The present invention generally relates to energy management of computing, and especially to a system and method for providing energy efficient cloud computing.
In pace with the technology, cloud computing is the trend in the future because it can lower the necessary quality of the hardware at the terminals of users. The technology of cloud computing is described as follows.
A data center is a facility used to house computer systems and associated components, such as telecommunications and storage systems. It generally includes redundant or backup power supplies, redundant data communications connections, environmental controls (e.g., air conditioning, fire suppression), and special security devices. Developing and maintaining these large data centers require both an initial capital expenditure and a regular operating budget. The cost of creating a data center is one of the major expenses involved in starting a new business—especially on online or Internet business.
Many firms have created data centers coupled to the Internet. Depending on the nature of the industry, these firms may also have surplus capacity. Firms have developed ways to sell this surplus capacity so that other enterprises can access this computing power. This Large-scale computing operation is often referred to as cloud computing. Cloud computing generally means Internet based development and use of computer technology. It is a method of computing where information technology (IT) related capabilities are provided as a service allowing users to access technology-enabled services over the Internet without knowledge of, expertise with, or control over the technology infrastructure that supports them.
Conventionally, cloud computing is a general concept that incorporates software as a service where the common theme is reliance on the Internet for satisfying the computing needs of the users. For example, suppliers of cloud computing services provide common business applications online that are accessed from a web browser, while the software and data is stored on the servers. The cloud computing infrastructure generally consists of services delivered through next-generation data centers that are built on computers and storage virtualization technologies. The services are accessible anywhere in the world, using the network as a single point of access for all the computing needs of clients.
Since clients do not own the infrastructure and are merely accessing or renting, they can avoid the initial capital expenditure and instead consume computing resources as a service. This allows them to only pay for the computing time and resources they actually use. Many cloud computing offerings have adopted the utility computing model which is analogous to how traditional utilities (like electricity) are consumed. By sharing computing power between multiple tenants, utilization rates can be improved because computers are not left idle. In turn, costs can be significantly reduced while increasing the speed of application development. An additional benefit of this approach is that computer capacity rises dramatically as customers do not have to engineer for peak loads.
There are two conventional types of energy storage technologies for cloud computing, one is used during power failure, or namely UPS, which is typically used in conjunction with power generators in data centers where continuing power supply may be accomplished; and another is used with power supply, where many users of power supply may get power from a utility/power company.
UPSs are designed to supply power for a short period of time, usually less than 10-15 minutes, so that computing devices may be shut down gracefully (without losing data or adversely interrupting user/processing). Power storage stations are designed for general power use but have not taken considerations for computing.
Furthermore, cloud computing may cause the environmental problem such as global warming which is one of the most important and urgent issue because of the discharge of carbon or carbide. Additionally, cloud computing may consume a great deal of energy because the severs, storages, networking, and cooling systems of cloud computing all have to be provided sufficient energy to process such a huge amount of data effectively.
Therefore, there is a need for a energy management solution, designed in consideration of continuing power supply (hours, days) and efficiency (both in use and supply, e.g., using renewable energy sources).
The present invention generally relates to energy management of computing, and especially to a system and method for providing energy efficient cloud computing so as to provide a energy management solution, thereby decreasing the discharge of carbon or carbide, alleviating the hurt caused by global warning, and reducing the energy consumption.
In a first aspect of the present invention, a cloud cube for providing energy efficient cloud computing is disclosed, which includes: an internal DC bus for transferring energy, clusters of computing servers coupled to the internal DC bus for performing cloud computing, at least one NAS storage coupled to the internal DC bus, at least one energy storage coupled to the internal DC bus, a plurality of energy sources coupled to the internal DC bus, and at least one energy manager coupled to the internal DC bus for performing energy management or energy routing.
In a second aspect of the present invention, a system for providing energy efficient cloud computing is disclosed, which includes: a DC grid having a plurality of interconnected energy sources, and a plurality of cloud cubes connected by the DC grid such that energy can be routed and shared among the cloud cubes.
In a third aspect of the present invention, a method of power management for a cloud cube is disclosed (hereinafter power management method), which includes: using solar PV at first priority; using batteries from a DC grid, if solar PV is not available; using DC sources, if the power level of the DC grid is below a high threshold; using AC sources, if the DC sources are not available; using energy storages of the cloud cube; performing a power saving mode when the power level of the energy storages is below a medium threshold; performing a super saving mode when the power level of the energy storages is below a medium-low threshold; performing a standby mode when the power level of the energy storages is below a low threshold; and increasing computing power, if the power level of the DC grid rises above the high threshold, or the power level of the energy storages rises above the medium threshold, or the power level of the energy storages rises above the medium-low threshold; and transferring energy from one cloud cube to another through the DC grid.
Through the power management method, energy may be recharged and stored in the DC grid or forwarded to the cloud cubes to maximize the efficiency of power distribution and use. Cloud cubes are connected by the DC grid, energy can be routed and shared among the cloud cubes to achieve higher level of reliability and fault tolerance in case of AC power failure.
In a fourth aspect of the present invention, a method for maximizing efficiency of cloud computing is disclosed (hereinafter task energy efficient method), which includes: performing power management means; and performing task scheduler means. And performing power management means includes: performing a power saving mode, if the power level of energy storages of the cloud cube is not greater than 50%; performing a standby mode, if the power level of energy storages of the cloud cube is not greater than 10%; exiting the standby mode and performing an energy saving mode, if the power level of energy storages of the cloud cube is greater than 15%; and exiting the energy saving mode, if the power level of energy storages of the cloud cube is not less than 55% and energy sources are available. Besides, performing task scheduler means includes using a computing server if the task type is “computing” or the memory requirement is not less than 4 GB; using general server with lowest utilization otherwise; scanning the server utilization; bringing the down server to the sleep mode if average utilization is less than 10% for 300 seconds; and bringing up more servers if average utilization is greater than 50% for 60 seconds.
