The present invention is related to a method and apparatus for providing heated water, such as providing heated water for oil and gas well related activities.
Various activities are performed on oil and gas wells to improve the performance characteristics of the wells. By way of example, as part of a hydraulic fracturing process, water is heated and is used in the hydraulic fracturing procedure. However, there is a need for additional methods and devices that improve the withdrawal of low temperature water from a pipeline and return of heated water to the pipeline.
It is to be understood that the present invention includes a variety of different versions or embodiments, and this Summary is not meant to be limiting or all-inclusive. This Summary provides some general descriptions of some of the embodiments, but may also include some more specific descriptions of other embodiments.
In at least one embodiment, a pipe configuration is provided that allows relatively low temperature water to be withdrawn from a pipeline, heated and then returned to the pipeline. At least one embodiment includes a device for adjusting the rate of flow through a primary pipe so that desired temperatures are maintained during the heating process.
Accordingly, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system that includes one or more water heaters is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In at least one embodiment, the valve comprises a butterfly valve. In at least one embodiment, the valve is manually actuated. In at least one embodiment, the valve is electronically actuated. In at least one embodiment, the system further comprises a temperature gauge operatively associated with the primary pipe for sensing a temperature within the primary pipe. In at least one embodiment, a computer monitors readings from the temperature gauge and adjusts the valve. In at least one embodiment, the system further comprises at least one secondary valve operatively associated with at least one of the lateral outlet pipe and the lateral inlet pipe. In at least one embodiment, the at least one secondary valve comprises a butterfly valve. In at least one embodiment, the at least one secondary valve is manually actuated. In at least one embodiment, the at least one secondary valve is electronically actuated. In at least one embodiment, a computer monitors readings from a temperature gauge and adjusts the at least one secondary valve. In at least one embodiment, the system further comprises a temperature gauge downstream of the primary pipe and is operatively associated with a liquid storage member. In at least one embodiment, the liquid storage member comprises one or more of a tank, container, pond, and liquid holding apparatus.
In another embodiment, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In yet another embodiment, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In at least one embodiment, the flow restriction apparatus comprises a valve, such as a butterfly valve. In at least one embodiment, a computer wirelessly monitors readings from the temperature gauge and adjusts the butterfly valve.
In addition, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system that includes one or more water heaters is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In another embodiment, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In yet another embodiment, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In addition, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system that includes one or more water heaters is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In another embodiment, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In yet another embodiment, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
In accordance with at least one embodiment, a primary flow control mechanism or valve is not used in the primary pipe at the diverting and restricting apparatus associated with the one or more water heaters. Accordingly, a diverting and restricting apparatus for adjusting a water flow in an oil/gas well treatment system is provided, the system having a water source with upstream piping, the system having downstream piping, the diverting and restricting apparatus comprising:
Various components are referred to herein as “operably associated.” As used herein, “operably associated” refers to components that are linked together in operable fashion, and encompasses embodiments in which components are linked directly, as well as embodiments in which additional components are placed between the two linked components.
As used herein, “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
Various embodiments of the present inventions are set forth in the attached figures and in the Detailed Description as provided herein and as embodied by the claims. It should be understood, however, that this Summary does not contain all of the aspects and embodiments of the one or more present inventions, is not meant to be limiting or restrictive in any manner, and that the invention(s) as disclosed herein is/are understood by those of ordinary skill in the art to encompass obvious improvements and modifications thereto.
Additional advantages of the present invention will become readily apparent from the following discussion, particularly when taken together with the accompanying drawings.
To further clarify the above and other advantages and features of the one or more present inventions, a more particular description of the one or more present inventions is rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It should be appreciated that these drawings depict only typical embodiments of the one or more present inventions and are therefore not to be considered limiting of its scope. The one or more present inventions are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The drawings are not necessarily to scale.
One or more embodiments of the one or more present inventions described herein include a system for heating water (or other liquid) for an oil and gas well system and returning the heated water to a conveyance pipe. Accordingly, in at least one embodiment, an apparatus is provided for passing water, withdrawing water, and adding water to a flow of water to thereby provide a stream of water at a suitable temperature.
