The present application is related to U.S. Pat. No. 9,846,230 filed Dec. 21, 2015 which is a continuation-in-part of U.S. Pat. Nos. 9,864,055, 9,823,347, 9,720,082 and 9,244,166. The present application is also related to U.S. Pat. No. 9,395,438, which is a continuation of U.S. Pat. No. 8,902,100. The present application is also related to U.S. Pat. Nos. 7,515,087, 7,486,219, 7,598,902, and 7,129,885, all of which are herein incorporated by reference in their entireties and assigned to the assignee of the present application.
Embodiments of the inventive concepts disclosed herein generally relate to the display of a weather hazard warning, and more particularly, but not by way of limitation to the display of a weather hazard warning related to one or more icing conditions.
Conventional aircraft hazard weather radar systems, such as the WXR 2100 MultiScan™ radar system manufactured by Rockwell Collins, Inc., have Doppler capabilities and are capable of detecting at least four parameters: weather range, weather reflectivity, weather velocity, and weather spectral width or velocity variation. The weather reflectivity is typically scaled to green, yellow, and red color levels that are related to rainfall rate. The radar-detected radial velocity variation can be scaled to a turbulence level and displayed as magenta. Such weather radar systems can conduct vertical sweeps and obtain reflectivity parameters at various altitudes.
Ice crystals pose threats to aircraft and their components. For example, sensors can provide improper readings when clogged by ice. Probes and engines can also be susceptible to damage caused by mixed phase and glaciated ice crystals when operating near areas of deep convection and at higher altitudes. Engine rollback issues are believed to be related to ice crystal accretion, followed by aggregate detachment in solid form before continuing through the aircraft engine. Detection and display of high altitude ice crystallization has been proposed.
In one aspect, the inventive concepts disclosed herein are directed to an aircraft hazard warning system. The aircraft hazard warning system includes a processing system configured to cause an electronic display to display an icing condition symbol in response to a presence of an icing condition. The processing system is configured to determine the presence of the icing condition using summation of an icing concentration factor at locations along an azimuth.
In a further aspect, the inventive concepts disclosed herein are directed to a method of providing an icing condition symbol on an electronic aircraft display using an electronic processor. The method includes receiving radar reflectivity data, determining an ice concentration factor for each of a number of range bins associated with respective location, and displaying the icing condition symbol in response to a summation of the ice concentration factor at each of the range bins being in a relationship with a threshold.
In a further aspect, the inventive concepts disclosed herein are directed to an aircraft weather radar system. The aircraft weather radar system includes a radar antenna configured to receive radar returns, and a processing system in communication with the radar antenna. The processing system is configured to receive the radar returns and provide radar return data. The processing system is also configured to determine a number of ice concentration factors for a number of respective range bins associated with the radar returns using the radar return data. The processing system is also configured to determine a presence of an icing condition using a relationship between a combination of the ice concentration factors and a threshold.
In yet further aspects, the inventive concepts disclosed herein relate to an icing warning can be displayed using bars, regions, or lines indicating a location of the icing condition and/or a level of the icing condition.
Some embodiments will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like elements, and:
Hazard warning systems and methods according to the inventive concepts disclosed herein detect one or more icing conditions and display one or more icing condition warnings. In some embodiments, systems and methods discussed herein provide icing condition warnings that are more elegantly displayed than proposed methods such as methods that place a color over any areas where radar reflectivity exceeds a predetermined threshold in some embodiments. Advantageously, the warnings are provided to make the crew aware of hazardous icing conditions or ice crystal concentration without effectively blocking off large portions of the display or human machine interface (HMI) in some embodiments. Further, the warnings are provided to represent levels of icing conditions in a fashion that is less likely to confuse the crew when presented with other HMI information, such as, navigation beacons, flight path information, runway icons, textual information, weather regions, or symbols found overlaid with weather displays in some embodiments.