Using the task energy efficient method, tasks can be directed to cloud cubes that the least amount of power is used for the most jobs accomplished. A “Task Energy” factor is assigned to each job, wherein the jobs which require more computation may cause higher energy consumption such that larger numerical “Task Energy” value can be assigned. When power saving is appropriate, such as during sunset or power failure, the task energy efficient method is used to enable energy efficient computing. Computing resources may be shutdown or put to stand-by mode. Computing tasks may be turned to power efficient PCs (low power PCs with less energy consumption) or under-utilized cubes or computing devices.
The present invention can be further understood by the following description of the preferred embodiment accompanying with the claims.
Some sample embodiments of the invention will now be described in greater detail. Nevertheless, it should be recognized that the present invention can be practiced in a wide range of other embodiments besides those explicitly described, and the scope of the present invention is expressly not limited expect as specified in the accompanying claims.
The preferred embodiment of the present invention is disclosed in
In the embodiment, the solar PV interface 105 can transform the solar energy received from external solar energy supply such as solar PV array to DC which can be used in the cloud cube 10, and the A/C inverter 106 can transform AC from external power supply such as a power generator or a power plant to DC either. The DC grid interface 108 is employed to receive the power from the DC grid 20 for the cloud cube 10, and the energy storage 107 is utilized to store the energy which is not used in the cloud cube 10, specifically, the energy storage 107 can be battery. The energy manager 111 may be a processor which can integrate and manage the energy from the solar PV interface 105, the A/C inverter 106, the energy storage 107, and the DC grid interface 108. One of the major tasks of the energy manager 111 is to determine which kind of energy sources mentioned above will be activated in various conditions according to the demand of users, which will be described hereinafter. Any person skilled in the art should understand that there may be more computing servers 101 for performing various functions and processing a great deal of data in the cloud cube 10.
Another aspect of the present invention is disclosed, which relates to a system for providing energy efficient cloud computing including: a DC grid 20 having a plurality of interconnected energy sources; and a plurality of cloud cubes 10 connected by the DC grid such that the energy can be routed and shared among the cloud cubes. An embodiment is disclosed in
Another embodiment is disclosed in
In a further aspect of the current invention, a method of power management for a cloud cube is disclosed in
In a further aspect, a method for maximizing the efficiency of cloud computing (hereinafter task energy efficient method) is disclosed, which includes: performing power management means; and performing task scheduler means. Specifically, the method of performing power management means is described as follows: the cloud cube is instructed to perform the power saving mode if the battery level is less than 50%, the cloud cube is instructed to perform the stand-by mode if the battery level is less than 10%, the cloud cube will be instructed to halt the stand-by mode and to perform the power saving mode if the battery level is greater than 15%, and the cloud cube will be instructed to halt the power saving mode and to resume full function if the battery level is greater than 55% and energy sources are available, wherein aforementioned energy sources includes solar PV, DC, AC, and battery. And performing power saving mode comprises the steps of: turning off idle severs, turning off servers with max power consumption, and keeping storage servers, networking switches, and admin servers alive. And performing stand-by mode comprises the steps of: turning off all servers; and keeping admin servers and networking link alive. Additionally, performing task scheduler means comprises the steps of: using computing servers if the task type is computing, using the computing servers if the task memory requirement is greater than 4 GB, using general servers with lowest cpu utilization otherwise, scanning server utilization, bringing down servers to a sleep mode if average utilization is less than 10% for 300 seconds, awaking the servers if average utilization is greater than 50% for 60 seconds. However, it should be noted that any person skilled in the art can change and choose another battery level according to the necessity of users.
By aforementioned task energy efficient method, tasks can be directed to cloud cubes that the least amount of power is used for the most jobs accomplished. A “Task Energy” factor which is a value depending on required energy of computing may be calculated by the processor in the cloud cube and can be assigned to each job, wherein the jobs which require more computation may cause higher energy consumption such that larger “Task Energy” value will be assigned. Consequently, energy can be managed and distributed appropriately based on the “Task Energy” factor. When power saving is appropriate, such as during sunset or power failure, the task energy efficient method is used to enable energy efficient computing. Computing resources may be shutdown or put to stand-by mode. Computing tasks may be turned to power efficient PCs (low power PCs with less energy consumption) or under-utilized cubes or computing devices.
If it is said that an element “A” is coupled to or with element “B,” element A may be directly coupled to element B or be indirectly coupled through, for example, element C. When the specification or claims state that a component, feature, structure, process, or characteristic A “causes” a component, feature, structure, process, or characteristic B, it means that “A” is at least a partial cause of “B” but that there may also be at least one other component, feature, structure, process, or characteristic that assists in causing “B.” If the specification indicates that a component, feature, structure, process, or characteristic “may”, “might”, or “could” be included, that particular component, feature, structure, process, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, this does not mean there is only one of the described elements.
An embodiment is an implementation or example of the present invention. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. It should be appreciated that in the foregoing description of exemplary embodiments of the present invention, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims are hereby expressly incorporated into this description, with each claim standing on its own as a separate embodiment of this invention.
This application claims the benefit of U.S. Provisional Application No. 61/395,458, filed on May 13, 2010.
Number | Date | Country | |
---|---|---|---|
61395458 | May 2010 | US |