Referring now to
As shown in
Referring now to
As those skilled in the art will appreciate, connections between different sections of pipe may take a variety of forms. In at least one embodiment, the lateral outlet pipe 208 and lateral inlet pipe 212 are connected to the primary pipe 204 by welded connections; however, other types of connections and/or fittings may be used as known to those skilled in the art. In addition, in at least one embodiment, hose is used in combination with metal pipe that are interconnected via a coupling, and such combinations of materials can be used to provide fluid conduit between the primary pipe 204 and the one or more portable heating units 108. Accordingly, the description provided herein is to be considered exemplary, with pipe (to include hose, conduit and the like) connections generally referred to herein simply as “connected.”
In at least one embodiment, a primary flow control mechanism 220, such as a valve, and more preferably a butterfly valve, is located in the flow path of the primary pipe 204 between lateral outlet pipe 208 and the lateral inlet pipe 212. The primary flow control mechanism 220 allows the overall rate of flow through the primary pipe 204 to be adjusted. In at least one embodiment, a secondary flow control mechanism 224, such as a valve, and more preferably a butterfly valve, can be used to adjust the rate of flow passing through the lateral outlet pipe 208. Similarly, a secondary flow control mechanism 224, again, such as a valve, and more preferably a butterfly valve, can be used to adjust the rate of flow passing through the lateral inlet pipe 212 and entering primary pipe 204.
In at least one embodiment, a temperature gauge 228 is located downstream of the lateral inlet pipe 212. The temperature gauge 228 preferably includes a sensor for measuring the temperature of the water passing through the primary pipe 204 at the location of the temperature gauge 228. As those skilled in the art will appreciate, depending upon the temperature of the water measured at the temperature gauge 228, aspects of the diverting and restricting apparatus 200 can be adjusted to accommodate the desired flow rate and water temperature. By way of example, the primary flow control mechanism 220 can be adjusted to increase the water flow in the primary pipe 204 if the temperature is too high. Similarly, the primary flow control mechanism 220 can be adjusted to decrease the water flow in the primary pipe 204 if the temperature is too low. Alternatively, the secondary flow control mechanisms 224 can be adjusted to increase or decrease the flow rate of water to and from the water heaters 108 depending upon the desired temperature and flow rate requirements for a given project or portion thereof. As those skilled in the art will appreciate, the ability to adjust the flow rates of the primary pipe and one or more of the lateral outlet or lateral inlet pipes can be further influenced by the temperature of the water available from the water source. For example, a water source at a first project site at northern latitudes with well treatment operations being conducted in winter may have lower temperatures for its water source as compared to higher water temperatures for a water source at a second project site situated in warmer latitudes with well treatment operations being conducted in the summer. Accordingly, the diverting and restricting apparatus 200 includes a combination of features that permits personnel working on a project to adjust the diverting and restricting apparatus to accommodate the needs of the project as they change.
With reference now to
In use, unheated water flows from the water source 104 to the diverting and restricting apparatus 200 where a portion of the flow is conveyed through one or more lateral outlet pipes 208 to the water heaters 108. Water is heated and returned to the primary pipe 204 of the diverting and restricting apparatus 200 via one or more lateral inlet pipes 212. The temperature of the flow of water through the diverting and restricting apparatus 200 is monitored at temperature gauge 228. The primary flow control mechanism 220 can be used to adjust the flow, and thus the temperature of water passing through the diverting and restricting apparatus 200. In addition, more or less flow can be sent to the water heaters 108 by adjusting the flow of water using the secondary flow control mechanisms 224. Of course, the water heaters 108 may also be adjusted to increase the temperature of the water they receive as conditions warrant. Such a configuration enables a substantially continuous flow of water to be provided downstream within the desired flow rate and temperature parameters.
