This disclosure relates in general to the field of video-conferencing and, more particularly, to providing depth adaptive video conferencing.
Video services have become increasingly important in today's society. In certain architectures, service providers may seek to offer sophisticated video conferencing services for their end users. The video conferencing architecture can offer an “in-person” meeting experience over a network. Video conferencing architectures can deliver real-time, face-to-face interactions between people using advanced visual, audio, and collaboration technologies. Some issues have arisen in video conferencing scenarios where a group, rather than just an individual, needs to be clearly presented. Also, if participants are not tied to a desk or a conferencing table, but rather are free to stand and walk around, problems surface in choosing a suitable camera perspective. Deficient camera arrangements can lead to distorted or incomplete video images being sent to participants in a video conference. Hence, the ability to optimize cameras and video images provides a significant challenge to system designers, device manufacturers, and participants of video conferences.
To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:
A method is provided in one example and includes capturing panoramic image data through a first camera in a camera cluster, and capturing close-up image data through a second camera included as part of a spaced array of cameras. A presence of a user in a field of view of the second camera can be detected. The close-up image data and the panoramic image data can be combined to form a combined image. In more specific embodiments, the detecting includes evaluating a distance between the user and the second camera. The combined image can reflect a removal of a portion of panoramic image data associated with a user in a video conferencing environment.
In other embodiments, the method can include communicating the combined image over a network connection to a remote location. The remote location can receive and display the combined image. The method can also include dynamically scaling the close-up image data based on a distance between a user in a video conferencing environment and the second camera. The field of view of the second camera can be adjusted based on a detected distance of the user from the second camera. The field of view of the second camera can be adjusted by adjusting a zoom of the second camera.
Turning to
ROOM 1 is connected to ROOM 2 via a network connection 41 in this particular example. ROOM 2 may be setup similar to ROOM 1 with a corresponding image display wall having a plurality of display panels 31a-31d, a set of cameras 32a-32d, and a camera cluster 36 of four area cameras in this example. Note that in particular implementations, camera clusters 16 and 36 can be panoramic and angled to cover an entire room in a non-overlapping manner. Hence, the panoramic cameras can be centered, stacked (vertically or horizontally), angled, and/or provisioned in the center of a given wall display. A participation area 38 is also included in ROOM 2 and, further, is spaced outward from the image display wall for use by a participant 30 of ROOM 2 (e.g., during a conference). The network connection couples server 40 to server 48. Server 48 includes a processor 42b, a memory element 44b, and a view synthesis module 46b, where server 48 can readily interact with (and understand communications from) server 40.
In operation of an example associated with
In a first mode, the participation areas 18, 38 can be imaged in a whole-room mode to offer suitable depth to the image data. Each respective set of display panels 11a-11d, 31a-31d can show a cohesive view of the entire room and, further, the people in the room. Note that in order to capture an entire room with a coherent perspective, a single viewpoint is preferred. Either a fish-eye lens or a cluster of co-located (i.e., panoramic) cameras can accomplish this objective. However, this single view alone creates a problem because, as participants approach the image display wall, particularly closer to either end of the image display wall, the panoramic camera captures their image data from a side view rather than from a frontal view.
In a second mode, participation areas 18, 38 can be imaged in a face-to-face mode. When people are in a deliberate (e.g., more intimate) conversation, they typically stand closer to each other. In videoconferencing scenarios, the tendency is to walk up closer to the image display wall and, further, attempt to maintain consistent eye contact with the counterparty. In order to get near-correct eye-gaze in a face-to-face video conference, the camera should be mounted close to (usually directly above) the image of the far-end person. Since the users are free to stand in front of any part (i.e., any panel) of the video wall, this would require a group of cameras: distributed across the face of the display wall. However, a group of such cameras can present an inconsistent picture of a room. Objects in the back of the room appear in several cameras, as the fields of view overlap there. An array of cameras can produce a number of images of the same scene from different viewpoints. They cannot be combined or stitched into one coherent picture.
In accordance with certain teachings of the present disclosure, system 10 can utilize a varying combination of panoramic images from the whole-room mode with close-up images from the face-to-face mode. Cluster systems 16, 36 of cameras mounted in the middle of the top of the respective image display wall can effectively capture the panoramic image of the entire room. Operationally, the video images emanating from the combination of the panoramic cameras and the close-up cameras can be combined in an intelligent manner to create the video images (i.e., combined images) that are transmitted to a distant endpoint. In particular, when a person is close to the image display wall, the close-up camera nearest to him can be activated, where that image is transmitted to a corresponding panel at the distant endpoint. In other instances, when no person is close to the wall, the panoramic image of the room is displayed across all the panels of the distant endpoint. Hence, system 10 is configured to intelligently support two modes of image capture (e.g., whole room and face-to-face). This can be accomplished by leveraging two different camera configurations: panoramic and face-to-face (close-up). The respective video images can be combined digitally in a way that adapts to the presence and, further, the location of people in the conferencing room.
In terms of its potential physical deployment, system 10 can include a wall display with two groups of cameras: panoramic cameras and close-up cameras. A panoramic camera cluster can be mounted in a central location (e.g., about 6.5 feet from the floor on the display wall, capturing most of the room). The display wall can be divided into a number of panels approximately (e.g., three feet in width). Each panel can be provisioned with a close-up camera directly over it. An algorithm for combining video images (e.g., provided by view synthesis modules 46a-b) can intuitively render accurate image data to corresponding participants. More specifically, the location of the people in the room can be tracked visually. As a person approaches one of the display panels (e.g., a selected distance [such as within 6 feet of one of the panels]), a personal view is selected for the video stream corresponding to that panel, which is the video stream being sent to the far location of the video conference.
When a personal view is selected, the image of the person in the corresponding personal camera is segmented: removing the background imagery (e.g., from the panoramic image data) and leaving the foreground (i.e., the person). The image of the person can be scaled according to their physical distance from the camera in such a way as to make them approximately lifesize. The image of the person can subsequently be matted on top of the image from the panoramic camera, corresponding to that panel. In regards to the far endpoint, the corresponding users would see a coherent panoramic view of the room, spread across their video wall: except in one panel. In that panel, they see an intelligent rendering of their counterparty, as viewed from the close-up camera with the panoramic room behind them.
In essence, system 10 can leverage two sets of cameras with overlapping field of view coverage. System 10 switches (i.e., adaptively) between cameras based on the position of the people within the imaging environment. The architecture can use cameras distributed across the surface of a display wall for tracking people proximate to the display wall. It can also use centrally co-located cameras for tracking people that are farther from the wall.
Note that system 10 stands in contrast to camera systems that independently switch when a person is in view, or when that person is detected. The architecture of system 10 can use a cluster of co-located cameras to maintain a consistent perspective view of the room across the entire display surface. Operationally, the close-up cameras can be positioned, assigned to the display surface, and/or switched in a way to maintain (as much as possible) the coherent perspective. The close-up cameras can achieve a face-to-face image with superior eye contact, which would be otherwise impossible with only co-located cameras.
In the most basic system, the close-up view is simply switched into the video stream: replacing the panoramic view. This action can be triggered by the detection of a person in the close-up region. In a more particular embodiment, enhanced processing can occur to produce the video image when the close-up up camera is engaged. The image of the person can be isolated using foreground/background separation processing. In the case of image segmentation, the image of the person may be superimposed on an image of the background scene from the perspective of the panoramic camera cluster. Again, enhanced processing can occur to produce the video image when the close-up up camera is engaged. The images of the person can be scaled dynamically according to their distance from the display wall. In this way their image does not become overly magnified, as they move closer to the display wall.
In one implementation, servers 40 and 48 include software to achieve (or to foster) the intelligent depth adaptive functions (and the field of view enhancements), as outlined herein in this Specification. Note that in one example, each of these elements can have an internal structure (e.g., a processor, a memory element, etc.) to facilitate some of the operations described herein. In other embodiments, these depth adaptive functions (and the field of view enhancements) may be executed externally to these elements, or included in some other network element to achieve this intended functionality. Alternatively, servers 40 and 48 and/or cameras 12a-d, cameras 32a-d (and any camera within camera cluster 16 and 36) may include this software (or reciprocating software) that can coordinate with other network elements in order to achieve the operations, as outlined herein. In still other embodiments, one or several devices may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.
Referring now to
In one particular example, cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) are video cameras configured to capture, record, maintain, cache, receive, and/or transmit image data. This could include transmitting packets over network 41 to any suitable next destination. The captured/recorded image data could be stored in the individual cameras, or be provided in some suitable storage area (e.g., a database, a server, etc.). In one particular instance, cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) can be their own separate network device and have a separate IP address. Cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) could be wireless cameras, high-definition cameras, or any other suitable camera device configured to capture image data. In terms of their physical deployment, in one particular implementation, cameras 12a-12d, 32a-32d are close-up cameras, which are mounted near the top (and at the center of) display panels 11a-11d and 31a-31d. One camera can be mounted to each display. Other camera arrangements and camera positioning is certainly within the broad scope of the present disclosure.
Cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) may interact with (or be inclusive of) devices used to initiate a communication for a video session, such as a switch, a console, a proprietary endpoint, a microphone, a dial pad, a bridge, a telephone, a smartphone (e.g., Google Droid, iPhone, etc.), an iPad, a computer, or any other device, component, element, or object capable of initiating video, voice, audio, media, or data exchanges within system 10. Cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) can also be configured to include a receiving module, a transmitting module, a processor, a memory, a network interface, a call initiation and acceptance facility such as a dial pad, one or more speakers, one or more displays, etc. Any one or more of these items may be consolidated, combined, or eliminated entirely, or varied considerably and those modifications may be made based on particular communication needs.
Note that in one example, cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) can have internal structures (e.g., with a processor, a memory element, etc.) to facilitate some of the operations described herein. In other embodiments, these video image enhancements features may be provided externally to these cameras or included in some other device to achieve this intended functionality. In still other embodiments, cameras 12a-12d, 32a-d (and the additional cameras of camera clusters 16, 36) may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.
Note that the term ‘camera cluster’ is not intended to require a certain number or type of cameras be utilized. Rather, a camera cluster simply identifies two or more cameras used to capture image data. For example, a first camera cluster for capturing a panoramic image could be one camera with a fish-eye type lens, and/or four separate cameras capturing the same viewing angles as could be captured by the fish-eye type camera. Additionally, as used herein in this Specification, ‘panoramic image data’ is a broad term meant to connote video data of a given area or environment, whereas the term ‘up-close image data’ is similarly broad and representative of video data that may be associated with objects somewhat closer to a given camera (or wall). Hence, up-close image data and panoramic image data are broad terms that in some instances, may share some overlapping coverage, video data, etc., or be separated.
In operational terms, close-up camera switching may be controlled by various mechanisms, depending on the environment and desired complexity. These can include face detection that operates on the close-up cameras video signal. These mechanisms can also include depth sensors at the display surface (e.g., a time-of-flight depth camera). These mechanisms can also include floor sensors, position sensing using overhead cameras, or any other suitable mechanism to achieve this objective. In terms of the dynamic field of view, the close-up cameras can be provisioned in an array across the top of a display wall. In one particular instance, these can be spaced apart (e.g., approximately three feet apart, or any other suitable distance), where each camera can be centrally located over a flat-panel display mounted portrait style. The field of view (FOV) of these cameras is important and, further, in a particular instance the FOV can be equivalent to magnification or zoom. Other examples may include different provisioning arrangements for the FOV.
Displays 11a-11d and 31a-31d are screens at which video data can be rendered for the end user. Note that as used herein in this Specification, the term ‘display’ is meant to connote any element that is capable of delivering image data (inclusive of video information), text, sound, audiovisual data, etc. to an end user. This would necessarily be inclusive of any panel, plasma element, television, monitor, computer interface, screen, TelePresence devices (inclusive of TelePresence boards, panels, screens, surfaces, etc.) or any other suitable element that is capable of delivering/rendering/projecting such information. Note also that the term ‘image data’ is meant to include any type of media or video (or audio-video) data applications (provided in any protocol or format) that could operate in conjunction display panels 11a-11d and 31a-31d.
Network 41 represents a series of points or nodes of interconnected communication paths for receiving and transmitting packets of information that propagate through system 10. Network 41 offers a communicative interface between any of the components of
Servers 40, 48 are configured to receive information from cameras 12a-12d, 32a-d, and camera clusters 16, 36 (e.g., via some connection that may attach to an integrated device (e.g., a set-top box, a proprietary box, etc.) that sits atop the display and that includes [or that may be part of] cameras 12a-12d, 32a-d and camera clusters 16, 36). Servers 40, 48 may also be configured to control compression activities, or additional processing associated with data received from the cameras (inclusive of the camera clusters). Alternatively, the actual integrated device can perform this additional processing before image data is sent to its next intended destination. Servers 40, 48 can also be configured to store, aggregate, process, export, and/or otherwise maintain image data and logs in any appropriate format, where these activities can involve respective processors 42a-b, memory elements 44a-b, and view synthesis modules 46a-b. Servers 40, 48 are network elements that facilitate data flows between endpoints and a given network. As used herein in this Specification, the term ‘network element’ is meant to encompass routers, switches, gateways, bridges, loadbalancers, firewalls, servers, processors, modules, or any other suitable device, component, element, or object operable to exchange information in a network environment. This includes proprietary elements equally.
Servers 40, 48 may interface with the cameras and the camera clusters through a wireless connection, or via one or more cables or wires that allow for the propagation of signals between these two elements. These devices can also receive signals from an intermediary device, a remote control, etc. and the signals may leverage infrared, Bluetooth, WiFi, electromagnetic waves generally, or any other suitable transmission protocol for communicating data (e.g., potentially over a network) from one element to another. Virtually any control path can be leveraged in order to deliver information between servers 40, 48 and the cameras and the camera clusters. Transmissions between these two sets of devices can be bidirectional in certain embodiments such that the devices can interact with each other (e.g., dynamically, real-time, etc.). This would allow the devices to acknowledge transmissions from each other and offer feedback, where appropriate. Any of these devices can be consolidated with each other, or operate independently based on particular configuration needs.
Referring now to
In particular implementations, the images from each of close-up cameras 12a-12d may be sent to server 40, which may include a proximity detection mechanism in order to identify when a person comes within a certain designated distance (for example, six feet) of a particular camera. When the system recognizes that a person has entered this zone, that particular image is then utilized and, further, combined with the panoramic image to form the combined image of ROOM 1. It should be noted that the configuration of system 10 can utilize any appropriate mechanism for determining if a person/user is within a certain distance of a camera. For example, depth sensors (e.g., such as a time-of-flight depth cameras), at the display surface could be utilized. Alternatively, floor sensors could be mounted in participation area 18 to detect the location of people in the room. Another option would be utilizing a position sensing system of overhead cameras. Any such permutations are clearly within the broad scope of the present disclosure.