In some embodiments, the systems and methods detect icing conditions by considering not only ice crystal density but duration of the exposure by the aircraft, the type of aircraft/engine, and the specific flight path. In some embodiments, the systems and methods advantageously integrate ice crystal concentration detected by weather radar and show such detected regions along flight paths or radials where the integrated concentration exceeds a predetermined threshold. In some embodiments, the detected regions are only shown for flight paths or radials where the integrated concentration exceeds a predetermined threshold.
Referring now to
In some embodiments, an icing condition warning 42 is provided on any of displays 20 as part of a weather radar display or other flight display. In some embodiments, the icing condition warning 42 is displayed as colored line or bar indicating the presence and level of the icing condition. In some embodiments, the icing condition warning is an icon or symbol.
Referring to
The radar system 200 (e.g., a weather radar system or other radar system) is generally located within the nose 100 of the aircraft 101 or within the aircraft control center 10 of aircraft 101. According to some embodiments, the radar system 200 is located on the top of aircraft 101 or on the tail of aircraft 101. The radar system 200 can include or be coupled to an antenna system including an antenna 210. A variety of different antennas or radar systems may be used as part of the radar system 200 (e.g., a split aperture antenna, a monopulse antenna, a sequential lobbing antenna, etc.).
The radar system 200 generally works by sweeping a radar beam horizontally back and forth across the sky. Some embodiments of the radar system 200 conduct a first horizontal sweep 104 first tilt angle 1 (a tilt angle 108) and a second horizontal sweep 106 at second tilt angle (a tilt angle 110). The tilt angles 108 and 110 can be with respect to horizontal 112 (e.g., 0 degrees). The radar system 200 can also conduct vertical sweeps to further characterize and identify weather phenomena. Returns from different tilt angles can be electronically merged to form a composite image for display on an electronic display (e.g., one of the displays 20 in
Referring to
The processing electronics 304 are connected to or in communication with the avionics equipment 312 and the aircraft sensors 314 and include a high altitude associated threat (HAAT) module 334, a high altitude ice crystal (HAIC) module 340, and an icing condition module 342. The HAAT and HAIC modules 334 and 340 advantageously detect and locate HAAT and HAIC conditions, and the icing condition module 342 uses data from the HAAT and HAIC modules 334 and 340 to cause the display 20 to provide a visual and/or audio warning of an icing condition. In some embodiments, the icing condition module 342 uses a summation of ice crystal concentration levels at areas or bins along a radial or direction and compares the summation to a threshold to sense or detect an icing condition. In some embodiments, ice crystal concentration levels are provided by the HAAT and HAIC modules 334 and 340, by off aircraft equipment via the avionics equipment 312 (e.g., radios), by the radar system 200, by the aircraft sensors 314, or combinations thereof.
In some embodiments, the icing condition module 342 receives or calculates an icing concentration parameter per area or bin, accumulates the parameter along a radial, route, flight path, or direction, and compares the accumulated value to a threshold indicative of an icing condition level. In some embodiments, the parameter is a directly sensed indication of ice particle concentration or a prediction or inference of such concentrations.
In some embodiments, the icing condition module 342 uses Equation 1 below to detect an icing condition along a particular a radial, route, flight path, or direction.
Where
In some embodiments, the threshold T is a fixed number or is a function of engine type, exposure time, and aircraft type. The threshold T is lower for high efficiency, high bypass turbofan engines. The threshold T can also be a function of the operating mode of the engine (e.g., the threshold is lower for fuel efficient mode) or time of exposure.
In some embodiments, the icing condition module 342 uses Equation 2 below to detect an icing condition along a particular a radial, route, flight path, or direction.
Equation 2 allows the symbol to represent a range to the icing condition. Equations 1 and 2 are exemplary only. Bins between the aircraft 101 and the bin before the summation exceeding the threshold are not presented as being subject to an icing condition according to Equation 2 and hence are eliminated from the display 20 in some embodiments.
