European Journal of Operations Research, 2008, vol. 16, pp. 17-42. |
“Intelligence Insight Impact”, Polk Automotive Manufacturers; http://usa.polk.com/Industries/AutoMfr/Analyze/MarketAnalysis/, Dec. 13, 2007, p. 3. |
Invoicedealers.com, http://web.archive.org/web/20040804044511/http://www.invoicedealers.com/, Aug. 4, 2004, p. 2. |
Ivillage.com, http://web.archive.org/web/20040729234947/http://www.ivillage.com/, Jul. 29, 2004, p. 2. |
“Japan's JAAI System Appraises Used Cars Over Internet”, Asia Pulse, Mar. 3, 2000, p. 1. |
Jaro, Matthew A., “Probabilistic Linkage of Large Public Health Data Files”, Statistics in Medicine, 1995, vol. 14, pp. 491-498. |
Käki, Anssi, “Forecasting in End-Of-Life Spare Parts Procurement”, Master's Thesis, Helsinki University of Technology, System Analysis Laboratory, Jul. 27, 2007, p. 84. |
Kennedy et al., “An Overview of Recent Literature on Spare Parts Inventories”, International Journal of Production Economics, 2002, vol. 76, pp. 201-215. |
Kim et al., “Optimal Pricing, EOL (End of Life) Warranty, and Spare Parts Manufacturing Strategy Amid Product Transition”, European Journal of Operation Research, 2008, vol. 188, pp. 723-745. |
Koller, Mike, “Wireless Service Aids,” InternetWeek, Jul. 9, 2001, p. 15. |
Krupp, James A.G., “Forecasting for the Automotive Aftermarket”, The Journal of Business Forecasting Methods & Systems, Winter 1993-1994, vol. 12, No. 4, ABI/Inform Global, pp. 8-12. |
Lapide, Larry, “New Developments in Business Forecasting”, The Journal of Business Forecasting, Spring 2002, pp. 12-14. |
Lee, Ho Geun, “AUCNET: Electronic Intermediary for Used-Car Transactions”, EM—Electronic Markets, Dec. 1997, vol. 7, No. 4, pp. 24-28. |
Miller, Joe, “NADA Used-Car Prices Go Online”, Automotive News, Jun. 14, 1999, p. 36. |
Moore, John R., Jr. “Forecasting and Scheduling for Past-Model Replacement Parts”, Management Science, Application Series, vol. 18, No. 4, Part 1, Dec. 1971, pp. B-200-B-213. |
“NAAA-Recommended Vehicle Condition Grading Scale”, Noted as early as 2007, p. 3. |
Packer, A. H., “Simulation and Adaptive Forecasting an Applied to Inventory Control”, Operations Research, Jul. 1965, vol. 15, No. 4, pp. 660-679. |
“Power Information Network: Power to Drive your Business”, J.D. Power and Associates Power Information Network, http://www.powerinfonet.com/products/productDetail.asp?type=financialinstitutions, Dec. 13, 2007, p. 2. |
Peters, Peter-Paul, “A Spare Parts Configurator for the European Service Business” (Graduation Report), Honeywell, Industrial Service Logistic Center, Amsterdam, The Netherlands, Mar. 2000, p. 80. |
Porter, G. Zell, “An Economic Method for Evaluating Electronic Component Obsolescence Solutions”, www.gidep.org/data/dmsms/library/zell.pdf, May 1998, pp. 1-9. |
“Pricing Tool”, vAuto Live Market View, http://www.vauto.com/vAuto_Solution/pricing.asp, Dec. 13, 2007, p. 2. |
Reinbach, Andrew, “MCIF Aids Banks in CRA Compliance”, Bank Systems & Technology, Aug. 1995, vol. 32, No. 8, p. 27. |
Roos, Gina, “Web-Based Service Helps OEMs Cure Parts Obsolescence Blues”, Electronic Engineering Times, Oct. 8, 2001, p. 86. |
Santarini, Michael, “Forecasts the Probable Obsolescence of Components—Module Predicts Parts Life”, Electronic Engineering Times, Jan. 11, 1999, vol. 1, p. 48. |
Sawyers, Arlena, “NADA to Offer Residual Guide”, Automotive News, May 22, 2000, p. 1. |
Shapiro et al., “Systems Competition and Aftermarkets: an Economic Analysis of Kodak”, The Antitrust Bulletin, Spring 1994, pp. 135-162. |
“Stoneage Corporation Announces Database of 250,000 Used Cars Posted to the Internet”, PR Newswire, Feb. 24, 1998, p. 1. |
Sullivan, Laurie, “Obsolete-Parts Program Thriving”, EBN, Manhasset, NY, Jan. 21, 2002, Issue 1296, p. 26. |
“The Most Reliable Cars 2006”, https://www.forbes.com/2006/04/20/reliable-vehicles-japanese_cx_dl_0424feat%20html?sh=19b3172a48f3, Apr. 24, 2006, p. 4. |
“Urban Science Launches Second Generation Lead Scoring Solution”, Urban Science, Detroit, MI, Mar. 1, 2007, http://www.urbanscience.com/newsevents/pr_20070222.html, p. 3. |
“WashingtonPost.com and Cars.com Launch Comprehensive Automotive Web Site For the Washington Area”, PR Newswire, Oct. 22, 1998. pp. 2. |
Watts, Craig, “Consumers Now Can Know What Loan Rate Offers to Expect Based on Their FICO Credit Score at MyFICO.com,” San Rafael, CA, Mar. 6, 2002, p. 2, http://www.myfico.com/PressRoom/PressReleases/2002_03_06.aspx. |
Webster, Lee R., “Failure Rates & Life-Cycle Costs”, Consulting-Specifying Engineer, Apr. 1998, vol. 23, No. 4, ABI/INFORM Global, p. 42. |
“Web Sites Let Automotive Consumers Arm Themselves with Price Information”, Orange County Register, Nov. 14, 1997, p. 3. |
“Yahoo! Autos Provides Enhanced Road Map for Researching, Buying and Selling Cars Online”, PR Newswire, Oct. 13, 1998, p. 2. |
International Search Report and Written Opinion in PCT Application No. PCT/US07/76152, dated Mar. 20, 2009. |
Number | Date | Country | |
---|---|---|---|
61415207 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18053554 | Nov 2022 | US |
Child | 18383618 | US | |
Parent | 17650285 | Feb 2022 | US |
Child | 18053554 | US | |
Parent | 16669250 | Oct 2019 | US |
Child | 17650285 | US | |
Parent | 14080416 | Nov 2013 | US |
Child | 16669250 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13297438 | Nov 2011 | US |
Child | 14080416 | US |