Referring now to
However, when participant 72 moves, the process can become more complex. Referring now to
Referring now to
Alternatively, if individuals are detected by view synthesis module 46a, the distance from the camera to the respective person can subsequently be determined at step 120. If a person is outside of the designated distance, the panoramic image can become the combined image at step 116. That combined image is then ready to be transmitted to the second room at step 118, and suitably displayed on displays of the second room. However, if a person is within the designated distance, the distance to the person can be compared to the current lifesize distance in step 122. Then, in step 124, if the lifesize distance is not equal to the distance to the person, the fields of view of the close-up cameras can be adjusted to make those distances equal. Subsequently, a new image is taken by the close-up cameras, and received by server 40 in step 126. The lifesize distance is then compared again at step 122. If the lifesize distance and distance to the person are equal, the background can be removed from the close-up image (e.g., by view synthesis module 46a) at step 128.
At this juncture, the close-up image consists simply of the foreground of that original image (i.e., the person). In step 130, this image can be scaled to make it appear (approximately) life sized. In step 132, the system can remove the close up person's image pixels from the panoramic camera image. At step 134, the system can replace the removed pixels with pixels from the historic background and/or pixels that were discarded previously (e.g., in step 128). At step 136, a combined image is created after optionally blurring the background image. That combined image is then ready to be transmitted to the second room at step 118. The combined image can be rendered on the displays of the second room. A similar (reciprocal) process can be occurring in the second room. This could involve operations being performed by server 48 (e.g., with the assistance of view synthesis module 46b). The combined image from that process can be suitably transmitted to the first room for rendering on displays provisioned in the first room.
Note that in certain example implementations, the field of view adjustment functions (and the intelligent depth adaptive activities) outlined herein may be implemented by logic encoded in one or more tangible media (e.g., embedded logic provided in an application specific integrated circuit [ASIC], digital signal processor [DSP] instructions, software [potentially inclusive of object code and source code] to be executed by a processor, or other similar machine, etc.). In some of these instances, a memory element [as shown in
In one example implementation, servers 40 and 48 and/or cameras 12a-12d, 32a-32d (inclusive of any camera within the aforementioned clusters) can include software in order to achieve the field of view adjustment functions (and the intelligent depth adaptive activities) outlined herein. This can be provided through instances of view synthesis modules 46a, 46b. Additionally, each of these devices may include a processor that can execute software or an algorithm to perform the depth adaptive (and field of view enhancement) activities, as discussed in this Specification. These devices may further keep information in any suitable memory element [random access memory (RAM), ROM, EPROM, EEPROM, ASIC, etc.], software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein (e.g., database, table, cache, key, etc.) should be construed as being encompassed within the broad term ‘memory element.’ Similarly, any of the potential processing elements, modules, and machines described in this Specification should be construed as being encompassed within the broad term ‘processor.’ Each of synthesis modules 46a, 46b and cameras 12a-12d, 32a-32d (inclusive of any camera within the aforementioned clusters) can also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment.
Note that with the example provided above, as well as numerous other examples provided herein, interaction may be described in terms of two or three components. However, this has been done for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of flows by only referencing a limited number of components. It should be appreciated that system 10 (and its teachings) are readily scalable and can accommodate a large number of components, participants, rooms, endpoints, sites, etc., as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad teachings of system 10 as potentially applied to a myriad of other architectures.
It is also important to note that the steps in the preceding flow diagrams illustrate only some of the possible conferencing scenarios and patterns that may be executed by, or within, system 10. Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of the present disclosure. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by system 10 in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings of the present disclosure.
For example, although cameras 12a-12d, 32a-d, and camera clusters 16, 36 have been described as being mounted in a particular fashion, these cameras could be mounted in any suitable manner in order to capture image data from an effective viewpoint. Other configurations could include suitable wall mountings, aisle mountings, furniture mountings, cabinet mountings, etc., or arrangements in which cameras and/or optics element would be appropriately spaced or positioned to perform its functions. Additionally, system 10 can have direct applicability in TelePresence environments (both large and small [inclusive of consumer applications]) such that quality image data can be appropriate managed during video sessions. Moreover, although system 10 has been illustrated with reference to particular elements and operations that facilitate the communication process, these elements and operations may be replaced by any suitable architecture or process that achieves the intended functionality of system 10.
Number | Name | Date | Kind |
---|---|---|---|
2911462 | Brady | Nov 1959 | A |
D212798 | Dreyfuss | Nov 1968 | S |
3793489 | Sank | Feb 1974 | A |
3909121 | De Mesquita Cardoso | Sep 1975 | A |
D270271 | Steele | Aug 1983 | S |
4400724 | Fields | Aug 1983 | A |
4473285 | Winter | Sep 1984 | A |
4494144 | Brown | Jan 1985 | A |
4750123 | Christian | Jun 1988 | A |
4815132 | Minami | Mar 1989 | A |
4827253 | Maltz | May 1989 | A |
4853764 | Sutter | Aug 1989 | A |
4890314 | Judd et al. | Dec 1989 | A |
4961211 | Tsugane et al. | Oct 1990 | A |
4994912 | Lumelsky et al. | Feb 1991 | A |
5003532 | Ashida et al. | Mar 1991 | A |
5020098 | Celli | May 1991 | A |
5033969 | Kamimura | Jul 1991 | A |
5136652 | Jibbe et al. | Aug 1992 | A |
5187571 | Braun et al. | Feb 1993 | A |
5200818 | Neta et al. | Apr 1993 | A |
5243697 | Hoeber et al. | Sep 1993 | A |
5249035 | Yamanaka | Sep 1993 | A |
5255211 | Redmond | Oct 1993 | A |
D341848 | Bigelow et al. | Nov 1993 | S |
5268734 | Parker et al. | Dec 1993 | A |
5317405 | Kuriki et al. | May 1994 | A |
5337363 | Platt | Aug 1994 | A |
5347363 | Yamanaka | Sep 1994 | A |
5351067 | Lumelsky et al. | Sep 1994 | A |
5359362 | Lewis et al. | Oct 1994 | A |
D357468 | Rodd | Apr 1995 | S |
5406326 | Mowry | Apr 1995 | A |
5423554 | Davis | Jun 1995 | A |
5446834 | Deering | Aug 1995 | A |
5448287 | Hull | Sep 1995 | A |
5467401 | Nagamitsu et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5502481 | Dentinger et al. | Mar 1996 | A |
5502726 | Fischer | Mar 1996 | A |
5506604 | Nally et al. | Apr 1996 | A |
5532737 | Braun | Jul 1996 | A |
5541639 | Takatsuki et al. | Jul 1996 | A |
5541773 | Kamo et al. | Jul 1996 | A |
5570372 | Shaffer | Oct 1996 | A |
5572248 | Allen et al. | Nov 1996 | A |
5587726 | Moffat | Dec 1996 | A |
5612733 | Flohr | Mar 1997 | A |
5625410 | Washino et al. | Apr 1997 | A |
5666153 | Copeland | Sep 1997 | A |
5673401 | Volk et al. | Sep 1997 | A |
5675374 | Kohda | Oct 1997 | A |
5689663 | Williams | Nov 1997 | A |
5708787 | Nakano et al. | Jan 1998 | A |
5713033 | Sado | Jan 1998 | A |
5715377 | Fukushima et al. | Feb 1998 | A |
D391558 | Marshall et al. | Mar 1998 | S |
D391935 | Sakaguchi et al. | Mar 1998 | S |
D392269 | Mason et al. | Mar 1998 | S |
5729471 | Jain et al. | Mar 1998 | A |
5737011 | Lukacs | Apr 1998 | A |
5745116 | Pisutha-Arnond | Apr 1998 | A |
5748121 | Romriell | May 1998 | A |
D395292 | Vu | Jun 1998 | S |
5760826 | Nayar | Jun 1998 | A |
D396455 | Bier | Jul 1998 | S |
D396456 | Bier | Jul 1998 | S |
5790182 | Hilaire | Aug 1998 | A |
5796724 | Rajamani et al. | Aug 1998 | A |
D397687 | Arora et al. | Sep 1998 | S |
D398595 | Baer et al. | Sep 1998 | S |
5815196 | Alshawi | Sep 1998 | A |
D399501 | Arora et al. | Oct 1998 | S |
5818514 | Duttweiler et al. | Oct 1998 | A |
5821985 | Iizawa | Oct 1998 | A |
5825362 | Retter | Oct 1998 | A |
D406124 | Newton et al. | Feb 1999 | S |
5889499 | Nally et al. | Mar 1999 | A |
5894321 | Downs et al. | Apr 1999 | A |
D409243 | Lonergan | May 1999 | S |
D410447 | Chang | Jun 1999 | S |
5929857 | Dinallo et al. | Jul 1999 | A |
5940118 | Van Schyndel | Aug 1999 | A |
5940530 | Fukushima et al. | Aug 1999 | A |
5953052 | McNelley et al. | Sep 1999 | A |
5956100 | Gorski | Sep 1999 | A |
5996003 | Namikata et al. | Nov 1999 | A |
D419543 | Warren et al. | Jan 2000 | S |
D420995 | Imamura et al. | Feb 2000 | S |
6069648 | Suso et al. | May 2000 | A |
6069658 | Watanabe | May 2000 | A |
6088045 | Lumelsky et al. | Jul 2000 | A |
6097390 | Marks | Aug 2000 | A |
6097441 | Allport | Aug 2000 | A |
6101113 | Paice | Aug 2000 | A |
6124896 | Kurashige | Sep 2000 | A |
6137485 | Kawai et al. | Oct 2000 | A |
6148092 | Qian | Nov 2000 | A |
D435561 | Pettigrew et al. | Dec 2000 | S |
6167162 | Jacquin et al. | Dec 2000 | A |
6172703 | Lee | Jan 2001 | B1 |
6173069 | Daly et al. | Jan 2001 | B1 |
D438873 | Wang et al. | Mar 2001 | S |
D440575 | Wang et al. | Apr 2001 | S |
6211870 | Foster | Apr 2001 | B1 |
6226035 | Korein et al. | May 2001 | B1 |
6243130 | McNelley et al. | Jun 2001 | B1 |
6249318 | Girod et al. | Jun 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6259469 | Ejima et al. | Jul 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266098 | Cove et al. | Jul 2001 | B1 |
D446790 | Wang et al. | Aug 2001 | S |
6285392 | Satoda et al. | Sep 2001 | B1 |
6292188 | Carlson et al. | Sep 2001 | B1 |
6292575 | Bortolussi et al. | Sep 2001 | B1 |
D450323 | Moore et al. | Nov 2001 | S |
D453167 | Hasegawa et al. | Jan 2002 | S |
D454574 | Wasko et al. | Mar 2002 | S |
6356589 | Gebler et al. | Mar 2002 | B1 |
6380539 | Edgar | Apr 2002 | B1 |
6396514 | Kohno | May 2002 | B1 |
6424377 | Driscoll, Jr. | Jul 2002 | B1 |
D461191 | Hickey et al. | Aug 2002 | S |
6430222 | Okadia | Aug 2002 | B1 |
6459451 | Driscoll et al. | Oct 2002 | B2 |
6462767 | Obata et al. | Oct 2002 | B1 |
6493032 | Wallerstein et al. | Dec 2002 | B1 |
D468322 | Walker et al. | Jan 2003 | S |
6507356 | Jackel et al. | Jan 2003 | B1 |
D470153 | Billmaier et al. | Feb 2003 | S |
6515695 | Sato et al. | Feb 2003 | B1 |
D474194 | Kates et al. | May 2003 | S |
6573904 | Chun et al. | Jun 2003 | B1 |
6577333 | Tai et al. | Jun 2003 | B2 |
6583808 | Boulanger et al. | Jun 2003 | B2 |
6590603 | Sheldon et al. | Jul 2003 | B2 |
6591314 | Colbath | Jul 2003 | B1 |
6593955 | Falcon | Jul 2003 | B1 |
6593956 | Potts et al. | Jul 2003 | B1 |
D478090 | Nguyen et al. | Aug 2003 | S |
D478912 | Johnson | Aug 2003 | S |
6611281 | Strubbe | Aug 2003 | B2 |
D482368 | den Toonder et al. | Nov 2003 | S |
6680856 | Schreiber | Jan 2004 | B2 |
6693663 | Harris | Feb 2004 | B1 |