In some embodiments, the HAAT and HAIC modules 334 and 340 process data associated with weather radar reflectivity levels and data from other sensors (e.g., temperature, altitude, etc.) to determine HAAT and HAIC conditions and provide icing concentration measurements or estimates to the icing condition module 342. For example, HAAT and HAIC modules 334 and 340 can estimate icing conditions (or ice crystal concentrations at locations based upon temperature, altitude, wind speed, and reflectivity levels.
The processing electronics 304 are further shown as connected to aircraft sensors 314 which may generally include any number of sensors configured to provide data to processing electronics 304. For example, the aircraft sensors 314 include temperature sensors, humidity sensors, infrared sensors, altitude sensors, a gyroscope, a global positioning system (GPS), or any other aircraft-mounted sensors that may be used to provide data to the processing electronics 304 in some embodiments. It should be appreciated that the aircraft sensors 314 (or any other component shown connected to the processing electronics 304) may be indirectly or directly connected to the processing electronics 304. Avionics equipment 312 can be or include a flight management system, a navigation system, a backup navigation system, or another aircraft system configured to provide inputs to the processing electronics 304.
In some embodiments, the radar system 200 is a weather radar system. The radar system 200 includes the radar antenna 210 (e.g., a weather radar antenna) connected (e.g., directly, indirectly) to an antenna controller and receiver/transmitter circuit 212. The antenna controller and receiver/transmitter circuit 202 includes any number of mechanical or electrical components or modules for steering a radar beam and receiving radar returns and providing radar data. For example, the antenna controller and receiver/transmitter circuit 202 is configured to mechanically tilt the radar antenna 210 in a first direction while mechanically rotating the radar antenna 210 in a second direction. In other embodiments, a radar beam may be electronically swept along a first axis and mechanically swept along a second axis. In yet other embodiments, the radar beam may be entirely electronically steered (e.g., by electronically adjusting the phase of signals provided from adjacent antenna apertures, etc.). The antenna controller and receiver/transmitter circuit 202 is configured to conduct the actual signal generation that results in a radar beam being provided from the radar antenna 310 and to conduct the reception of returns received at the radar antenna 310. Radar return data is provided from the antenna controller and receiver/transmitter circuit 202 to processing electronics 304 for processing. For example, processing electronics 304 can be configured to interpret the returns for display on display 20.
The processing electronics 304 is configured to provide control signals or control logic to the antenna controller and receiver/transmitter circuit 202 in some embodiments. For example, depending on pilot or situational inputs, the processing electronics 304 can be configured to cause the antenna controller and receiver/transmitter circuit 202 to change behavior or radar beam patterns. The processing electronics 304 include the processing logic for operating weather radar system 200 in some embodiments. It should be noted that the processing electronics 304 are integrated into the radar system 200 or located remotely from the radar system 200, for example, in aircraft control center 10 in some embodiments.
Referring to
The memory 320 includes a memory buffer 324 for receiving radar return data. The radar return data may be stored in memory buffer 324 until buffer 324 is accessed for data. For example, a core threat module 328, an overflight module 330, an electrified region module 332, the HAAT module 334, a display control module 338, the HAIC module 340, the icing detection module 342 or another process that utilizes radar return data may access the memory buffer 324. The radar return data stored in memory 320 may be stored according to a variety of schemes or formats. For example, the radar return data may be stored in an x,y or x,y,z format, a heading-up format, a north-up format, a latitude-longitude format, a radial format, or any other suitable format for storing spatial-relative information.
The memory 320 further includes configuration data 326. The configuration data 326 includes data relating to weather radar system 200. For example, the configuration data 326 may include beam pattern data which may be data that a beam control module 336 can interpret to determine how to command the antenna controller and receiver/transmitter circuit 202 to sweep a radar beam. For example, configuration data 326 may include information regarding maximum and minimum azimuth angles of horizontal radar beam sweeps, azimuth angles at which to conduct vertical radar beam sweeps, timing information, speed of movement information, dual polarization mode information, dual frequency mode information and the like. The configuration data 326 may also include data, such as threshold values, model information, aircraft identification data, engine identification data, engine mode data, look up tables, and the like used by modules 328-342 to identify and assess threats to aircraft 101.