In at least one embodiment, a computer and related controls (to include, by way of example and not limitation, one or more of microprocessor, discrete circuit connected to step motors and analog circuits) is used to adjust the flow, and thus the temperature, of water passing through the diverting and restricting apparatus 200. More specifically, as one possible algorithm, electronic signals from a temperature gauge 228 are received at a computer, wherein the electronic signals correspond to temperature readings measured by the temperature gauge 228. The computer compares the temperature readings to an established target value for the temperature of the heated water, and thereafter, causes one or more adjustments to be made to the system, such as by sending an electronic signal to the primary flow control mechanism 220 to partially open or partially close. So for example, after comparing the temperature reading to the target value, if the computer determines that the temperature is too low, the computer then sends an electronic signal to the primary flow control mechanism 220 to partially close. Conversely, if after comparing the temperature reading to the target value the computer determines that the temperature is too high, the flow rate through the primary pipe 204 can be increased by partially opening the primary flow control mechanism 220 (provided it is not already fully open). In addition, if the computer determines that the temperature is within an acceptable tolerance of the established target temperature, then the computer will not send an electronic signal causing an adjustment to be made to the primary flow control mechanism 220. The algorithm further includes looping back to receiving a temperature reading and performing another comparison and so on until such time as the water heating process is terminated.
The computer can also be used to adjust one or more of the secondary flow control mechanisms 224. More particularly, rather than only adjust the flow through the primary pipe 204, after comparing the temperature reading to the targeted value, the computer can send electronic signals to the one or more of the secondary flow control mechanisms 224 to partially open or close. So for example, after comparing the temperature reading to the target value, if the computer determines that the temperature is too low, the computer then sends an electronic signal to the secondary flow control mechanism 224 associated with a lateral outlet pipe 208 that leads to one of more of the portable water heaters 108 to partially open. Conversely, if after comparing the temperature reading to the target value the computer determines that the temperature is too high, the flow rate through the lateral outlet pipe 208 can be decreased by partially closing the associated secondary flow control mechanism 224. Adjustments could also be made to the secondary flow control mechanisms 224 associated with the lateral inlet pipes 212. Again, if the computer determines that the temperature is within an acceptable tolerance of the established target temperature, then the computer will not send an electronic signal causing an adjustment to be made to a secondary primary flow control mechanism 224. The algorithm further includes looping back to receiving a temperature reading and performing another comparison and so on until such time as the water heating process is terminated.
Moreover, the computer can also be used to simultaneously adjust both the primary flow control mechanism 220 and the secondary flow control mechanisms 224 associated with one or more of the lateral outlet pipes 208 and the lateral inlet pipes 212, as may be desired.
Data can be transmitted between the computer and the temperature gauge 228, as well as the primary flow control mechanism 220 and the secondary flow control mechanisms 224, via wiring or via wireless communications, such as radio frequency signals.
Referring now to
As shown in
Referring now to
As those skilled in the art will appreciate, connections between different sections of pipe may take a variety of forms. In at least one embodiment, the lateral outlet pipe 508 and lateral inlet pipe 512 are connected to the primary pipe 504 by welded connections; however, other types of connections and/or fittings may be used as known to those skilled in the art. In addition, in at least one embodiment, hose is used in combination with metal pipe that are interconnected via a coupling, and such combinations of materials can be used to provide fluid conduit between the primary pipe 504 and the one or more portable heating units 108. Accordingly, the description provided herein is to be considered exemplary, with pipe (to include hose, conduit and the like) connections generally referred to herein simply as “connected.”
As with the diverting and restricting apparatus 200 described above, for the diverting and restricting apparatus 500, a primary flow control mechanism 220, such as a valve, and more preferably a butterfly valve, is located in the flow path of the primary pipe 504 between lateral outlet pipe 508 and the lateral inlet pipe 512. The primary flow control mechanism 220 allows the overall rate of flow through the primary pipe 504 to be adjusted. In at least one embodiment, a secondary flow control mechanism 224, such as a valve, and more preferably a butterfly valve, can be used to adjust the rate of flow passing through the lateral outlet pipe 508. Similarly, a secondary flow control mechanism 224, again, such as a valve, and more preferably a butterfly valve, can be used to adjust the rate of flow passing through the lateral inlet pipe 512 and entering primary pipe 504.