6694094 | Partynski et al. | Feb 2004 | B2 |
6704048 | Malkin et al. | Mar 2004 | B1 |
6710797 | McNelley et al. | Mar 2004 | B1 |
6751106 | Zhang et al. | Jun 2004 | B2 |
D492692 | Fallon et al. | Jul 2004 | S |
6763226 | McZeal | Jul 2004 | B1 |
6768722 | Katseff et al. | Jul 2004 | B1 |
D494186 | Johnson | Aug 2004 | S |
6771303 | Zhang et al. | Aug 2004 | B2 |
6774927 | Cohen et al. | Aug 2004 | B1 |
D495715 | Gildred | Sep 2004 | S |
6795108 | Jarboe et al. | Sep 2004 | B2 |
6795558 | Matsuo et al. | Sep 2004 | B2 |
6798834 | Murakami et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6806898 | Toyama et al. | Oct 2004 | B1 |
6807280 | Stroud et al. | Oct 2004 | B1 |
6809724 | Shiraishi et al. | Oct 2004 | B1 |
6831653 | Kehlet et al. | Dec 2004 | B2 |
6844990 | Artonne et al. | Jan 2005 | B2 |
6850266 | Trinca | Feb 2005 | B1 |
6853398 | Malzbender et al. | Feb 2005 | B2 |
6867798 | Wada et al. | Mar 2005 | B1 |
6882358 | Schuster et al. | Apr 2005 | B1 |
6888358 | Lechner et al. | May 2005 | B2 |
D506208 | Jewitt et al. | Jun 2005 | S |
6909438 | White et al. | Jun 2005 | B1 |
6911995 | Ivanov et al. | Jun 2005 | B2 |
6917271 | Zhang et al. | Jul 2005 | B2 |
6922718 | Chang | Jul 2005 | B2 |
6925613 | Gibson | Aug 2005 | B2 |
6963653 | Miles | Nov 2005 | B1 |
D512723 | Wirz | Dec 2005 | S |
6980526 | Jang et al. | Dec 2005 | B2 |
6985178 | Morita et al. | Jan 2006 | B1 |
6989754 | Kisacanin et al. | Jan 2006 | B2 |
6989836 | Ramsey | Jan 2006 | B2 |
6989856 | Firestone et al. | Jan 2006 | B2 |
6990086 | Holur et al. | Jan 2006 | B1 |
7002973 | MeLampy et al. | Feb 2006 | B2 |
7023855 | Haumont et al. | Apr 2006 | B2 |
7028092 | MeLampy et al. | Apr 2006 | B2 |
7030890 | Jouet et al. | Apr 2006 | B1 |
7031311 | MeLampy et al. | Apr 2006 | B2 |
7036092 | Sloo et al. | Apr 2006 | B2 |
D521521 | Jewitt et al. | May 2006 | S |
7043528 | Schmitt et al. | May 2006 | B2 |
7046862 | Ishizaka et al. | May 2006 | B2 |
D522559 | Naito et al. | Jun 2006 | S |
7057636 | Cohen-Solal et al. | Jun 2006 | B1 |
7057662 | Malzbender | Jun 2006 | B2 |
7058690 | Maehiro | Jun 2006 | B2 |
7061896 | Jabbari et al. | Jun 2006 | B2 |
D524321 | Hally et al. | Jul 2006 | S |
7072504 | Miyano et al. | Jul 2006 | B2 |
7072833 | Rajan | Jul 2006 | B2 |
7080157 | McCanne | Jul 2006 | B2 |
7092002 | Ferren et al. | Aug 2006 | B2 |
7095455 | Jordan et al. | Aug 2006 | B2 |
7111045 | Kato et al. | Sep 2006 | B2 |
7126627 | Lewis et al. | Oct 2006 | B1 |
7131135 | Virag et al. | Oct 2006 | B1 |
7136651 | Kalavade | Nov 2006 | B2 |
7139767 | Taylor et al. | Nov 2006 | B1 |
D533525 | Arie | Dec 2006 | S |
D533852 | Ma | Dec 2006 | S |
D534511 | Maeda et al. | Jan 2007 | S |
D535954 | Hwang et al. | Jan 2007 | S |
D536001 | Armstrong et al. | Jan 2007 | S |
7158674 | Suh | Jan 2007 | B2 |
7161942 | Chen et al. | Jan 2007 | B2 |
7164435 | Wang et al. | Jan 2007 | B2 |
D536340 | Jost et al. | Feb 2007 | S |
D539243 | Chiu et al. | Mar 2007 | S |
7197008 | Shabtay et al. | Mar 2007 | B1 |
D540336 | Kim et al. | Apr 2007 | S |
D541773 | Chong et al. | May 2007 | S |
D542247 | Kinoshita et al. | May 2007 | S |
7221260 | Berezowski et al. | May 2007 | B2 |
D544494 | Cummins | Jun 2007 | S |
D545314 | Kim | Jun 2007 | S |
D547320 | Kim et al. | Jul 2007 | S |
7239338 | Krisbergh et al. | Jul 2007 | B2 |
7246118 | Chastain et al. | Jul 2007 | B2 |
D548742 | Fletcher | Aug 2007 | S |
7254785 | Reed | Aug 2007 | B2 |
D550635 | DeMaio et al. | Sep 2007 | S |
D551184 | Kanou et al. | Sep 2007 | S |
D551672 | Wirz | Sep 2007 | S |
7269292 | Steinberg | Sep 2007 | B2 |
7274555 | Kim et al. | Sep 2007 | B2 |
D554664 | Van Dongen et al. | Nov 2007 | S |
D555610 | Yang et al. | Nov 2007 | S |
D559265 | Armstrong et al. | Jan 2008 | S |
D560225 | Park et al. | Jan 2008 | S |
D560681 | Fletcher | Jan 2008 | S |
D561130 | Won et al. | Feb 2008 | S |
7336299 | Kostrzewski | Feb 2008 | B2 |
D563965 | Van Dongen et al. | Mar 2008 | S |
D564530 | Kim et al. | Mar 2008 | S |
D567202 | Rieu Piquet | Apr 2008 | S |
7352809 | Wenger et al. | Apr 2008 | B2 |
7353279 | Durvasula et al. | Apr 2008 | B2 |
7353462 | Caffarelli | Apr 2008 | B2 |
7359731 | Choksi | Apr 2008 | B2 |
7399095 | Rondinelli | Jul 2008 | B2 |
D574392 | Kwag et al. | Aug 2008 | S |
7411975 | Mohaban | Aug 2008 | B1 |
7413150 | Hsu | Aug 2008 | B1 |
7428000 | Cutler et al. | Sep 2008 | B2 |
D578496 | Leonard | Oct 2008 | S |
7440615 | Gong et al. | Oct 2008 | B2 |
D580451 | Steele et al. | Nov 2008 | S |
7450134 | Maynard et al. | Nov 2008 | B2 |
7471320 | Malkin et al. | Dec 2008 | B2 |
D585453 | Chen et al. | Jan 2009 | S |
7477322 | Hsieh | Jan 2009 | B2 |
7477657 | Murphy et al. | Jan 2009 | B1 |
7480870 | Anzures et al. | Jan 2009 | B2 |
D588560 | Mellingen et al. | Mar 2009 | S |
D589053 | Steele et al. | Mar 2009 | S |
7505036 | Baldwin | Mar 2009 | B1 |
D591306 | Setiawan et al. | Apr 2009 | S |
7518051 | Redmann | Apr 2009 | B2 |
D592621 | Han | May 2009 | S |
7529425 | Kitamura et al. | May 2009 | B2 |
7532230 | Culbertson et al. | May 2009 | B2 |
7532232 | Shah et al. | May 2009 | B2 |
7534056 | Cross et al. | May 2009 | B2 |
7545761 | Kalbag | Jun 2009 | B1 |
7551432 | Bockheim et al. | Jun 2009 | B1 |
7555141 | Mori | Jun 2009 | B2 |
D595728 | Scheibe et al. | Jul 2009 | S |
D596646 | Wani | Jul 2009 | S |
7575537 | Ellis | Aug 2009 | B2 |
7577246 | Idan et al. | Aug 2009 | B2 |
D602033 | Vu et al. | Oct 2009 | S |
D602453 | Ding et al. | Oct 2009 | S |
D602495 | Um et al. | Oct 2009 | S |
7607101 | Barrus | Oct 2009 | B1 |
7610352 | AlHusseini et al. | Oct 2009 | B2 |
7610599 | Nashida et al. | Oct 2009 | B1 |
7616226 | Roessler et al. | Nov 2009 | B2 |
D608788 | Meziere | Jan 2010 | S |
7646419 | Cernasov | Jan 2010 | B2 |
D610560 | Chen | Feb 2010 | S |
7661075 | Lahdesmaki | Feb 2010 | B2 |
7664750 | Frees et al. | Feb 2010 | B2 |
D612394 | La et al. | Mar 2010 | S |
7676763 | Rummel | Mar 2010 | B2 |
7679639 | Harrell et al. | Mar 2010 | B2 |
7692680 | Graham | Apr 2010 | B2 |
7707247 | Dunn et al. | Apr 2010 | B2 |
D615514 | Mellingen et al. | May 2010 | S |
7710448 | De Beer et al. | May 2010 | B2 |
7710450 | Dhuey et al. | May 2010 | B2 |
7714222 | Taub et al. | May 2010 | B2 |
7715657 | Lin et al. | May 2010 | B2 |
7716283 | Thukral | May 2010 | B2 |
7719605 | Hirasawa et al. | May 2010 | B2 |
7719662 | Bamji et al. | May 2010 | B2 |
7720277 | Hattori | May 2010 | B2 |
7725919 | Thiagarajan et al. | May 2010 | B1 |
D617806 | Christie et al. | Jun 2010 | S |
D619608 | Meziere | Jul 2010 | S |
D619609 | Meziere | Jul 2010 | S |
D619610 | Meziere | Jul 2010 | S |
D619611 | Meziere | Jul 2010 | S |
7752568 | Park et al. | Jul 2010 | B2 |
D621410 | Verfuerth et al. | Aug 2010 | S |
D626102 | Buzzard et al. | Oct 2010 | S |
D626103 | Buzzard et al. | Oct 2010 | S |
D628175 | Desai et al. | Nov 2010 | S |
7839434 | Ciudad et al. | Nov 2010 | B2 |
D628968 | Desai et al. | Dec 2010 | S |
7855726 | Ferren et al. | Dec 2010 | B2 |
7861189 | Watanabe et al. | Dec 2010 | B2 |
D631891 | Vance et al. | Feb 2011 | S |
D632698 | Judy et al. | Feb 2011 | S |
7889851 | Shah et al. | Feb 2011 | B2 |
7890888 | Glasgow et al. | Feb 2011 | B2 |
7894531 | Cetin et al. | Feb 2011 | B1 |
D634726 | Harden et al. | Mar 2011 | S |
D634753 | Loretan et al. | Mar 2011 | S |
D635569 | Park | Apr 2011 | S |
D635975 | Seo et al. | Apr 2011 | S |
7920158 | Beck et al. | Apr 2011 | B1 |
D637199 | Brinda | May 2011 | S |
D638025 | Saft et al. | May 2011 | S |
D638850 | Woods et al. | May 2011 | S |
D638853 | Brinda | May 2011 | S |
7939959 | Wagoner | May 2011 | B2 |
D640268 | Jones et al. | Jun 2011 | S |
D642184 | Brouwers et al. | Jul 2011 | S |
7990422 | Ahiska et al. | Aug 2011 | B2 |
7996775 | Cole et al. | Aug 2011 | B2 |
8000559 | Kwon | Aug 2011 | B2 |
D646690 | Thai et al. | Oct 2011 | S |
D648734 | Christie et al. | Nov 2011 | S |
D649556 | Judy et al. | Nov 2011 | S |
8077857 | Lambert | Dec 2011 | B1 |
8081346 | Anup et al. | Dec 2011 | B1 |
8086076 | Tian et al. | Dec 2011 | B2 |
D652050 | Chaudhri | Jan 2012 | S |
D652429 | Steele et al. | Jan 2012 | S |
D653245 | Buzzard et al. | Jan 2012 | S |
D654926 | Lipman et al. | Feb 2012 | S |
D655279 | Buzzard et al. | Mar 2012 | S |
D656513 | Thai et al. | Mar 2012 | S |
8130256 | Trachtenberg et al. | Mar 2012 | B2 |
8132100 | Seo et al. | Mar 2012 | B2 |
8135068 | Alvarez | Mar 2012 | B1 |
D656948 | Knudsen et al. | Apr 2012 | S |
D660313 | Williams et al. | May 2012 | S |
8179419 | Girish et al. | May 2012 | B2 |
8209632 | Reid et al. | Jun 2012 | B2 |
8219404 | Weinberg et al. | Jul 2012 | B2 |
8219920 | Langoulant et al. | Jul 2012 | B2 |
D664985 | Tanghe et al. | Aug 2012 | S |
8259155 | Marathe et al. | Sep 2012 | B2 |
D669086 | Boyer et al. | Oct 2012 | S |
D669088 | Boyer et al. | Oct 2012 | S |
D669913 | Maggiotto et al. | Oct 2012 | S |
8289363 | Buckler | Oct 2012 | B2 |
8299979 | Rambo et al. | Oct 2012 | B2 |
D670723 | Khan et al. | Nov 2012 | S |
D671136 | Barnett et al. | Nov 2012 | S |
D671141 | Peters et al. | Nov 2012 | S |
8315466 | El-Maleh et al. | Nov 2012 | B2 |
8339499 | Ohuchi | Dec 2012 | B2 |
8363719 | Nakayama | Jan 2013 | B2 |
8436888 | Baldino et al. | May 2013 | B1 |
20020047892 | Gonsalves | Apr 2002 | A1 |
20020106120 | Brandenburg et al. | Aug 2002 | A1 |
20020108125 | Joao | Aug 2002 | A1 |
20020113827 | Perlman et al. | Aug 2002 | A1 |
20020114392 | Sekiguchi et al. | Aug 2002 | A1 |
20020118890 | Rondinelli | Aug 2002 | A1 |
20020131608 | Lobb et al. | Sep 2002 | A1 |
20020140804 | Colmenarez et al. | Oct 2002 | A1 |
20020149672 | Clapp et al. | Oct 2002 | A1 |
20020163538 | Shteyn | Nov 2002 | A1 |
20020186528 | Huang | Dec 2002 | A1 |
20020196737 | Bullard | Dec 2002 | A1 |
20030017872 | Oishi et al. | Jan 2003 | A1 |
20030048218 | Milnes et al. | Mar 2003 | A1 |
20030071932 | Tanigaki | Apr 2003 | A1 |
20030072460 | Gonopolskiy et al. | Apr 2003 | A1 |
20030160861 | Barlow et al. | Aug 2003 | A1 |
20030179285 | Naito | Sep 2003 | A1 |
20030185303 | Hall | Oct 2003 | A1 |
20030197687 | Shetter | Oct 2003 | A1 |
20040003411 | Nakai et al. | Jan 2004 | A1 |
20040032906 | Lillig | Feb 2004 | A1 |
20040038169 | Mandelkern et al. | Feb 2004 | A1 |
20040039778 | Read et al. | Feb 2004 | A1 |
20040061787 | Liu et al. | Apr 2004 | A1 |
20040091232 | Appling, III | May 2004 | A1 |
20040118984 | Kim et al. | Jun 2004 | A1 |
20040119814 | Clisham et al. | Jun 2004 | A1 |
20040164858 | Lin | Aug 2004 | A1 |
20040165060 | McNelley et al. | Aug 2004 | A1 |
20040178955 | Menache et al. | Sep 2004 | A1 |
20040189463 | Wathen | Sep 2004 | A1 |
20040189676 | Dischert | Sep 2004 | A1 |
20040196250 | Mehrotra et al. | Oct 2004 | A1 |
20040207718 | Boyden et al. | Oct 2004 | A1 |
20040218755 | Marton et al. | Nov 2004 | A1 |
20040221243 | Twerdahl et al. | Nov 2004 | A1 |
20040246962 | Kopeikin et al. | Dec 2004 | A1 |
20040246972 | Wang et al. | Dec 2004 | A1 |
20040254982 | Hoffman et al. | Dec 2004 | A1 |
20040260796 | Sundqvist et al. | Dec 2004 | A1 |
20050007954 | Sreemanthula et al. | Jan 2005 | A1 |
20050022130 | Fabritius | Jan 2005 | A1 |
20050024484 | Leonard | Feb 2005 | A1 |
20050034084 | Ohtsuki et al. | Feb 2005 | A1 |
20050039142 | Jalon et al. | Feb 2005 | A1 |
20050050246 | Lakkakorpi et al. | Mar 2005 | A1 |
20050081160 | Wee et al. | Apr 2005 | A1 |
20050099492 | Orr | May 2005 | A1 |
20050110867 | Schulz | May 2005 | A1 |
20050117022 | Marchant | Jun 2005 | A1 |
20050129325 | Wu | Jun 2005 | A1 |
20050147257 | Melchior et al. | Jul 2005 | A1 |
20050149872 | Fong et al. | Jul 2005 | A1 |
20050154988 | Proehl et al. | Jul 2005 | A1 |
20050223069 | Cooperman et al. | Oct 2005 | A1 |