The memory 320 is further shown to include a core threat module 328 which includes logic for using radar returns in memory buffer 324 to make one or more determinations or inferences relating to core threats to aircraft 101. For example, the core threat module 328 may use temperature and radar return values at various altitudes to calculate a probability that lightning, hail, and/or strong vertical shearing exists within a weather cell. The core threat module 328 may be configured to compare the probability and/or severity of the core threat to a threshold value stored, for example, in the core threat module 328 or the configuration data 326. The core threat module 328 may further be configured to output a signal to display control module 338 indicative of the probability of the core threat, of the inferred threat level within the weather cell, or of the inferred threat level within the weather cell being greater than the measured threat due to radar returns from rainfall. The signal may further cause a change in a color on aviation display 20 associated to the threat level to aircraft 101.
The memory 320 is further shown to include an overflight module 330 which includes logic for using radar returns in memory buffer 324 to make one or more determinations or inferences based on weather below aircraft 101. For example, overflight module 330 may be configured to determine the growth rate of a weather cell and/or the change in altitude of an echo top of a weather cell over time. The overflight module 330 may further be configured to calculate a probability that a weather cell will grow into the flight path of aircraft 101. The overflight module 330 may be configured to output a signal to display control module 338 indicating the threat of the growing weather cell in relation to the flight path of aircraft 101. For example, the signal may indicate predicted intersection of the flight path of aircraft 101 and the weather cell, rate of growth of the weather cell, or predicted growth of the weather cell to within a threshold distance of the flight path of aircraft 101. For example, the signal may cause an icon to be displayed on the display 20 in a location corresponding to the growing cell, wherein the size of the icon may represent the size, amount, or probability of threat to the aircraft. The overflight module 330 may be configured to inhibit display of weather far below, and thus not a threat to, the aircraft 101. The overflight module 330 is configured to provide information related to the flight path of the aircraft 101 for use in selection flight paths or radials for detecting icing condition using the icing condition module 342.
The memory 320 is further shown to include an electrified region module 332 which includes logic for using radar returns in the memory buffer 324 to make one or more determinations or inferences regarding potentially electrified regions around the weather cell. For example, the electrified region module 332 may be configured to use temperature and reflectivity to determine whether a region around a weather cell is likely to produce lightning. The electrified region module 332 may be configured to determine a probability of aircraft 101 producing a lightning strike if the aircraft flies through a particular region based on the reflectivity around a convective cell near the freezing layer. The electrified region module 332 may further be configured to cause a pattern to be displayed on the display 20. For example, the electrified region module 332 may be configured to output a signal to the display control module 338 indicating the existence, location, and/or severity of risk of the electrified region.
The memory 320 is further shown to include HAAT module 334 which includes logic for using radar returns (e.g., data) in the memory buffer 324 to make one or more determinations or inferences regarding high altitude associated threats (e.g., threats related to a blow off or anvil region of a weather cell). HAAT conditions can be associated with high severity threat conditions such as hail, lightning, turbulence, etc.
For example, the HAAT module 334 may be configured to use wind speed, wind direction, and size of a weather cell to predict the presence of an anvil region downwind of a weather cell that may contain lightning, hail, and/or turbulence. The HAAT module 334 may be configured to cause a pattern (e.g., a red speckled region) to be displayed on the display 20. For example, the HAAT module 334 and the display control module 338 can be configured to output a signal to display control module 338 indicating the existence, location, and severity or risk of the anvil region. HAAT module 334 can detect a HAAT condition based upon the presence of convective cells reaching high altitudes and having anvil shapes. Such conditions can be sensed using the techniques described in U.S. application Ser. Nos. 13/919,406 and 13/84,893. Ice crystals may be present in a HAAT region. A HAAT condition generally is a more significant threat than a HAIC condition. The HAAT module 334 is configured to determine ice crystal concentrations levels on a per area or per bin basis in some embodiments.