In at least one embodiment, a temperature gauge 228 is located downstream of the lateral outlet pipe 508. The temperature gauge 228 preferably includes a sensor for measuring the temperature of the water passing through the primary pipe 504 at the location of the temperature gauge 228. As those skilled in the art will appreciate, depending upon the temperature of the water measured at the temperature gauge 228, aspects of the diverting and restricting apparatus 500 can be adjusted to accommodate the desired flow rate and water temperature. By way of example, the primary flow control mechanism 220 can be adjusted to increase the water flow in the primary pipe 504 if the temperature is too high. Similarly, the primary flow control mechanism 220 can be adjusted to decrease the water flow in the primary pipe 504 if the temperature is too low. Alternatively, the secondary flow control mechanisms 224 can be adjusted to increase or decrease the flow rate of water to and from the water heaters 108 depending upon the desired temperature and flow rate requirements for a given project or portion thereof. As those skilled in the art will appreciate, the ability to adjust the flow rates of the primary pipe and one or more of the lateral outlet or lateral inlet pipes can be further influenced by the temperature of the water available from the water source. For example, a water source at a first project site at northern latitudes with well treatment operations being conducted in winter may have lower temperatures for its water source as compared to higher water temperatures for a water source at a second project site situated in warmer latitudes with well treatment operations being conducted in the summer. Accordingly, the diverting and restricting apparatus 500 includes a combination of features that permits personnel working on a project to adjust the diverting and restricting apparatus to accommodate the needs of the project as they change.
With reference now to
In use, unheated water flows from the water source 104 to the diverting and restricting apparatus 500 where a portion of the flow is conveyed through one or more lateral outlet pipes 508 to the water heaters 108. Water is heated and returned to the primary pipe 504 of the diverting and restricting apparatus 500 via one or more lateral inlet pipes 512. The temperature of the flow of water through the diverting and restricting apparatus 500 is monitored at temperature gauge 228. The primary flow control mechanism 220 can be used to adjust the flow, and thus the temperature of water passing through the diverting and restricting apparatus 500. In addition, more or less flow can be sent to the water heaters 108 by adjusting the flow of water using the secondary flow control mechanisms 224. Of course, the water heaters 108 may also be adjusted to increase the temperature of the water they receive as conditions warrant. Such a configuration enables a substantially continuous flow of water to be provided downstream within the desired flow rate and temperature parameters.
In at least one embodiment, a computer and related controls (to include, by way of example and not limitation, one or more of microprocessor, discrete circuit connected to step motors and analog circuits) is used to adjust the flow, and thus the temperature, of water passing through the diverting and restricting apparatus 500. More specifically, as one possible algorithm, electronic signals from a temperature gauge 228 are received at a computer, wherein the electronic signals correspond to temperature readings measured by the temperature gauge 228. The computer compares the temperature readings to an established target value for the temperature of the heated water, and thereafter, causes one or more adjustments to be made to the system, such as by sending an electronic signal to the primary flow control mechanism 220 to partially open or partially close. So for example, after comparing the temperature reading to the target value, if the computer determines that the temperature is too low, the computer then sends an electronic signal to the primary flow control mechanism 220 to partially close. Conversely, if after comparing the temperature reading to the target value the computer determines that the temperature is too high, the flow rate through the primary pipe 504 can be increased by partially opening the primary flow control mechanism 220 (provided it is not already fully open). In addition, if the computer determines that the temperature is within an acceptable tolerance of the established target temperature, then the computer will not send an electronic signal causing an adjustment to be made to the primary flow control mechanism 220. The algorithm further includes looping back to receiving a temperature reading and performing another comparison and so on until such time as the water heating process is terminated.
The computer can also be used to adjust one or more of the secondary flow control mechanisms 224. More particularly, rather than only adjust the flow through the primary pipe 504, after comparing the temperature reading to the targeted value, the computer can send electronic signals to the one or more of the secondary flow control mechanisms 224 to partially open or close. So for example, after comparing the temperature reading to the target value, if the computer determines that the temperature is too low, the computer then sends an electronic signal to the secondary flow control mechanism 224 associated with a lateral outlet pipe 508 that leads to one of more of the portable water heaters 108 to partially open. Conversely, if after comparing the temperature reading to the target value the computer determines that the temperature is too high, the flow rate through the lateral outlet pipe 508 can be decreased by partially closing the associated secondary flow control mechanism 224. Adjustments could also be made to the secondary flow control mechanisms 224 associated with the lateral inlet pipes 512. Again, if the computer determines that the temperature is within an acceptable tolerance of the established target temperature, then the computer will not send an electronic signal causing an adjustment to be made to a secondary primary flow control mechanism 224. The algorithm further includes looping back to receiving a temperature reading and performing another comparison and so on until such time as the water heating process is terminated.