20050235209 | Morita et al. | Oct 2005 | A1 |
20050248652 | Firestone et al. | Nov 2005 | A1 |
20050251760 | Sato et al. | Nov 2005 | A1 |
20050268823 | Bakker et al. | Dec 2005 | A1 |
20060013495 | Duan et al. | Jan 2006 | A1 |
20060017807 | Lee et al. | Jan 2006 | A1 |
20060028983 | Wright | Feb 2006 | A1 |
20060029084 | Grayson | Feb 2006 | A1 |
20060038878 | Takashima et al. | Feb 2006 | A1 |
20060048070 | Taylor et al. | Mar 2006 | A1 |
20060066717 | Miceli | Mar 2006 | A1 |
20060072813 | Matsumoto et al. | Apr 2006 | A1 |
20060082643 | Richards | Apr 2006 | A1 |
20060093128 | Oxford | May 2006 | A1 |
20060100004 | Kim et al. | May 2006 | A1 |
20060104297 | Buyukkoc et al. | May 2006 | A1 |
20060104470 | Akino | May 2006 | A1 |
20060120307 | Sahashi | Jun 2006 | A1 |
20060120568 | McConville et al. | Jun 2006 | A1 |
20060125691 | Menache et al. | Jun 2006 | A1 |
20060126878 | Takumai et al. | Jun 2006 | A1 |
20060126894 | Mori | Jun 2006 | A1 |
20060152489 | Sweetser et al. | Jul 2006 | A1 |
20060152575 | Amiel et al. | Jul 2006 | A1 |
20060158509 | Kenoyer et al. | Jul 2006 | A1 |
20060168302 | Boskovic et al. | Jul 2006 | A1 |
20060170769 | Zhou | Aug 2006 | A1 |
20060181607 | McNelley et al. | Aug 2006 | A1 |
20060200518 | Sinclair et al. | Sep 2006 | A1 |
20060233120 | Eshel et al. | Oct 2006 | A1 |
20060256187 | Sheldon et al. | Nov 2006 | A1 |
20060284786 | Takano et al. | Dec 2006 | A1 |
20060289772 | Johnson et al. | Dec 2006 | A1 |
20070019621 | Perry et al. | Jan 2007 | A1 |
20070022388 | Jennings | Jan 2007 | A1 |
20070039030 | Romanowich et al. | Feb 2007 | A1 |
20070040903 | Kawaguchi | Feb 2007 | A1 |
20070070177 | Christensen | Mar 2007 | A1 |
20070074123 | Omura et al. | Mar 2007 | A1 |
20070080845 | Amand | Apr 2007 | A1 |
20070112966 | Eftis et al. | May 2007 | A1 |
20070120971 | Kennedy | May 2007 | A1 |
20070121353 | Zhang et al. | May 2007 | A1 |
20070140337 | Lim et al. | Jun 2007 | A1 |
20070153712 | Fry et al. | Jul 2007 | A1 |
20070157119 | Bishop | Jul 2007 | A1 |
20070159523 | Hillis et al. | Jul 2007 | A1 |
20070162866 | Matthews et al. | Jul 2007 | A1 |
20070183661 | El-Maleh et al. | Aug 2007 | A1 |
20070188597 | Kenoyer et al. | Aug 2007 | A1 |
20070189219 | Navoli et al. | Aug 2007 | A1 |
20070192381 | Padmanabhan | Aug 2007 | A1 |
20070206091 | Dunn et al. | Sep 2007 | A1 |
20070206556 | Yegani et al. | Sep 2007 | A1 |
20070206602 | Halabi et al. | Sep 2007 | A1 |
20070211716 | Oz et al. | Sep 2007 | A1 |
20070217406 | Riedel et al. | Sep 2007 | A1 |
20070217500 | Gao et al. | Sep 2007 | A1 |
20070229250 | Recker et al. | Oct 2007 | A1 |
20070240073 | McCarthy et al. | Oct 2007 | A1 |
20070247470 | Dhuey et al. | Oct 2007 | A1 |
20070250567 | Graham et al. | Oct 2007 | A1 |
20070250620 | Shah et al. | Oct 2007 | A1 |
20070273752 | Chambers et al. | Nov 2007 | A1 |
20070279483 | Beers et al. | Dec 2007 | A1 |
20070279484 | Derocher et al. | Dec 2007 | A1 |
20070285505 | Korneliussen | Dec 2007 | A1 |
20080043041 | Hedenstroem et al. | Feb 2008 | A2 |
20080044064 | His | Feb 2008 | A1 |
20080046840 | Melton et al. | Feb 2008 | A1 |
20080068446 | Barkley et al. | Mar 2008 | A1 |
20080069444 | Wilensky | Mar 2008 | A1 |
20080077390 | Nagao | Mar 2008 | A1 |
20080077883 | Kim et al. | Mar 2008 | A1 |
20080084429 | Wissinger | Apr 2008 | A1 |
20080119211 | Paas et al. | May 2008 | A1 |
20080134098 | Hoglund et al. | Jun 2008 | A1 |
20080136896 | Graham et al. | Jun 2008 | A1 |
20080148187 | Miyata et al. | Jun 2008 | A1 |
20080151038 | Khouri et al. | Jun 2008 | A1 |
20080153537 | Khawand et al. | Jun 2008 | A1 |
20080167078 | Elbye | Jul 2008 | A1 |
20080198755 | Vasseur et al. | Aug 2008 | A1 |
20080208444 | Ruckart | Aug 2008 | A1 |
20080212677 | Chen et al. | Sep 2008 | A1 |
20080215974 | Harrison et al. | Sep 2008 | A1 |
20080215993 | Rossman | Sep 2008 | A1 |
20080218582 | Buckler | Sep 2008 | A1 |
20080219268 | Dennison | Sep 2008 | A1 |
20080232688 | Senior et al. | Sep 2008 | A1 |
20080232692 | Kaku | Sep 2008 | A1 |
20080240237 | Tian et al. | Oct 2008 | A1 |
20080240571 | Tian et al. | Oct 2008 | A1 |
20080246833 | Yasui et al. | Oct 2008 | A1 |
20080256474 | Chakra et al. | Oct 2008 | A1 |
20080261569 | Britt et al. | Oct 2008 | A1 |
20080266380 | Gorzynski et al. | Oct 2008 | A1 |
20080267282 | Kalipatnapu et al. | Oct 2008 | A1 |
20080276184 | Buffet et al. | Nov 2008 | A1 |
20080297586 | Kurtz et al. | Dec 2008 | A1 |
20080298571 | Kurtz et al. | Dec 2008 | A1 |
20080303901 | Variyath et al. | Dec 2008 | A1 |
20090009593 | Cameron et al. | Jan 2009 | A1 |
20090012633 | Liu et al. | Jan 2009 | A1 |
20090037827 | Bennetts | Feb 2009 | A1 |
20090051756 | Trachtenberg | Feb 2009 | A1 |
20090079812 | Crenshaw et al. | Mar 2009 | A1 |
20090115723 | Henty | May 2009 | A1 |
20090119603 | Stackpole | May 2009 | A1 |
20090122867 | Mauchly et al. | May 2009 | A1 |
20090129753 | Wagenlander | May 2009 | A1 |
20090172596 | Yamashita | Jul 2009 | A1 |
20090174764 | Chadha et al. | Jul 2009 | A1 |
20090183122 | Webb et al. | Jul 2009 | A1 |
20090193345 | Wensley et al. | Jul 2009 | A1 |
20090204538 | Ley et al. | Aug 2009 | A1 |
20090207179 | Huang et al. | Aug 2009 | A1 |
20090207233 | Mauchly et al. | Aug 2009 | A1 |
20090207234 | Chen et al. | Aug 2009 | A1 |
20090217199 | Hara et al. | Aug 2009 | A1 |
20090228807 | Lemay | Sep 2009 | A1 |
20090244257 | MacDonald et al. | Oct 2009 | A1 |
20090256901 | Mauchly et al. | Oct 2009 | A1 |
20090260060 | Smith et al. | Oct 2009 | A1 |
20090265628 | Bamford et al. | Oct 2009 | A1 |
20090279476 | Li et al. | Nov 2009 | A1 |
20090324023 | Tian et al. | Dec 2009 | A1 |
20100005419 | Miichi et al. | Jan 2010 | A1 |
20100008373 | Xiao et al. | Jan 2010 | A1 |
20100014530 | Cutaia | Jan 2010 | A1 |
20100027907 | Cherna et al. | Feb 2010 | A1 |
20100030389 | Palmer et al. | Feb 2010 | A1 |
20100042281 | Filla | Feb 2010 | A1 |
20100049542 | Benjamin et al. | Feb 2010 | A1 |
20100079355 | Kilpatrick et al. | Apr 2010 | A1 |
20100123770 | Friel et al. | May 2010 | A1 |
20100149301 | Lee et al. | Jun 2010 | A1 |
20100153853 | Dawes et al. | Jun 2010 | A1 |
20100158387 | Choi et al. | Jun 2010 | A1 |
20100171807 | Tysso | Jul 2010 | A1 |
20100171808 | Harrell et al. | Jul 2010 | A1 |
20100183199 | Smith et al. | Jul 2010 | A1 |
20100199228 | Latta et al. | Aug 2010 | A1 |
20100201823 | Zhang et al. | Aug 2010 | A1 |
20100202285 | Cohen et al. | Aug 2010 | A1 |
20100205281 | Porter et al. | Aug 2010 | A1 |
20100205543 | Von Werther et al. | Aug 2010 | A1 |
20100208078 | Tian et al. | Aug 2010 | A1 |
20100241845 | Alonso | Sep 2010 | A1 |
20100259619 | Nicholson | Oct 2010 | A1 |
20100262367 | Riggins et al. | Oct 2010 | A1 |
20100268843 | Van Wie et al. | Oct 2010 | A1 |
20100277563 | Gupta et al. | Nov 2010 | A1 |
20100306703 | Bourganel et al. | Dec 2010 | A1 |
20100313148 | Hochendoner et al. | Dec 2010 | A1 |
20100316232 | Acero et al. | Dec 2010 | A1 |
20100325547 | Keng et al. | Dec 2010 | A1 |
20100329511 | Yoon et al. | Dec 2010 | A1 |
20110008017 | Gausereide | Jan 2011 | A1 |
20110029868 | Moran et al. | Feb 2011 | A1 |
20110032368 | Pelling | Feb 2011 | A1 |
20110039506 | Lindahl et al. | Feb 2011 | A1 |
20110063440 | Neustaedter et al. | Mar 2011 | A1 |
20110063467 | Tanaka | Mar 2011 | A1 |
20110082808 | Beykpour et al. | Apr 2011 | A1 |
20110085016 | Kristiansen et al. | Apr 2011 | A1 |
20110090303 | Wu et al. | Apr 2011 | A1 |
20110105220 | Hill et al. | May 2011 | A1 |
20110109642 | Chang et al. | May 2011 | A1 |
20110113348 | Twiss et al. | May 2011 | A1 |
20110164106 | Kim | Jul 2011 | A1 |
20110193982 | Kook et al. | Aug 2011 | A1 |
20110202878 | Park et al. | Aug 2011 | A1 |
20110225534 | Wala | Sep 2011 | A1 |
20110242266 | Blackburn et al. | Oct 2011 | A1 |
20110249081 | Kay et al. | Oct 2011 | A1 |
20110249086 | Guo et al. | Oct 2011 | A1 |
20110276901 | Zambetti et al. | Nov 2011 | A1 |
20110279627 | Shyu | Nov 2011 | A1 |
20110319885 | Skwarek et al. | Dec 2011 | A1 |
20120026278 | Goodman et al. | Feb 2012 | A1 |
20120038742 | Robinson et al. | Feb 2012 | A1 |
20120106428 | Schlicht et al. | May 2012 | A1 |
20120143605 | Thorsen et al. | Jun 2012 | A1 |
20120169838 | Sekine | Jul 2012 | A1 |
20120226997 | Pang | Sep 2012 | A1 |
20120266082 | Webber | Oct 2012 | A1 |
20120297342 | Jang et al. | Nov 2012 | A1 |
20120327173 | Couse et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
101953158 | Jan 2011 | CN |
102067593 | May 2011 | CN |
502600 | Sep 1992 | EP |
0 650 299 | Oct 1994 | EP |
0 714 081 | Nov 1995 | EP |
0 740 177 | Apr 1996 | EP |
1143745 | Oct 2001 | EP |
1 178 352 | Jun 2002 | EP |
1 589 758 | Oct 2005 | EP |
1701308 | Sep 2006 | EP |
1768058 | Mar 2007 | EP |
2073543 | Jun 2009 | EP |
2255531 | Dec 2010 | EP |
22777308 | Jan 2011 | EP |
2 294 605 | May 1996 | GB |
2336266 | Oct 1999 | GB |
2 355 876 | May 2001 | GB |
WO 9416517 | Jul 1994 | WO |
WO 9621321 | Jul 1996 | WO |
WO 9708896 | Mar 1997 | WO |
WO 9847291 | Oct 1998 | WO |
WO 9959026 | Nov 1999 | WO |
WO 0133840 | May 2001 | WO |
WO 2005013001 | Feb 2005 | WO |
WO 2005031001 | Feb 2005 | WO |
WO2006072755 | Jul 2006 | WO |
WO2007106157 | Sep 2007 | WO |
WO2007123946 | Nov 2007 | WO |
WO 2007123960 | Nov 2007 | WO |
WO 2007123960 | Nov 2007 | WO |
WO2008039371 | Apr 2008 | WO |
WO 2008040258 | Apr 2008 | WO |
WO 2008101117 | Aug 2008 | WO |
WO 2008118887 | Oct 2008 | WO |
WO 2008118887 | Oct 2008 | WO |
WO 2009102503 | Aug 2009 | WO |
WO 2009102503 | Aug 2009 | WO |
WO 2009120814 | Oct 2009 | WO |
WO 2009120814 | Oct 2009 | WO |
WO 2010059481 | May 2010 | WO |
WO2010096342 | Aug 2010 | WO |
WO 2010104765 | Sep 2010 | WO |
WO 2010132271 | Nov 2010 | WO |
WO2012033716 | Mar 2012 | WO |
WO2012068008 | May 2012 | WO |
WO2012068010 | May 2012 | WO |
WO2012068485 | May 2012 | WO |
Entry |
---|
Miller, Gregor, et al., “Interactive Free-Viewpoint Video,” Centre for Vision, Speech and Signal Processing, [retrieved and printed on Feb. 26, 2009], http://www.ee.surrey.ac.uk/CVSSP/VMRG/ Publications/miller05cvmp.pdf, 10 pages. |
Minoru from Novo is the worlds first consumer 3D Webcam, Dec. 11, 2008; http://www.minoru3d.com; 4 pages. |
Mitsubishi Electric Research Laboratories, copyright 2009 [retrieved and printed on Feb. 26, 2009], http://www.merl.com/projects/3dtv, 2 pages. |
National Training Systems Association Home—Main, Interservice/Industry Training, Simulation & Education Conference, Dec. 1-4, 2008; http://ntsa.metapress.com/app/home/main.asp?referrer=default; 1 page. |
Oh, Hwang-Seok, et al., “Block-Matching Algorithm Based on Dynamic Search Window Adjustment,” Dept. of CS, KAIST, 1997, 6 pages; http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.29.8621&type=ab. |
Opera Over Cisco TelePresence at Cisco Expo 2009, in Hannover Germany—Apr. 28, 29, posted on YouTube on May 5, 2009; http://www.youtube.com/watch?v=xN5jNH5E-38; 1 page. |
OptoIQ, “Vision + Automation Products—VideometerLab 2,” [retrieved and printed on Mar. 18, 2010], http://www.optoiq.com/optoiq-2/en-us/index/machine-vision-imaging-processing/display/vsd-articles-tools-template.articles.vision-systems-design.volume-11.issue-10.departments.new-products.vision-automation-products.htmlhtml; 11 pages. |
OptoIQ, “Anti-Speckle Techniques Uses Dynamic Optics,” Jun. 1, 2009; http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display/363444/articles/optoiq2/photonics-technologies/technology-products/optical-components/optical-mems/2009/12/anti-speckle-technique-uses-dynamic-optics/QP129867/cmpid=EnIOptoLFWJanuary132010.html; 2 pages. |
OptoIQ, “Smart Camera Supports Multiple Interfaces,” Jan. 22, 2009; http://www.optoiq.com/index/machine-vision-imaging-processing/display/vsd-article-display/350639/articles/vision-systems-design/daily-product-2/2009/01/smart-camera-supports-multiple-interfaces.html; 2 pages. |