In one embodiment, the HAIC module 340 can infer a HAIC condition. In one embodiment, the HAIC condition can be inferred by the following process. If radar system 300 detects temperature anomalies and large areas of weaker reflectivity in the vicinity of a convective core, vertical scans and/or auxiliary horizontal scans can be commanded via the beam control module 3336 to look for the presence of high water content (high reflectivity) beneath the areas that were depicted as weaker reflectivity (green or black). If such a scenario is identified using the vertical and horizontal beams, the area is tagged as potential for ice crystal icing or a HAIC condition. In some embodiments, the HAIC module 340 configured to estimate ice crystal concentrations levels on a per area or per bin basis (e.g., based upon the difference in water content at altitudes) in some embodiments.
The memory 320 includes the icing detection module 342 which includes logic for using radar returns in the memory buffer 324 to make one or more determinations or inferences regarding ice crystal concentrations per bin or per area. The icing detection module 342 can be combined with the display control module 338, be a hard wired ASIC, or programmable logic circuit in one embodiment. The icing detection module 342 and the radar system 200 can be configured to use coherent and non-coherent integration processes discussed in related U.S. application Ser. No. 14/206,239 incorporated herein by reference to detect ice crystal concentrations and their location in some embodiments. Alternatively, the icing detection module 342 and the radar system 200 can utilize a dual frequency or dual polarization process to determine ice crystal concentrations discussed in related U.S. patent application Ser. No. 14/206,651 incorporated herein by reference in some embodiments. In some embodiments, radar return data is be processed by comparing the data to known ice crystal return characteristics to determine an icing concentration level match. The ice crystal concentrations can be provided by an external source. The icing detection module 342 can use various techniques for determining ice crystal concentrations on a per bin or per area basis. The types of ice crystal concentration detection techniques are not discussed in a limiting fashion.
The icing detection module 342 can be configured to cause a line or bar (as icing condition symbol 42 (
The memory 320 includes a beam control module 336. The beam control module 336 may be an algorithm for commanding circuit 302 to sweep a radar beam. The beam control module 336 may be used, for example, to send one or more analog or digital control signals to circuit 302. The control signals may be, for example, an instruction to move the antenna mechanically, an instruction to conduct an electronic beam sweep in a certain way, an instruction to move the radar beam to the left by five degrees, etc. The beam control module 336 may be configured to control timing of the beam sweeps or movements relative to aircraft speed, flight path information, transmission or reception characteristics from the radar system 200 or otherwise. The beam control module 336 may receive data from the configuration data 326 for configuring the movement of the radar beam.
The memory 320 includes the display control module 338 which includes logic for displaying weather information on the display 20. For example, the display control module 338 may be configured to display radar return information received from the memory buffer 324 and to determine a gain level or other display setting for display of an inferred threat to aircraft 101 on a weather radar display.
Referring now to
In some embodiments, an icing condition symbol 520 is provided outside of or at the edge of the displayed range for the weather radar display image 500 as a colored bar. The icing condition symbol 520 is arcuate and colored to represent a level of the icing condition. Equation 1 can be used to determine the radials that are delineated by the icing condition symbol 520. The icing condition symbol 520 is computed for each azimuth angle as the summation of predicted ice crystal concentration over all range bins out to the maximum detection range of the function. As shown in
Display of the icing condition symbol 520 is triggered when the integrated ice crystal concentration exceeds a given threshold in some embodiments. The threshold is a function of aircraft type or engine type in some embodiments. Multiple thresholds are used for multiple levels (e.g, red, yellow, green). The specific color of the icing condition symbol 520 represents specific threshold concentration in some embodiments. The weather radar display image 500 using the using the icing condition symbol 520 has the advantage of removing large icon covered areas for icing warnings from the weather display image 500 and concentrating the data only in the outer range ring thus providing heading guidance to the crew while simultaneously avoiding confusion with other navigation or textual information in some embodiments.
