The present invention relates to a system and method for providing information and decision support to a user where users are classified in homogenous groups.
The internet and world-wide-web provide a plethora of information sources for users. Users may use this information for personal or business purposes, moreover a number of professionals use the internet to access information to assist them in their daily decision making. In order to access this information a user may have to perform a search each time the user desires information regarding a particular topic. Conventional search techniques may include using a search engine such as Yahoo, Alta Vista, Excite or Google. A user must submit a query to the search engine for a particular topic where the query includes keywords or phrases associated with the desired data. The search engine responds to the user's query by transmitting a list of documents that may or may not be truly responsive to the user's needs. Usually these search engines use keyword indexing techniques to index documents available on the web. Unfortunately, a document's keywords alone rarely capture the document's true contents. Consequently, systems relying on keywords in an index to retrieve documents in response to queries often provide unsatisfactory search results.
Another problem associated with using the conventional search engine to retrieve information is that normally the search engine returns an enormous number of matches for a simple query. A user may be faced with a list of 1,000 hits in response to a query and consequently the user cannot efficiently review all the results. The review process may take an unreasonable amount of time and is not cost effective for any business professional. Occasionally, the user may obtain useful information in the first few hits, however the user may overlook another very useful hit that is buried deeper in the hit list. Sometimes these search engines provide a ranking of the hit list or statistical relevance rating, but again these rankings or ratings are base upon criteria associated with the random web crawlers that are used to retrieve and index the collection stored by the search engine. As a result, the ranking or ratings assigned to each search may not provide consistent results and may present problems with the reliability of the search.
The prior art has not effectively, i.e., accurately, quickly and user friendly, provided diverse and complex information via effective search methodologies to diverse users. The most prominent reason for the lack of such search methodologies is that the prior art fails to use finite descriptions to properly characterize the relevant information desired by the user.
The present invention places critical information at the user's finger tips that the user may use to make effective and efficient decisions. The present invention provides a system and method that enables the comprehensive and efficient delivery of relevant information to users via a network. The present invention involves searching/retrieving public and private data records on a network and categorizing the search results according to a predefined set of document content identifiers (DCI). A Meta data set is created that assigns the data records associated with a particular DCI to one of more classes of users. A class of users is defined by a group of individuals sharing a common industry, role, business objective and other user oriented identifiers. Based on feedback from the users concerning the nature of the data records retrieved, the Meta data set that associates DCIs with user classes will be continuously upgraded.
The system and method of the present invention provides users with relevant and enhanced data records with minimal search requirements. Users may retrieve enhanced data records stored on a server arrangement by accessing a network via an access device, i.e., desktop computer, laptop computer, PDA, etc. Users may connect to the network via conventional wired methods, i.e., dial-up modem cable modem, digital subscriber line (DSL), and/or wireless methods, i.e., cellular, PDA wireless, and request retrieval of data records which have been mapped to their assigned user class (UC). The server arrangement continuously retrieves the data records from various sources over both private and public networks. Upon retrieval of the data record, software residing in the server arrangement assigns at least one DCI to each data record and transmits the DCI assigned data record to a domain expert for review. The domain expert reviews the DCI assignments, supplements/deletes DCI assignments and possibly supplements/enhances the format and content of the data record.
The server arrangement assigns each user to a UC based upon information provided by the user upon initial connection to the server arrangement. After initial user class assignment, the user may elect to join other UC's and continuously update UC association during subsequent use. The server arrangement provides each user sufficient access so that each user may gain an understanding of: how information within the data records relates to DCIs; how DCIs are assigned to data records; and which DCIs are of interest to which users.
The system enables users to abandon a pure search methodology and yet provides concise, pertinent information in the form of data records to each user through the series of steps as set forth in
If the user class includes a large number of users, then the benefits of scale may still be captured because these steps only need to be performed once for each user class. Furthermore, if the DCIs are of interest to many user classes, then by identifying information related to the DCI for the initial user class, the system simultaneously begins the process of developing the capability to deliver information to another user class with similar interests. By leveraging established sets of DCIs one can quickly converge, so the addition of UCs requires very little effort thus providing another benefit of scale.
The present invention outperforms other methods by connecting users with relevant data records and essentially zero error occurring in the mapping functions, since it involves routing and not searching. In this context the Metadata mapping, which relates DCIs to users according to their industry, role, and business objectives, becomes the valuable asset that requires domain expertise to be successful. Because users are identified with the same informational needs the system achieves even greater efficiency if users provide feedback along with their evaluation of the data records and offer new data sources they may discover during the course of their work. In one exemplary example, a user, such as a process manager, may receive a data record related to processes. The process manager may have information concerning a new process improvement and thus may immediately share this new information with other users in the same UC. Upon receipt of any new information, the system may delete any data records considered to be outdated from the database based on the feedback from users.
1) a more connected information space;
2) a stronger connection between desired information and DCIs;
3) a more connected user community which includes homogeneous user classes that desire the same information; and
4) more connected DCIs to a broad set of users.
The transformation in the above methodology may be characterized semi-quantitatively as follows.
Assume the following:
M=number of data records
N=number of users
I=number of DCIs related to a data record
CN=number of distinct user classes
SN=average number of searches for each use within a lifetime of a data record (information)
NC=average size of a distinct user class
IC=average number of DCIs for a user class
In the prior art, as shown in
Two factors improve the utility of the information delivered as described above. The first is to organize the information effectively and the second is to provide the user with the tools needed to analyze the information and assist in reaching decisions. When the user executes the search in the conventional approach, they have their own organization for storing it. Such storage is allowable with the present system by adding to the classification of the information not only the DCIs and user classes they relate to, but other Metadata (e.g., industry, geography, source) as well. The user may use these standard designations of information types and organize their files accordingly. The application of these Metadata will also contribute to the ability of the system to direct data records to the correct user class and thus forms a type of user feedback. Furthermore, each user may be provided with the option to organize the information in a manner that experts believe might be most useful. By using standard learning approaches, users may provide feedback that could suppress classes or sources of information. By enabling this feature users may learn from each other by sharing their reactions to the information and the sources as described earlier. Therefore, the user drives the organization and grading of the information, which is both more effective and less costly to the provider.
Finally, since the information is organized by DCI and user(s), then the most helpful analysis tools are known to assist the user in using the information for decision making. A full list of analysis tools, instructions on their use, and experts to consult may be provided with each DCI/user class pair. Also, the system may provide a list of experts and providers who could also help implement the decisions. Again because one understands beforehand the relationship of the information to DCI to user class it is easy to know with high accuracy what tools and providers are needed to both make and execute the decision.
The organization of information by DCIs, user classes, information type and source and the process of providing information involves five steps:
I. Search/Classification
II. Application of DCIs to individual data records
III. Mapping of DCIs to user classes
IV. Routing
V. Providing needed expertise to decide and implement
The present invention has an enormous advantage over the prior art where a user requests information from a large database using various key words. Not only does the present invention provide a more accurate and less costly search, it also effectively provides the user with the other capabilities needed to accomplish their objectives.
Several embodiments of the present invention are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the present invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/251,528, filed Dec. 5, 2000, pursuant to 35 U.S.C. §119(e), the disclosure of which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
60251528 | Dec 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10006888 | Dec 2001 | US |
Child | 11482815 | Jul 2006 | US |