OptoIQ, “Vision Systems Design—Machine Vision and Image Processing Technology,” [retrieved and printed on Mar. 18, 2010], http://www.optoiq.com/index/machine-vision-imaging-processing.html; 2 pages. |
Payatagool, Chris, “Orchestral Manoeuvres in the Light of Telepresence,” Telepresence Options, Nov. 12, 2008; http://www.telepresenceoptions.com/2008/11/orchestral—manoeuvres; 2 pages. |
PCT International Preliminary Report on Patentability mailed Aug. 26, 2010 for PCT/US2009/001070; 10 pages. |
PCT International Preliminary Report on Patentability mailed Oct. 7, 2010 for PCT/US2009/038310; 10 pages. |
PCT International Report of Patentability mailed May 15, 2006, for PCT International Application PCT/US2004/021585, 6 pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT Application No. PCT/US2009/064061 mailed Feb. 23, 2010; 14 pages. |
Pixel Tools “Rate Control and H.264: H.264 rate control algorithm dynamically adjusts encoder parameters,” [retrieved and printed on Jun. 10, 2010] ; 7 pages. http://www.pixeltools.om/rate—control—paper.html. |
Radhika, N., et al., “Mobile Dynamic reconfigurable Context aware middleware for Adhoc smart spaces,” vol. 22, 2008, 3 pages http://www.acadjournal.com/2008/V22/part6/p7. |
Rayvel Business-to-Business Products, copyright 2004 [retrieved and printed on Feb. 24, 2009], http://www.rayvel.com/b2b.html; 2 pages. |
Richardson, I.E.G., et al., “Fast H.264 Skip Mode Selection Using and Estimation Framework,” Picture Coding Symposium, (Beijing, China), Apr. 2006; www.rgu.ac.uk/files/richardson—fast—skip—estmation—pcs06.pdf; 6 pages. |
Richardson, Iain, et al., “Video Encoder Complexity Reduction by Estimating Skip Mode Distortion,” Image Communication Technology Group; [Retrieved and printed Oct. 21, 2010] 4 pages; http://www4.rgu.ac.uk/files/ICIP04—richardson—zhao—final.pdf. |
Robust Face Localisation Using Motion., Colour & Fusion; Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C. et al (Eds.), Sydney; XP007905630; pp. 899-908; Dec. 10, 2003; http://www.cmis.csiro.au/Hugues.Talbot/dicta2003/cdrom/pdf/0899.pdf. |
Satoh, Kiyohide et al., “Passive Depth Acquisition for 3D Image Displays”, IEICE Transactions on Information and Systems, Information Systems Society, Tokyo, JP, Sep. 1, 1994, vol. E77-D, No. 9, pp. 949-957. |
School of Computing, “Bluetooth over IP for Mobile Phones,” 2005; http://www.computing.dcu.ie/wwwadmin/fyp-abstract/list/fyp—details05.jsp?year=2005&number=51470574; 1 page. |
Schroeder, Erica, “The Next Top Model—Collaboration,” Collaboration, The Workspace: A New World of Communications and Collaboration, Mar. 9, 2009; http//blogs.cisco.com/collaboration/comments/the—next—top—model; 3 pages. |
SENA, “Industrial Bluetooth,” [retrieved and printed on Apr. 22, 2009] http://www.sena.com/products/industrial—bluetooth; 1 page. |
Shaffer, Shmuel, “Translation—State of the Art” presentation; Jan. 15, 2009; 22 pages. |
Shi, C. et al., “Automatic Image Quality Improvement for Videoconferencing,” IEEE ICASSP May 2004; http://research.microsoft.com/pubs/69079/0300701.pdf; 4 pages. |
Shum, H.-Y, et al., “A Review of Image-Based Rendering Techniques,” in SPIE Proceedings vol. 4067(3); Proceedings of the Conference on Visual Communications and Image Processing 2000, Jun. 20-23, 2000, Perth, Australia; pp. 2-13; https://research.microsoft.com/pubs/68826/review—image—rendering.pdf. |
Smarthome, “IR Extender Expands Your IR Capabilities,” [retrieved and printed on Apr. 22, 2009], http://www.smarthome.com/8121.html; 3 pages. |
Sonoma Wireworks Forums, “Jammin on Rifflink,” [retrieved and printed on May 27, 2010] http://www.sonomawireworks.com/forums/viewtopic.php?id=2659; 5 pages. |
Sonoma Wireworks Rifflink, [retrieved and printed on Jun. 2, 2010] http://www.sonomawireworks.com/rifflink.php; 3 pages. |
Soohuan, Kim, et al., “Block-based face detection scheme using face color and motion estimation,” Real-Time Imaging VIII; Jan. 20-22, 2004, San Jose, CA; vol. 5297, No. 1; Proceedings of the SPIE—The International Society for Optical Engineering SPIE—Int. Soc. Opt. Eng USA ISSN: 0277-786X; XP007905596; pp. 78-88. |
Sullivan, Gary J., et al., “Video Compression—From Concepts to the H.264/AVC Standard,” Proceedings IEEE, vol. 93, No. 1, Jan. 2005; http://ip.hhi.de/imagecom—G1/assets/pdfs/pieee—sullivan—wiegand—2005.pdf; 14 pages. |
Sun, X., et al., “Region of Interest Extraction and Virtual Camera Control Based on Panoramic Video Capturing,” IEEE Trans. Multimedia, Oct. 27, 2003; http://vision.ece.ucsb.edu/publications/04mmXdsun.pdf; 14 pages. |
Super Home Inspectors or Super Inspectors, [retrieved and printed on Mar. 18, 2010] http://www.umrt.com/PageManager/Default.aspx/PageID=2120325; 3 pages. |
Total immersion, Video Gallery, copyright 2008-2009 [retrieved and printed on Feb. 26, 2009], http://www.t-immersion.com/en,video-gallery,36.html, 1 page. |
Trucco, E., et al., “Real-Time Disparity Maps for Immersive 3-D Teleconferencing by Hybrid Recursive Matching and Census Transform,” [retrieved and printed on May 4, 2010] http://server.cs.ucf.edu/˜vision/papers/VidReg-final.pdf; 9 pages. |
Tsapatsoulis, N., et al., “Face Detection for Multimedia Applications,” Proceedings of the ICIP Sep. 10-13, 2000, Vancouver, BC, Canada; vol. 2, pp. 247-250. |
Tsapatsoulis, N., et al., “Face Detection in Color Images and Video Sequences,” 10th Mediterranean Electrotechnical Conference (MELECON), May 29-31, 2000; vol. 2; pp. 498-502. |
Wang, Hualu, et al., “A Highly Efficient System for Automatic Face Region Detection inMPEG Video,” IEEE Transactions on Circuits and Systems for Video Technology; vol. 7, Issue 4; 1977 pp. 615-628. |
Westerink, P.H., et al., “Two-pass MPEG-2 variable-bitrate encoding,” IBM Journal of Research and Development, Jul. 1991, vol. 43, No. 4; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.421; 18 pages. |
Wiegand, T., et al., “Efficient mode selection for block-based motion compensated video coding,” Proceedings, 2005 International Conference on Image Processing IIP 2005, pp. 2559-2562; citeseer.ist.psu.edu/wiegand95efficient.html. |
Wiegand, T., et al., “Rate-distortion optimized mode selection for very low bit rate video coding and the emerging H.263 standard,” IEEE Trans. Circuits Syst. Video Technol., Apr. 1996, vol. 6, No. 2, pp. 182-190. |
“Wi-Fi Protected Setup,” from Wikipedia, Sep. 2, 2010, 3 pages http://en.wikipedia.org/wiki/Wi-Fi—Protected—Setup. |
U.S. Appl. No. 12/877,833, filed Sep. 8, 2010, entitled “System and Method for Skip Coding During Video Conferencing in a Network Environment Environment,” Inventor[s]: Dihong Tian et al. |
U.S. Appl. No. 12/907,914, filed Oct. 19, 2010, entitled “System and Method for Providing Videomail in a Network Environment,” Inventor[s]: David J. Mackie et al. |
U.S. Appl. No. 12/907,919, filed Oct. 19, 2010, entitled “System and Method for Providing Connectivity in a Network Environment,” Inventor[s]: David J. Mackie et al. |
U.S. Appl. No. 12/907,927, filed Oct. 19, 2010, entitled “System and Method for Providing a Paring Mechanism in a Video Environment,” Inventor[s]: Gangfeng Kong et al. |
Andersson, L., et al, “LDP Specification,” Network Working Group, RFC 3036, Jan. 2001, 133 pages; http://tools.ietf.org/html/rfc3036. |
Arrington, Michael, “eJamming—Distributed Jamming,” TechCrunch; Mar. 16, 2006; http://www.techcrunch.com/2006/03/16/ejamming-distributed-jamming/; 1 page. |
Avrithis, Y., et al., “Color-Based Retrieval of Facial Images,” European Signal Processing Conference (EUSIPCO '00), Tampere, Finland; Sep. 2000; http://www.image.ece.ntua.gr/˜ntsap/presentations/eusipco00.ppt#256; 18 pages. |
Bakstein, Hynek, et al., “Visual Fidelity of Image Based Rendering,” Center for Machine Perception, Czech Technical University, Proceedings of the Computer Vision, Winter 2004, http://www.benogo.dk/publications/Bakstein-Pajdla-CVWW04.pdf; 10 pages. |
Beesley, S.T.C., et al., “Active Macroblock Skipping in the H.264 Video Coding Standard,” in Proceedings of 2005 Conference on Visualization, Imaging, and Image Processing—VIIP 2005, Sep. 7-9, 2005, Benidorm, Spain, Paper 480-261. ACTA Press, ISBN: 0-88986-528-0; 5 pages. |
Boccaccio, Jeff; CEPro, “Inside HDMI CEC: The Little-Known Control Feature,” Dec. 28, 2007; http://www.cepro.com/ article/print/inside—hdmi—cec—the—little—known—control—feature; 2 pages. |
Bücken R: “Bildfernsprechen: Videokonferenz vom Arbeitsplatz aus” Funkschau, Weka Fachzeitschriften Verlag, Poing, DE, No. 17, Aug. 14, 1986, pp. 41-43, XP002537729; ISSN: 0016-2841, p. 43, left-hand column, line 34-middle column, line 24. |
Chan, Eric, et al., “Experiments on block-matching techniques for video coding,” Multimedia Systems; 9 Springer-Verlag 1994, Multimedia Systems (1994) 2 pp. 228-241. |
Chen et al., “Toward a Compelling Sensation of Telepresence: Demonstrating a Portal to a Distant (Static) Office,” Proceedings Visualization 2000; VIS 2000; Salt Lake City, UT, Oct. 8-13, 2000; Annual IEEE Conference on Visualization, Los Alamitos, CA; IEEE Comp. Soc. US, Jan. 1, 2000, pp. 327-333; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.1287. |
Chen, Jason, “iBluetooth Lets iPhone Users Send and Receive Files Over Bluetooth,” Mar. 13, 2009; http://i.gizmodo.com/5169545/ibluetooth-lets-iphone-users-send-and-receive-files-over-bluetooth; 1 page. |
“Cisco Expo Germany 2009 Opening,” Posted on YouTube on May 4, 2009; http://www.youtube.com/watch?v=SDKsaSlz4MK; 2 pages. |
Cisco: Bill Mauchly and Mod Marathe; UNC: Henry Fuchs, et al., “Depth-Dependent Perspective Rendering,” Apr. 15, 2008; 6 pages. |
Costa, Cristina, et al., “Quality Evaluation and Nonuniform Compression of Geometrically Distorted Images Using the Quadtree Distorion Map,” EURASIP Journal on Applied Signal Processing, Jan. 7, 2004, vol. 2004, No. 12; © 2004 Hindawi Publishing Corp.; XP002536356; ISSN: 1110-8657; pp. 1899-1911; http://downloads.hindawi.com/journals/asp/2004/470826.pdf. |
Criminisi, A., et al., “Efficient Dense-Stereo and Novel-view Synthesis for Gaze Manipulation in One-to-one Teleconferencing,” Technical Rpt MSR-TR-2003-59, Sep. 2003 [retrieved and printed on Feb. 26, 2009], http://research.microsoft.com/pubs/67266/ criminis—techrep2003-59.pdf, 41 pages. |
Daly, S., et al., “Face-based visually-optimized image sequence coding,” Image Processing, 1998. ICIP 98. Proceedings; 1998 International Conference on Chicago, IL; Oct. 4-7, 1998, Los Alamitos; IEEE Computing; vol. 3, Oct. 4, 1998; ISBN: 978-0-8186-8821-8; XP010586786; pp. 443-447. |
Diaz, Jesus, “Zcam 3D Camera is Like Wii Without Wiimote and Minority Report Without Gloves,” Dec. 15, 2007; http://gizmodo.com/gadgets/zcam-depth-camera-could-be-wii-challenger/zcam-3d-camera-is-like-wii-without-wiimote-and-minority-report-without-gloves-334426.php; 3pages. |
Diaz, Jesus, iPhone Biuetooth File Transfer Coming Soon (YES!); Jan. 26, 2009; http://i.gizmodo.com/5138797/iphone-bluetooth-file-transfer-coming-soon-yes; 1page. |
DVE Digital Video Enterprises, “DVE Tele-Immersion Room,” [retrieved and printed on Feb. 5, 2009] http://www.dvetelepresence.com/products/immersion—room.asp; 2 pages. |
“Dynamic Displays,” copyright 2005-2008 [retrieved and printed on Feb. 24, 2009] http://www.zebraimaging.com/html/lighting—display.html, 2 pages. |
ECmag.com, “IBS Products,” Published Apr. 2009; http://www.ecmag.com/index.cfm?fa=article&articleID=10065; 2 pages. |
eJamming Audio, Learn More; [retrieved and printed on May 27, 2010] http://www.ejamming.com/learnmore/; 4 pages. |