Generally, a crew flies through green regions 502, always avoids red regions 506, and uses their best judgment on yellow regions 504. In the example shown in
Referring now to
In some embodiments, an icing condition symbol 620 is provided as a contoured bar or line representing the range to the icing condition. The icing condition symbol 620 is colored to represent a level of the icing condition in some embodiments. Equation 2 can be used to determine the radials and range that are delineated by the icing condition symbol 620 where the contoured bar indicates range and azimuth at which point hazardous ice accretion is expected in some embodiments.
In some embodiments, the icing condition symbol is icon, such as, a colored wind shear-type icon covering an area of the icing condition. The color represents a level of the icing condition (e.g., mild, moderate, severe) The azimuth extent of the icon is determined as all azimuth radials in which the summation of predicted ice concentration exceeds a predetermined threshold as provided by Equation 1 in some embodiments. The maximum range of the icon is the range where the summation of the predicted ice content exceeds the threshold as provided by Equation 2 in some embodiments. This type of symbol has the advantage of clearly delineating both range and azimuth extent of the hazard in an unambiguous manner which is difficult to confuse with other iconic information on the display 20.
In some embodiments, the icing condition module 342 (
Referring to
At an operation 706, zones for a flight path or radials for environment are selected. At an operation 710, icing crystal concentrations or susceptibility to icing accumulations are combined along a selected radial or zone of the flight path. The icing crystal concentrations or susceptibility to icing accumulations can be combined by summing or integrating in some embodiments by the icing condition module 342. At an operation 712, the combination is compared to one or more thresholds indicative of an icing condition in some embodiments. The thresholds can be a function of aircraft type, aircraft engine, or engine operational mode in some embodiments.
At an operation 718, the hazard warning system 300 determines if all radials or zones have been completed. If not, the hazard warning system 300 returns to operation 706 and completes the operations 706, 710 and 712 for the next radial or zone. If so, the hazard warning system 300 advances to the operation 720 and displays an icing condition warning. In some embodiments, the icing condition warning is indicative of the azimuthal extent and range to the icing condition.
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the inventive concepts disclosed herein.
According to various exemplary embodiments, electronics 304 may be embodied as hardware and/or software. In exemplary embodiments where the processes are embodied as software, the processes may be executed as computer code on any processing or hardware architecture (e.g., a computing platform that can receive reflectivity data from a weather radar system) or in any weather radar system such as the WXR-2100 system available from Rockwell Collins, Inc. or an RDR-400 system available from Honeywell, Inc. The processes can be performed separately, simultaneously, sequentially or independently with respect to each other.
While the detailed drawings, specific examples, detailed algorithms and particular configurations given describe exemplary embodiments, they serve the purpose of illustration only. The inventive concepts disclosed are not limited to the specific forms and equations shown. For example, the methods may be performed in any of a variety of sequence of steps or according to any of a variety of mathematical formulas. The hardware and software configurations shown and described may differ depending on the chosen performance characteristics and physical characteristics of the weather radar and processing devices. For example, the type of system components and their interconnections may differ. The systems and methods depicted and described are not limited to the precise details and conditions disclosed. The flows and pseudo code show exemplary operations only. The specific data types and operations are shown in a non-limiting fashion. Furthermore, other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the exemplary embodiments without departing from the scope of the appended claims.
Some embodiments within the scope of the present disclosure may include program products comprising machine-readable storage media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable storage media can be any available media which can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable storage media can include RAM, ROM, EPROM, EEPROM, CD ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable storage media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machine to perform a certain function or group of functions. Machine or computer-readable storage media, as referenced herein, do not include transitory media (i.e., signals in space).