Moreover, the computer can also be used to simultaneously adjust both the primary flow control mechanism 220 and the secondary flow control mechanisms 224 associated with one or more of the lateral outlet pipes 508 and the lateral inlet pipes 512, as may be desired.
Data can be transmitted between the computer and the temperature gauge 228, as well as the primary flow control mechanism 220 and the secondary flow control mechanisms 224, via wiring or via wireless communications, such as radio frequency signals.
As those skilled in the art will appreciate, it is possible to adjust a flow rate of a liquid in a pipe by adjusting a pumping rate of the liquid entering the pipe. Alternatively, it may be desirable to not adjust the pumping rate (for example, because pumps belong to a different entity). Accordingly, in at least one embodiment, the temperature of a flow of liquid is monitored at a temperature sensor, and a flow of liquid is adjusted only by controlling a flow restrictor (such as a butterfly valve) in a primary pipe between at least one lateral outlet pipe and one lateral inlet pipe, wherein a pump is not adjusted, at least for a period of time associated with heating liquid, to control the flow of liquid. In at least one embodiment the liquid is selected from the group consisting of water, oil, chemical additives, and combinations thereof.
Referring now to
As shown in
Referring now to
In at least one embodiment, a secondary flow control mechanism 224, such as a valve, and more preferably a butterfly valve, can be used to adjust the rate of flow passing through the lateral outlet pipe 508. Similarly, a secondary flow control mechanism 224, again, such as a valve, and more preferably a butterfly valve, can be used to adjust the rate of flow passing through the lateral inlet pipe 512 and entering primary pipe 504.
In at least one embodiment, a temperature gauge 228 is located downstream of the lateral outlet pipe 508. The temperature gauge 228 preferably includes a sensor for measuring the temperature of the water passing through the primary pipe 504 at the location of the temperature gauge 228. As those skilled in the art will appreciate, depending upon the temperature of the water measured at the temperature gauge 228, aspects of the diverting and restricting apparatus 500 can be adjusted to accommodate the desired flow rate and water temperature. By way of example, the secondary flow control mechanisms 224 can be adjusted to increase or decrease the flow rate of water to and from the water heaters 108 depending upon the desired temperature and flow rate requirements for a given project or portion thereof.
With reference now to
In use, unheated water flows from the water source 104 to the diverting and restricting apparatus 800 where a portion of the flow is conveyed through one or more lateral outlet pipes 508 to the water heaters 108. Water is heated and returned to the primary pipe 504 of the diverting and restricting apparatus 800 via one or more lateral inlet pipes 512. The temperature of the flow of water through the diverting and restricting apparatus 800 is monitored at temperature gauge 228. More or less flow can be sent to the water heaters 108 by adjusting the flow of water using the secondary flow control mechanisms 224. Of course, the water heaters 108 may also be adjusted to increase the temperature of the water they receive as conditions warrant. Such a configuration enables a substantially continuous flow of water to be provided downstream within the desired flow rate and temperature parameters.
A computer and related controls may also be used with the diverting and restricting apparatus 800 as described above for other embodiments. For a diverting and restricting apparatus 800 that does not include a primary flow control mechanism 220, a computer can still be used to adjust the secondary flow control mechanisms 224 associated with one or more of the lateral outlet pipes 508 and the lateral inlet pipes 512, as may be desired.
For the one or more embodiments utilizing a computer, the systems and methods of this technology can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this technology.
Exemplary hardware that can be used for the present system includes computers, handheld devices and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this technology is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.
In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a computer readable storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this technology can be implemented as a program embedded on personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.
The one or more present inventions may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the one or more present inventions is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The one or more present inventions, in various embodiments, includes components, methods, processes, systems and apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the one or more present inventions after understanding the present disclosure.
The one or more present inventions, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes e.g., for improving performance, achieving ease and/or reducing cost of implementation).
The foregoing discussion of the one or more present inventions has been presented for purposes of illustration and description. The foregoing is not intended to limit the one or more present inventions to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the one or more present inventions are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed one or more present inventions requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the one or more present inventions.
Moreover, though the description of the one or more present inventions has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the one or more present inventions (e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure). It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/624,093 filed on Apr. 13, 2012, the entire contents of which are incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61624093 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13834351 | Mar 2013 | US |
Child | 15605768 | US |