Electrophysics Glossary, “Infrared Cameras, Thermal Imaging, Night Vision, Roof Moisture Detection,” [retrieved and printed on Mar. 18, 2010] http://www.electrophysics.com/Browse/Brw—Glossary.asp; 11 pages. |
Farrukh, A., et al., Automated Segmentation of Skin-Tone Regions in Video Sequences, Proceedings IEEE Students Conference, ISCON—apos—02; Aug. 16-17, 2002; pp. 122-128. |
Fiala, Mark, “Automatic Projector Calibration Using Self-Identifying Patterns,” National Research Council of Canada, Jun. 20-26, 2005; http://www.procams.org/ procams2005/papers/procams05-36.pdf; 6 pages. |
Foote, J. et al., “Flycam: Practical Panoramic Video and Automatic Camera Control,” in Proceedings of IEEE International Conference on Multimedia and Expo, vol. III, Jul. 30, 2000; pp. 1419-1422; http://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.138.8686. |
“France Telecom's Magic Telepresence Wall,” Jul. 11, 2006; http://www.humanproductivitylab.com/archive—blogs/2006/07/11/france—telecoms—magic—telepres—1.php; 4 pages. |
Freeman, Professor Wilson T., Computer Vision Lecture Slides, “6.869 Advances in Computer Vision: Learning and Interfaces,” Spring 2005; 21 pages. |
Gemmell, Jim, et al., “Gaze Awareness for Video-conferencing: A Software Approach,” IEEE MultiMedia, Oct.-Dec. 2000; vol. 7, No. 4, pp. 25-35. |
Gotchev, Atanas, “Computer Technologies for 3D Video Delivery for Home Entertainment,” Internationai Conference on Computer Systems and Technologies; CompSysTech, Jun. 12-13, 2008; http://ecet.ecs.ru.acad.bg/cst08/docs/cp/Plenary/P.1.pdf; 6 pages. |
Gries, Dan, “3D Particles Experiments in AS3 and Flash CS3, Dan's Comments,” [retrieved and printed on May 24, 2010] http://www.flashandmath.com/advanced/fourparticles/notes.html; 3 pages. |
Guernsey, Lisa, “Toward Better Communication Across the Language Barrier,” Jul. 29, 1999; http://www.nytimes.com/1999/07/29/technology/toward-better-communication-across-the-language-barrier.html; 2 pages. |
Guili, D., et al., “Orchestral: A Distributed Platform for Virtual Musical Groups and Music Distance Learning over the Internet in JavaTM Technology”; [retrieved and printed on Jun. 6, 2010] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=778626; 2 pages. |
Habill, Nariman, et al., “Segmentation of the Face and Hands in Sign Language Video Sequences Using Color and Motion Cues” IEEE Transaction on Circuits and Systems for Video Technology, IEEE Service Center, vol. 14, No. 8, Aug. 1, 2004; ISSN: 1051-8215; XP011115755; pp. 1086-1097. |
He, L., et al., “The Virtual Cinematographer: A Paradigm for Automatic Real-Time Camera Control and Directing,” Proc. SIGGRAPH, © 1996; http://research.microsoft.com/en-us/um/people/lhe/papers/siggraph96.vc.pdf; 8 pages. |
Holographic imaging, “Dynamic Holography for scientific uses, military heads up display and even someday HoloTV Using TI's DMD,” [retrieved and printed on Feb. 26, 2009] http://innovation.swmed.edu/ research/instrumentation/res—inst—dev3d.html; 5 pages. |
Hornbeck, Larry J., “Digital Light ProcessingTM: A New MEMS-Based Display Technology,” [retrieved and printed on Feb. 26, 2009] http://focus.ti.com/pdfs/dlpdmd/17—Digital—Light—Processing—MEMS—display—technology.pdf; 22 pages. |
Infrared Cameras TVS-200-EX, [retrieved and printed on May 24, 2010] http://www.electrophysics.com/Browse/Brw—ProductLineCategory.asp?CategoryID=184&Area=IS; 2 pages. |
IR Distribution Category @ Envious Technology, “IR Distribution Category,” [retrieved and printed on Apr. 22, 2009] http://www.envioustechnology.com.au/ products/product-list.php?CID=305; 2 pages. |
IR Trans—Products and Orders—Ethernet Devices, [retrieved and printed on Apr. 22, 2009] http://www.irtrans.de/en/shop/Ian.php; 2 pages. |
Isgro, Francesco et al., “Three-Dimensional Image Processing in the Future of Immersive Media,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 3; XP011108796; ISSN: 1051-8215; Mar. 1, 2004; pp. 288-303. |
Itoh, Hiroyasu, et al., “Use of a gain modulating framing camera for time-resolved imaging of ceiluiar phenomena,” SPIE vol. 2979, 1997, pp. 733-740. |
Jiang, Minqiang, et al., “On Lagrange Multiplier and Quantizer Adjustment for H.264 Frame-layer Video Rate Control,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, Issue 5, May 2006, pp. 663-669. |
Kannangara, C.S., et al., “Complexity Reduction of H.264 Using Lagrange Multiplier Methods,” IEEE Int. Conf. on Visual Information Engineering, Apr. 2005; www.rgu.ac.uk/files/h264—complexity—kannangara.pdf; 6 pages. |
Kannangara, C.S., et al., “Low Complexity Skip Prediction for H.264 through Langrangian Cost Estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, No. 2, Feb. 2006; www.rgu.ac.uk/files/h264—skippredict—richardson—final.pdf; 20 pages. |
U.S. Appl. No. 12/781,722, filed May 17, 2010, entitled “System and Method for Providing Retracting Optics in a Video Conferencing Environment,” Inventor(s): Joseph T. Friel, et al. |
U.S. Appl. No. 12/912,556, filed Oct. 26, 2010, entitled “System and Method for Provisioning Flows in a Mobile Network Environment,” Inventors: Balaji Vankat Vankataswami, et al. |
U.S. Appl. No. 12/949,614, filed Nov. 18, 2010, entitled “System and Method for Managing Optics in a Video Environment,” Inventors: Torence Lu, et al. |
U.S. Appl. No. 12/946,679, filed Nov. 15, 2010, entitled “System and Method for Providing Camera Functions in a Video Environment,” Inventors: Peter A.J. Fornell, et al. |
U.S. Appl. No. 12/946,695, filed Nov. 15, 2010, entitled “System and Method for Providing Enhanced Audio in a Video Environment,” Inventors: Wei Li, et al. |
U.S. Appl. No. 12/950,786, filed Nov. 19, 2010, entitled “System and Method for Providing Enhanced Video Processing in a Network Environment,” Inventor[s]: David J. Mackie. |
U.S. Appl. No. 12/946,704, filed Nov. 15, 2010, entitled “System and Method for Providing Enhanced Graphics in a Video Environment.” Inventors: John M. Kanalakis, Jr., et al. |
U.S. Appl. No. 12/957,116, filed Nov. 30, 2010, entitled “System and Method for Gesture Interface Control,” Inventors: Shuan K. Kirby, et al. |
U.S. Appl. No. 13/036,925, filed Feb. 28, 2011 ,entitled “System and Method for Selection of Video Data in a Video Conference Environment,” Inventor(s) Sylvia Olayinka Aya Manfa N'guessan. |
U.S. Appl. No. 12/939,037, filed Nov. 3, 2010, entitled “System and Method for Managing Flows in a Mobile Network Environment,” Inventors; Balaji Venkat Venkataswami et al. |
U.S. Appl. No. 12/946,709, filed Nov. 15, 2010, entitled “System and Method for Providing Enhanced Graphics in a Video Environment,” Inventors: John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/375,624, filed Sep. 24, 2010, entitled “Mounted Video Unit,” Inventor(s): Ashok T. Desai et al. |
Design U.S. Appl. No. 29/375,627, filed Sep. 24, 2010, entitled “Mounted Video Unit,” Inventor(s): Ashok T. Desai et al. |
Design U.S. Appl. No. 29/369,951, filed Sep. 15, 2010, entitled “Video Unit With Integrated Features,” Inventor(s): Kyle A. Buzzard et al. |
Design U.S. Appl. No. 29/375,458, filed Sep. 22, 2010, entitled “Video Unit With Integrated Features,” Inventor(s): Kyle A. Buzzard et al. |
Design U.S. Appl. No. 29/375,619, filed Sep. 24, 2010, entitled “Free-Standing Video Unit,” Inventor(s): Ashok T. Desai et al. |
Design U.S. Appl. No. 29/381,245, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,250, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,254, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,256, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,259, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,260, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,262, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Kanalakis, Jr., et al. |
Design U.S. Appl. No. 29/381,264, filed Dec. 16, 2010, entitled “Interface Element,” Inventor(s): John M. Konalakis, Jr., et al. |
U.S. Appl. No. 13/096,772, filed Apr. 28, 2011, entitled “System and Method for Providing Enhanced Eye Gaze in a Video Conferencing Environment,” Inventor(s): Charles C. Byers. |
U.S. Appl. No. 13/106,002, filed May 12, 2011, entitled “System and Method for Video Coding in a Dynamic Environment,” Inventors: Dihong Tian et al. |
U.S. Appl. No. 13/098,430, filed Apr. 30, 2011, entitled “System and Method for Transferring Transparency Information in a Video Environment,” Inventors: Eddie Collins et al. |
U.S. Appl. No. 13/096,795, filed Apr. 28, 2011, entitled “System and Method for Providing Enhanced Eye Gaze in a Video Conferencing Environment,” Inventors: Charles C. Byers. |
U.S. Appl. No. 13/298,022, filed Nov. 16, 2011, entitled “System and Method for Alerting a Participant in a Video Conference,” Inventor(s): TiongHu Lian, et al. |
Kauff, Peter, et al., “An Immersive 3D Video-Conferencing System Using Shared Virtual Team User Environments,” Proceedings of the 4th International Conference on Collaborative Virtual Environments, XP040139458; Sep. 30, 2002; http://ip.hhi.de/imedia—G3/assets/pdfs/CVE02.pdf; 8 pages. |
Kazutake, Uehira, “Simulation of 3D image depth perception in a 3D display using two stereoscopic displays at different depths,” Jan. 30, 2006; http://adsabs.harvard.edu/abs/2006SPIE.6055.408U; 2 pages. |
Keijser, Jeroen, et al., “Exploring 3D Interaction in Alternate Control-Display Space Mappings,” IEEE Symposium on 3D User Interfaces, Mar. 10-11, 2007, pp. 17-24. |
Kim, Y.H., et al., “Adaptive mode decision for H.264 encoder,” Electronics letters, vol. 40, Issue 19, pp. 1172-1173, Sep. 2004; 2 pages. |
Klint, Josh, “Deferred Rendering in Leadwerks Engine,” Copyright Leadwerks Corporation © 2008; http://www.leadwerks.com/files/Deferred—Rendering—in—Leadwerks—Engine.pdf; 10 pages. |
Koyama, S., et al. “A Day and Night Vision MOS Imager with Robust Photonic-Crystal-Based RGB-and-IR,” Mar. 2008, pp. 754-759; ISSN: 0018-9383; IEE Transactions on Electron Devices, vol. 55, No. 3; http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4455782&isnumber=4455723. |
Lawson, S., “Cisco Plans TelePresence Translation Next Year,” Dec. 9, 2008; http://www.pcworld.com/ article/155237/.html?tk=rss—news; 2 pages. |
Lee, J. and Jeon, B., “Fast Mode Decision for H.264,” ISO/IEC MPEG and ITU-T VCEG Joint Video Team, Doc. JVT-J033, Dec. 2003; http://media.skku.ac.kr/publications/paper/IntC/ljy—ICME2004.pdf; 4 pages. |
Liu, Z., “Head-Size Equalization for Better Visual Perception of Video Conferencing,” Proceedings, IEEEInternational Conference on Multimedia & Expo (ICME2005), Jul. 6-8, 2005, Amsterdam, The Netherlands; http://research.microsoft.com/users/cohen/HeadSizeEqualizationICME2005.pdf; 4 pages. |
Mann, S., et al., “Virtual Bellows: Constructing High Quality Still from Video,” Proceedings, First IEEE International Conference on Image Processing ICIP-94, Nov. 13-16, 1994, Austin, TX; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.8405; 5 pages. |
Chen, Qing, et al., “Real-time Vision-based Hand Gesture Recognition Using Haar-like Features,” Instrumentation and Measurement Technology Conference, Warsaw, Poland, May 1-3, 2007, 6 pages; http://www.google.com/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.93.103%26rep%3Drep1%26type%3Dpdf&ei=A28RTLKRDeftnQeXzZGRAw&usg=AFQjCNHpwj5MwjgGp-3goVzSWad6CO-Jzw. |
Chien et al., “Efficient moving Object Segmentation Algorithm Using Background Registration Technique,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, No. 7, Jul. 2002, 10 pages. |
Cumming, Jonathan, “Session Border Control in IMS, An Analysis of the Requirements for Session Border Control in IMS Networks,” Sections 1.1, 1.1.1, 1.1.3, 1.1.4, 2.1.1, 3.2, 3.3.1, 5.2.3 and pp. 7-8, Data Connection, 2005. |
Digital Video Enterprises, “DVE Eye Contact Silhouette,” 1 page, © DVE 2008; http://www.dvetelepresence.com/products/eyeContactSilhouette.asp. |