Number | Name | Date | Kind |
---|---|---|---|
650275 | Reeve | May 1900 | A |
3251057 | Buehler et al. | May 1966 | A |
3359557 | Fow et al. | Dec 1967 | A |
3404396 | Buchler et al. | Oct 1968 | A |
3465339 | Marner | Sep 1969 | A |
3491358 | Hicks | Jan 1970 | A |
3508259 | Andrews | Apr 1970 | A |
3540829 | Collinson et al. | Nov 1970 | A |
3567915 | Altshuler et al. | Mar 1971 | A |
3646555 | Atlas | Feb 1972 | A |
3715748 | Hicks | Feb 1973 | A |
3764719 | Dell | Oct 1973 | A |
3781530 | Britland et al. | Dec 1973 | A |
3781878 | Kirkpatrick | Dec 1973 | A |
3803609 | Lewis et al. | Apr 1974 | A |
3885237 | Kirkpatrick | May 1975 | A |
3943511 | Evans et al. | Mar 1976 | A |
3964064 | Brandao et al. | Jun 1976 | A |
3968490 | Gostin | Jul 1976 | A |
4015257 | Fetter | Mar 1977 | A |
4043194 | Tanner | Aug 1977 | A |
4223309 | Payne | Sep 1980 | A |
4283715 | Choisnet | Aug 1981 | A |
4283725 | Chisholm | Aug 1981 | A |
4318100 | Shimizu et al. | Mar 1982 | A |
4346595 | Frosch et al. | Aug 1982 | A |
4430654 | Kupfer | Feb 1984 | A |
4435707 | Clark | Mar 1984 | A |
4459592 | Long | Jul 1984 | A |
4533915 | Lucchi et al. | Aug 1985 | A |
4555703 | Cantrell | Nov 1985 | A |
4600925 | Alitz et al. | Jul 1986 | A |
4613937 | Batty, Jr. | Sep 1986 | A |
4613938 | Hansen et al. | Sep 1986 | A |
4649388 | Atlas | Mar 1987 | A |
4658255 | Nakamura et al. | Apr 1987 | A |
4660038 | Greneker, III | Apr 1987 | A |
4684950 | Long | Aug 1987 | A |
4742353 | D'Addio et al. | May 1988 | A |
4761650 | Masuda et al. | Aug 1988 | A |
4803470 | Fineman | Feb 1989 | A |
4835536 | Piesinger et al. | May 1989 | A |
RE33152 | Atlas | Jan 1990 | E |
4914444 | Pifer et al. | Apr 1990 | A |
4928131 | Onozawa | May 1990 | A |
4940987 | Frederick | Jul 1990 | A |
5036334 | Henderson et al. | Jul 1991 | A |
5049886 | Seitz et al. | Sep 1991 | A |
5057820 | Markson et al. | Oct 1991 | A |
5077558 | Kuntman | Dec 1991 | A |
5095754 | Hsu | Mar 1992 | A |
5105191 | Keedy | Apr 1992 | A |
5130712 | Rubin et al. | Jul 1992 | A |
5159407 | Churnside et al. | Oct 1992 | A |
5164731 | Borden et al. | Nov 1992 | A |
5173704 | Buehler et al. | Dec 1992 | A |
5175551 | Rubin | Dec 1992 | A |
5177487 | Taylor et al. | Jan 1993 | A |
5198819 | Susnjara | Mar 1993 | A |
5202690 | Frederick | Apr 1993 | A |
5208600 | Rubin | May 1993 | A |
5221924 | Wilson, Jr. | Jun 1993 | A |
5262773 | Gordon | Nov 1993 | A |
5262782 | Rubin et al. | Nov 1993 | A |
5291208 | Young | Mar 1994 | A |
5296865 | Lewis | Mar 1994 | A |
5311183 | Mathews et al. | May 1994 | A |
5311184 | Kuntman | May 1994 | A |
5331330 | Susnjara | Jul 1994 | A |
5396220 | Markson et al. | Mar 1995 | A |
5402116 | Ashley | Mar 1995 | A |