Dornaika F., et al., “Head and Facial Animation Tracking Using Appearance-Adaptive Models and Particle Filters,” 20040627; 20040627-20040602, Jun. 27, 2004, 22 pages; HEUDIASY Research Lab, http://eprints.pascal-network.org/archive/00001231/01/rtvhci—chapter8.pdf. |
Eisert, Peter, ““Immersive 3-D Video Conferencing: Challenges, Concepts and Implementations,”” Proceedings of SPIE Visual Communications and Image Processing (VCIP), Lugano, Switzerland, Jul. 2003; 11 pages; http://iphome.hhi.de/eisert/papers/vcip03.pdf. |
Garg, Ashutosh, et al., ““Audio-Visual ISpeaker Detection Using Dynamic Bayesian Networks,”” IEEE International Conference on Automatic Face and Gesture Recognition, 2000 Proceedings, 7 pages; http://www.ifp.illinois.edu/˜ashutosh/papers/FG00.pdf. |
Geys et al., “Fast Interpolated Cameras by Combining a GPU Based Plane Sweep With a Max-Flow Regularisation Algorithm,” Sep. 9, 2004; 3D Data Processing, Visualization and Transmission 2004, pp. 534-541. |
Gluckman, Joshua, et al., “Rectified Catadioptric Stereo Sensors,” 8 pages, retrieved and printed on May 17, 2010; http://cis.poly.edu/˜gluckman/papers/cvpr00.pdf. |
Gundavelli, S., et al., “Proxy Mobile IPv6,” Network Working Group, RFC 5213, Aug. 2008, 93 pages; http://tools.ietf.org/pdf/rfc5213.pdf. |
Gussenhoven, Carlos, “Chapter 5 Transcription of Dutch Intonation,” Nov. 9, 2003, 33 pages; http://www.ru.nl/publish/pages/516003/todisun-ah.pdf. |
Gvili, Ronen et al., “Depth Keying,” 3DV System Ltd., [Retrieved and printed on Dec. 5, 2011] 11 pages; http://research.microsoft.com/en-us/um/people/eyalofek/Depth%20Key/DepthKey.pdf. |
Hammadi, Nait Charif et al., ““Tracking the Activity of Participants in a Meeting,”” Machine Vision and Applications, Springer, Berlin, De Lnkd—DOI:10.1007/S00138-006-0015-5, vol. 17, No. 2, May 1, 2006, pp. 83-93, XP019323925; http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.9832. |
Hepper, D., “Efficiency Analysis and Application of Uncovered Background Prediction in a Low BitRate Image Coder,” IEEE Transactions on Communications, vol. 38, No. 9, pp. 1578-1584, Sep. 1990. |
Hock, Hans Henrich, “Prosody vs. Syntax: Prosodic rebracketing of final vocatives in English,” 4 pages; [retrieved and printed on Mar. 3, 2011] http://speechprosody2010.illinois.edu/papers/100931.pdf. |
Jamoussi, Bamil, “Constraint-Based LSP Setup Using LDP,” MPLS Working Group, Sep. 1999, 34 pages; http://tools.ietf.org/html/draft-ietf-mpls-cr-Idp-03. |
Jeyatharan, M., et al., “3GPP TFT Reference for Flow Binding,” MEXT Working Group, Mar. 2, 2010, 11 pages; http:/www.ietf.org/id/draft-jeyatharan-mext-flow-tftemp-reference-00.txt. |
“Jong-Gook Ko et al., ““Facial Feature Tracking and Head Orientation-Based Gaze Tracking,”” ITC-CSCC 2000, International Technical Conference on Circuits/Systems, Jul. 11-13, 2000, 4 pages; http://www.umiacs.umd.edu/˜knkim/paper/itc-cscc-2000-jgko.pdf”. |
Kollarits, R.V., et al., “34.3: An Eye Contact Camera/Display System for Videophone Applications Using a Conventional Direct-View LCD,” © 1995 SID, ISSN0097-0966X/95/2601, pp. 765-768; http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=47A1E7E028C26503975E633895D114EC?doi=10.1.1.42.1772&rep=rep1&type=pdf. |
Kolsch, Mathias, “Vision Based Hand Gesture Interfaces for Wearable Computing and Virtual Environments,” A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science, University of California, Santa Barbara, Nov. 2004, 288 pages; http://fulfillment.umi.com/dissertations/b7afbcb56ba72fdb14d26dfccc6b470f/1291487062/3143800.pdf. |
Kwolek, B., “Model Based Facial Pose Tracking Using a Particle Filter,” Geometric Modeling and Imaging—New Trends, 2006 London, England Jul. 5-6, 2005, Piscataway, NJ, USA, IEEE LNKD-DOI: 10.1109/GMAI.2006.34 Jul. 5, 2006, pp. 203-208; XP010927285 [Abstract Only]. |
Lambert, “Polycom Video Communications,” © 2004 Polycom, Inc., Jun. 20, 2004 http://www.polycom.com/global/documents/whitepapers/video—communications—h.239—people—content—polycom—patented—technology.pdf. |
Liu, Shan, et al., ““Bit-Depth Scalable Coding for High Dynamic Range Video,” SPIE Conference on Visual Communications and Image Processing, Jan. 2008; 12 pages http://www.merl.com/papers/docs/TR2007-078.pdf”. |
Marvin Imaging Processing Framework, “Skin-colored pixels detection using Marvin Framework,” video clip, YouTube, posted Feb. 9, 2010 by marvinproject, 1 page; http://www.youtube.com/user/marvinproject#p/a/u/0/3ZuQHYNIcrI. |
Miller, Paul, “Microsoft Research patents controller-free computer input via EMG muscle sensors,” Engadget.com, Jan. 3, 2010, 1 page; http://www.engadget.com/2010/01/03/microsoft-research-patents-controller-free-computer-input-via-em/. |
Nakaya, Y., et al. ““Motion Compensation Based on Spatial Transformations,” IEEE Transactions on Circuits and Systems for Video Technology, Jun. 1994, Abstract Only http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F76%2F7495%2F00305878.pdf%3Farnumber%3D305878&authDecision=-203”. |
Patterson, E.K., et al., ““Moving-Talker, Speaker-Independent Feature Study and Baseline Results Using the CUAVE Multimodal Speech Corpus,” EURASIP Journal on Applied Signal Processing, vol. 11, Oct. 2002, 15 pages http://www.clemson.edu/ces/speech/papers/CUAVE—Eurasip2002.pdf”. |
Perez, Patrick, et al., ““Data Fusion for Visual Tracking with Particles,” Proceedings of the IEEE, vol. XX, No. XX, Feb. 2004, 18 pages http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.2480”. |
Potamianos, G., et a., ““An Image Transform Approach for HMM Based Automatic Lipreading,”” in Proceedings of IEEE ICIP, vol. 3, 1998, 5 pages http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.6802. |
Rikert, T.D., et al., ““Gaze Estimation using Morphable models,” IEEE International Conference on Automatic Face and Gesture Recognition, Apr. 1998; 7 pgs http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9472”. |
Soliman, H., et al., “Flow Bindings in Mobile IPv6 and NEMO Basic Support,” IETF MEXT Working Group, Nov. 9, 2009, 38 pages; http://tools.ietf.org/html/draft-ietf-mext-flow-binding-04. |
Sudan, Ranjeet, “Signaling in MPLS Networks with RSVP-TE-Technology Information,” Telecommunications, Nov. 2000, 3 pages; http://findarticles.com/p/articles/mi—mOTLC/is—11—34/ai—67447072/. |
Tan, Kar-Han, et al., ““Appearance-Based Eye Gaze Estimation,” In Proceedings IEEE WACV'02, 2002, 5 pages http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8921”. |
Trevor Darrell, “A Real-Time Virtual Mirror Display,” 1 page, Sep. 9, 1998; http://people.csail.mit.edu/trevor/papers/1998-021/node6.html. |
Veratech Corp., “Phantom Sentinel,” © VeratechAero 2006, 1 page; http://www.veratechcorp.com/phantom.html. |
Vertegaal, Roel, et al., “GAZE-2: Conveying Eye Contact in Group Video Conferencing Using Eye-Controlled Camera Direction,” CHI 2003, Apr. 5-10, 2003, Fort Lauderdale, FL; Copyright 2003 ACM 1-58113-630-7/03/0004; 8 pages; http://www.hml.queensu.ca/papers/vertegaalchi0403.pdf. |
Wachs, J., et al., “A Real-time Hand Gesture System Based on Evolutionary Search,” Vision, 3rd Quarter 2006, vol. 22, No. 3, 18 pages; http://web.ics.purdue.edu/˜jpwachs/papers/3q06vi.pdf. |
“3D Particles Experiments in AS3 and Flash CS3,” [retrieved and printed on Mar. 18, 2010]; 2 pages; http://www.flashandmath.com/advanced/fourparticles/notes.html. |
3G, “World's First 3G Video Conference Service with New TV Commercial,” Apr. 28, 2005, 4 pages; http://www.3g.co.uk/PR/April2005/1383.htm. |
“Eye Tracking,” from Wikipedia, (printed on Aug. 31, 2011) 12 pages; http://en.wikipedia.org/wiki/Eye—tracker. |
“RoundTable, 360 Degrees Video Conferencing Camera unveiled by Microsoft,” TechShout, Jun. 30, 2006, 1 page; http://www.techshout.com/gadgets/2006/30/roundtable-360-degrees-video-conferencing-camera-unveiled-by-microsoft/#. |
“Vocative Case,” from Wikipedia, [retrieved and printed on Mar. 3, 2011] 11 pages; http://en.wikipedia.org/wiki/Vocative—case. |
“Custom 3D Depth Sensing Prototype System for Gesture Control,” 3D Depth Sensing, GestureTek, 3 pages; [Retrieved and printed on Dec. 1, 2010] http://www.gesturetek.com/3ddepth/introduction.php. |
“Eye Gaze Response Interface Computer Aid (Erica) tracks Eye movement to enable hands-free computer operation,” UMD Communication Sciences and Disorders Tests New Technology, University of Minnesota Duluth, posted Jan. 19, 2005; 4 pages http://www.d.umn.edu/unirel/homepage/05/eyegaze.html. |
“Real-time Hand Motion/Gesture Detection for HCI-Demo 2,” video clip, YouTube, posted Dec. 17, 2008 by smmy0705, 1 page; www.youtube.com/watch?v=mLT4CFLIi8A&feature=related. |
“Simple Hand Gesture Recognition,” video clip, YouTube, posted Aug. 25, 2008 by pooh8210, 1 page; http://www.youtube.com/watch?v=F8GVeV0dYLM&feature=related. |
active8-3D—Holographic Projection—3D Hologram Retail Display & Video Project, [retrieved and printed on Feb. 24, 2009], http://www.activ8-3d.co.uk/3d—holocubes; 1 page. |
“Andreopoulos, Yiannis, et al., ““In-Band Motion Compensated Temporal Filtering,”” Signal Processing: Image Communication 19 (2004) 653-673, 21 pages http://medianetlab.ee.ucla.edu/papers/011.pdf”. |
“Arulampalam, M. Sanjeev, et al., ““A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,”” IEEE Transactions on Signal Processing, vol. 50, No. 2, Feb. 2002, 15 pages http://www.cs.ubc.ca/˜murphyk/Software/Kalman/ParticleFilterTutorial.pdf”. |
Awduche, D., et al., “Requirements for Traffic Engineering over MPLS,” Network Working Group, RFC 2702, Sep. 1999, 30 pages; http://tools.ietf.org/pdf/rfc2702.pdf. |
Berzin, O., et al., “Mobility Support Using MPLS and MP-BGP Signaling,” Network Working Group, Apr. 28, 2008, 60 pages; http://www.potaroo.net/ietf/all-/draft-berzin-malis-mpls-mobility-01.txt. |
Boros, S., “Policy-Based Network Management with SNMP,” Proceedings of the EUNICE 2000 Summer School Sep. 13-15, 2000, p. 3. |
EPO Feb. 25, 2011 Communication for EP09725288.6 (published as EP22777308); 4 pages. |
EPO Aug. 15, 2011 Response to EPO Communication mailed Feb. 25, 2011 from European Patent Application No. 09725288.6; 15 pages. |
EPO Nov. 3, 2011 Communication from European Application EP10710949.8; 2 pages. |
EPO Mar. 12, 2012 Response to EP Communication dated Nov. 3, 2011 from European Application EP10710949.8; 15 pages. |
EPO Mar. 20, 2012 Communication from European Application 09725288.6; 6 pages. |
EPO Jul. 10, 2012 Response to EP Communication from European Application EP10723445.2. |
EPO Sep. 24, 2012 Response to Mar. 20, 2012 EP Communication from European Application EP09725288.6. |
PCT Sep. 25, 2007 Notification of Transmittal of the International Search Report from PCT/US06/45895. |
PCT Sep. 2, 2008 International Preliminary Report on Patentability (1 page) and the Written Opinion of th ISA (4 pages) from PCT/US2006/045895. |
PCT Sep. 11, 2008 Notification of Transmittal of the International Search Report from PCT/US07/09469. |
PCT Nov. 4, 2008 International Preliminary Report on Patentability (1 page) and the Written Opinion of the ISA (8 pages) from PCT/US2007/009469. |
PCT May 11, 2010 International Search Report from PCT/US2010/024059; 4 pages. |
PCT Aug. 24, 2010 PCT International Search Report mailed Aug. 24, 2010 for PCT/US2010033880; 4 pages. |
PCT Oct. 12, 2011 International Search Report and Written Opinion of the ISA from PCT/US2011/050380. |
PCT Nov. 24, 2011 International Preliminary Report on Patentability from International Application Serial No. PCT/US2010/033880; 6 pages. |
PCT Aug. 23, 2011 International Preliminary Report on Patentability and Written Opinion of the ISA from PCT/US2010/024059; 6 pages. |
PCT Sep. 13, 2011 International Preliminary Report on Patentability and the Written Opinion of the ISA from PCT/US2010/026456; 5 pages. |
PCT Jan. 23, 2012 International Search Report and Written Opinion of the ISA from International Application Serial No. PCT/US2011/060579; 10 pages. |
PCT Jan. 23, 2012 International Search Report and Written Opinion of the ISA from International Application Serial No. PCT/US2011/060584; 11 pages. |
PCT Feb. 20, 2012 International Search Report and Written Opinion of the ISA from International Application Serial No. PCT/US2011/061442; 12 pages. |
Wang, Robert and Jovan Popovic, “Bimanual rotation and scaling,” video clip, YouTube, posted by rkeltset on Apr. 14, 2010, 1 page; http://www.youtube.com/watch?v=7TPFSCX79U. |
Wang, Robert and Jovan Popovic, “Desktop virtual reality,” video clip, YouTube, posted by rkeltset on Apr. 8, 2010, 1 page; http://www.youtube.com/watch?v=9rBtm62Lkfk. |
Wang, Robert and Jovan Popovic, “Gestural user input,” video clip, YouTube, posted by rkeltset on May 19, 2010, 1 page; http://www.youtube.com/watch?v=3JWYTtBjdTE. |
Wang, Robert and Jovan Popovic, “Manipulating a virtual yoke,” video clip, YouTube, posted by rkeltset on Jun. 8, 2010, 1 page; http://www.youtube.com/watch?v=UfgGOO2uM. |
Wang, Robert and Jovan Popovic, “Real-Time Hand-Tracking with a Color Glove, ACM Transaction on Graphics,” 4 pages, [Retrieved and printed on Dec. 1, 2010] http://people.csail.mit.edu/rywang/hand. |
Wang, Robert and Jovan Popovic, “Real-Time Hand-Tracking with a Color Glove, ACM Transaction on Graphics” (SIGGRAPH 2009), 28(3), Aug. 2009; 8 pages http://people.csail.mit.edu/rywang/handtracking/s09-hand-tracking.pdf. |
Wang, Robert and Jovan Popovic, “Tracking the 3D pose and configuration of the hand,” video clip, YouTube, posted by rkeltset on Mar. 31, 2010, 1 page; http://www.youtube.com/watch?v=JOXwJkWP6Sw. |
Weinstein et al., “Emerging Technologies for Teleconferencing and Telepresence,” Wainhouse Research 2005 http://www.ivci.com/pdf/whitepaper-emerging-technologies-for-teleconferencing-and-telepresence.pdf. |
Wilson, Mark, “Dreamoc 3D Display Turns Any Phone Into Hologram Machine,” Oct. 30, 2008; http://gizmodo.com/5070906/ dreamoc-3d-display-turns-any-phone-into-hologram-machine; 2 pages. |
WirelessDevNet, Melody Launches Bluetooth Over IP, [retrieved and printed on Jun. 5, 2010] http://www.wirelessdevnet.com/news/2001/ 155/news5.html; 2 pages. |
Xia, F., et al., “Home Agent Initiated Flow Binding for Mobile IPv6,” Network Working Group, Oct. 19, 2009, 15 pages; http://tools.ietf.orghtml/draft-xia-mext-ha-init-flow-binding-01.txt. |
Xin, Jun, et al., “Efficient macroblock coding-mode decision for H.264/AVC video coding,” Technical Repot MERL 2004-079, Mitsubishi Electric Research Laboratories, Jan. 2004; www.merl.com/publications/TR2004-079/; 12 pages. |
Yang, Jie, et al., “A Real-Time Face Tracker,” Proceedings 3rd IEEE Workshop on Applications of Computer Vision; 1996; Dec. 2-4, 1996; pp. 142-147; http://www.ri.cmu.edu/pub—files/pub1/yang—jie—1996—1/yang—jie—1996—1.pdf. |
Yang, Ming-Hsuan, et al., “Detecting Faces in Images: A Survey,” vol. 24, No. 1; Jan. 2002; pp. 34-58; http://vision.ai.uiuc.edu/mhyang/papers/pami02a.pdf. |
Yang, Ruigang, et al., “Real-Time Consensus-Based Scene Reconstruction using Commodity Graphics Hardware,” Department of Computer Science, University of North Carolina at Chapel Hill; 2002; http://www.cs.unc.edu/Research/stc/publications/yang—pacigra2002.pdf ; 10 pages. |
Yang, Xiaokang, et al., Rate Control for H.264 with Two-Step Quantization Parameter Determination but Single-Pass Encoding, EURASIP Journal on Applied Signal Processing, Jun. 2006; http://downloads.hindawi.com/journals/asp/2006/063409.pdf; 13 pages. |
Yegani, P. et al., “GRE Key Extension for Mobile IPv4,” Network Working Group, Feb. 2006, 11 pages; http://tools.ietf.org/pdf/draft-yegani-gre-key-extension-01.pdf. |
Yoo, Byounghun, et al., “Image-Based Modeling of Urban Buildings Using Aerial Photographs and Digital Maps,” Transactions in GIS, 2006, 10(3): p. 377-394. |
Zhong, Ren, et al., “Integration of Mobile IP and MPLS,” Network Working Group, Jul. 2000, 15 pages; http://tools.ietf.org/html/draft-zhong-mobile-ip-mpls-01. |
PRC Aug. 3, 2012 SIPO First Office Action from Chinese Application No. 200980119121.5; 16 pages. |
PRC Dec. 18, 2012 Response to SIPO First Office Action from Chinese Application No. 200980119121.5; 16 pages. |
“Oblong Industries is the developer of the g-speak spatial operation environment,” Oblong Industries Information Page, 2 pages, [Retrieved and printed on Dec. 1, 2010] http://oblong.com. |
Underkoffler, John, “G-Speak Overview 1828121108,” video clip, Vimeo.com, 1 page, [Retrieved and printed on Dec. 1, 2010] http://vimeo.com/2229299. |
Kramer, Kwindla, “Mary Ann de Lares Norris at Thinking Digital,” Oblong Industries, Inc. Web Log, Aug. 24, 2010; 1 page; http://oblong.com/articles/OBS6hEeJmoHoCwgJ.html. |
“Mary Ann de Lares Norris,” video clip, Thinking Digital 2010 Day Two, Thinking Digital Videos, May 27, 2010, 3 pages; http://videos.thinkingdigital.co.uk/2010/05/mary-ann-de-lares-norris-oblong/. |
Kramer, Kwindla, “Oblong at TED,” Oblong Industries, Inc. Web Log, Jun. 6, 2010, 1 page; http://oblong.com/article/OB22LFIS1NVyrOmR.html. |
Video on TED.com, Pranav Mistry: the Thrilling Potential of SixthSense Technology (5 pages) and Interactive Transcript (5 pages), retrieved and printed on Nov. 30, 2010; http://www.ted.com/talks/pranav—mistry—the—thrilling—potential—of—sixthsense—technology.html. |
“John Underkoffler points to the future of UI,” video clip and interactive transcript, Video on TED.com, Jun. 2010, 6 pages; http://www.ted.com/talks/john—underkoffler—drive—3d—data—with—a—gesture.html. |
Kramer, Kwindla, “Oblong on Bloomberg TV,” Oblong Industries, Inc. Web Log, Jan. 28, 2010, 1 page; http://oblong.com/article/0AN—1KD9q990PEnw.html. |
Kramer, Kwindla, “g-speak at RISD, Fall 2009,” Oblong Industries, Inc. Web Log, Oct. 29, 2009, 1 page; http://oblong.com/article/09uW060q6xRIZYvm.html. |
Kramer, Kwindla, “g-speak+TMG,” Oblong Industries, Inc. Web Log, Mar. 24, 2009, 1 page; http://oblong.com/article/08mM77zpYMm7kFtv.html. |
“g-stalt version 1,” video clip, YouTube.com, posted by zigg1es on Mar. 15, 2009, 1 page; http://youtube.com/watch?v=k8ZAql4mdvk. |
Underkoffler, John, “Carlton Sparrell speaks at MIT,” Oblong Industries, Inc. Web Log, Oct. 30, 2009, 1 page; http://oblong.com/article/09usAB4l1Ukb6CPw.html. |
Underkoffler, John, “Carlton Sparrell at MIT Media Lab,” video clip, Vimeo.com, 1 page, [Retrieved and printed Dec. 1, 2010] http://vimeo.com/7355992. |
Underkoffler, John, “Oblong at Altitude: Sundance 2009,” Oblong Industries, Inc. Web Log, Jan. 20, 2009, 1 page; http://oblong.com/article/08Sr62ron—2akg0D.html. |
Underkoffler, John, “Oblong's tamper system 1801011309,” video clip, Vimeo.com, 1 page, [Retrieved and printed Dec. 1, 2010] http://vimeo.com/2821182. |
Feld, Brad, “Science Fact,” Oblong Industries, Inc. Web Log, Nov. 13, 2008, 2 pages,http://oblong.com/article/084H-PKI5Tb914Ti.html. |
Kwindla Kramer, “g-speak in slices,” Oblong Industries, Inc. Web Log, Nov. 13, 2008, 6 pages; http://oblong.com/article/0866JqfNrFg1NeuK.html. |
Underkoffler, John, “Origins: arriving here,” Oblong Industries, Inc. Web Log, Nov. 13, 2008, 5 pages; http://oblong.com/article/085zBpRSY9JeLv2z.html. |
Rishel, Christian, “Commercial overview: Platform and Products,” Oblong Industries, Inc., Nov. 13, 2008, 3 pages; http://oblong.com/article/086E19gPvDcktAf9.html. |
PCT May 30, 2013 International Preliminary Report on Patentability and Written Opinion from the International Searching Authority for International Application Serial No. PCT/US2011/061442 8 pages. |
PCT May 30, 2013 International Preliminary Report on Patentability and Written Opinion from the International Searching Authority for International Application Serial No. PCT/US2011/060579 6 pages. |
PCT May 30, 2013 International Preliminary Report on Patentability and Written Opinion from the International Searching Authority for International Application Serial No. PCT/US2011/060584 7 pages. |
PRC Jun. 18, 2013 Response to SIPO Second Office Action from Chinese Application No. 200980119121.5; 5 pages. |
PCT Mar. 21, 2013 International Preliminary Report on Patentability from International Application Serial No. PCT/US2011/050380. |
PRC Jan. 7, 2013 SIPO Second Office Action from Chinese Application Serial No. 200980105262.1. |
PRC Apr. 3, 2013 SIPO Second Office Action from Chinese Application No. 200980119121.5; 16 pages. |
PRC Jul. 9, 2013 SIPO Third Office Action from Chinese Application No. 200980119121.5; 15 pages. |
PRC Sep. 24, 2013 Response to SIPO Third Office Action from Chinese Application No. 200980119121.5; 5 pages. |
U.S. Appl. No. 14/055,427, filed Oct. 16, 2013, entitled “System and Method for Provisioning Flows in a Mobile Network Environment,” Inventors: Balaji Vankat Vankataswami, et al. |
U.S. Appl. No. 14/154,608, filed Jan. 14, 2014, entitled “System and Method for Extending Communications Between Participants in a Conferencing Environment,” Inventors: Brian Baldino, et al. |
PRC Aug. 28, 2013 SIPO First Office Action from Chinese Application No. 201080010988.X 7 pages. |
PRC Nov. 26, 2013 SIPO First Office Action from Chinese Application No. 201080020670 5pgs. |
U.S. Appl. No. 12/234,291, filed Sep. 19, 2008, entitled “System and Method for Enabling Communication Sessions in a Network Environment,” Inventors: Yifan Gao et al. |
U.S. Appl. No. 12/366,593, filed Feb. 5, 2009, entitled “System and Method for Depth Perspective Image Rendering,” Inventors: J. William Mauchly et al. |
U.S. Appl. No. 12/475,075, filed May 29, 2009, entitled “System and Method for Extending Communications Between Participants in a Conferencing Environment,” Inventors: Brian J. Baldino et al. |
U.S. Appl. No. 12/400,540, filed Mar. 9, 2009, entitled “System and Method for Providing Three Dimensional Video Conferencing in a Network Environment,” Inventors: Karthik Dakshinamoorthy et al. |
U.S. Appl. No. 12/400,582, filed Mar. 9, 2009, entitled “System and Method for Providing Three Dimensional Imaging in a Network Environment,” Inventors: Shmuel Shaffer et al. |
U.S. Appl. No. 12/539,461, filed Aug. 11, 2009, entitled “System and Method for Verifying Parameters in an Audiovisual Environment,” Inventor: James M. Alexander. |
U.S. Appl. No. 12/463,505, filed May 11, 2009, entitled “System and Method for Translating Communications Between Participants in a Conferencing Environment,” Inventors: Marthinus F. De Beer et al. |
U.S. Appl. No. 12/727,089, filed Mar. 18, 2010, entitled “System and Method for Enhancing Video Images in a Conferencing Environment,” Inventor: Joseph T. Friel. |
U.S. Appl. No. 12/784,257, filed May 20, 2010, entitled “Implementing Selective Image Enhancement,” Inventors: Dihong Tian et al. |
U.S. Patent Application Serial No. 12/7870,687 filed Aug. 27, 2010, entitled “System and Method for Producing a Performance Via Video Conferencing in a Network Environment,” Inventors: Michael A. Arnao et al. |
PCT “International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” PCT/US2010/026456, dated Jun. 29, 2010, 11 pages. |
PCT “Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” PCT/US2009/001070, dated Apr. 4, 2009, 14 pages. |
PCT “Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” PCT/US2009/038310; dated Oct. 10, 2009; 17 pages. |
PCT “International Preliminary Report on Patentability dated Sep. 29, 2009, International Search Report, and Written Opinion,” for PCT International Application PCT/US2008/058079; dated Sep. 18, 2008, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20120050458 A1 | Mar 2012 | US |