5469168 | Anderson | Nov 1995 | A |
5479173 | Yoshioka et al. | Dec 1995 | A |
5485157 | Long | Jan 1996 | A |
5517193 | Allison et al. | May 1996 | A |
5521603 | Young | May 1996 | A |
5534868 | Gjessing et al. | Jul 1996 | A |
5568151 | Merritt | Oct 1996 | A |
5583972 | Miller | Dec 1996 | A |
5592171 | Jordan | Jan 1997 | A |
5602543 | Prata et al. | Feb 1997 | A |
5615118 | Frank | Mar 1997 | A |
5648782 | Albo et al. | Jul 1997 | A |
5654700 | Prata et al. | Aug 1997 | A |
5657009 | Gordon | Aug 1997 | A |
5686919 | Jordan et al. | Nov 1997 | A |
5726656 | Frankot | Mar 1998 | A |
5757322 | Ray et al. | May 1998 | A |
5771020 | Markson et al. | Jun 1998 | A |
5828332 | Frederick | Oct 1998 | A |
5838239 | Stern et al. | Nov 1998 | A |
5839080 | Muller et al. | Nov 1998 | A |
5907568 | Reitan, Jr. | May 1999 | A |
5920276 | Frederick | Jul 1999 | A |
5945926 | Ammar et al. | Aug 1999 | A |
5973635 | Albo | Oct 1999 | A |
5974875 | Leslie et al. | Nov 1999 | A |
6000285 | Leslie et al. | Dec 1999 | A |
6034760 | Rees | Mar 2000 | A |
6043756 | Bateman et al. | Mar 2000 | A |
6043757 | Patrick | Mar 2000 | A |
6081220 | Fujisaka et al. | Jun 2000 | A |
6118382 | Hibbs | Sep 2000 | A |
6138060 | Conner et al. | Oct 2000 | A |
6154151 | McElreath et al. | Nov 2000 | A |
6154169 | Kuntman | Nov 2000 | A |
6177873 | Cragun | Jan 2001 | B1 |
6201494 | Kronfeld | Mar 2001 | B1 |
6208284 | Woodell et al. | Mar 2001 | B1 |
6236351 | Conner et al. | May 2001 | B1 |
6237405 | Leslie | May 2001 | B1 |
6240369 | Foust | May 2001 | B1 |
6246367 | Markson et al. | Jun 2001 | B1 |
6281832 | McElreath | Aug 2001 | B1 |
6289277 | Feyereisen et al. | Sep 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6320511 | Cronin | Nov 2001 | B1 |
6339747 | Daly et al. | Jan 2002 | B1 |
6340946 | Wolfson et al. | Jan 2002 | B1 |
6377202 | Kropfli et al. | Apr 2002 | B1 |
6377207 | Solheim et al. | Apr 2002 | B1 |
6381538 | Robinson et al. | Apr 2002 | B1 |
6388607 | Woodell | May 2002 | B1 |
6388608 | Woodell et al. | May 2002 | B1 |
RE37725 | Yamada | Jun 2002 | E |
6405134 | Smith et al. | Jun 2002 | B1 |
6424288 | Woodell | Jul 2002 | B1 |
6441773 | Kelly et al. | Aug 2002 | B1 |
6456226 | Zheng et al. | Sep 2002 | B1 |
6480142 | Rubin | Nov 2002 | B1 |
6496252 | Whiteley | Dec 2002 | B1 |
6501392 | Gremmert et al. | Dec 2002 | B2 |
6512476 | Woodell | Jan 2003 | B1 |
6518914 | Peterson et al. | Feb 2003 | B1 |
6549161 | Woodell | Apr 2003 | B1 |
6560538 | Schwinn et al. | May 2003 | B2 |
6563452 | Zheng et al. | May 2003 | B1 |
6577947 | Kronfeld et al. | Jun 2003 | B1 |
6590520 | Steele et al. | Jul 2003 | B1 |
6597305 | Szeto et al. | Jul 2003 | B2 |
6603425 | Woodell | Aug 2003 | B1 |
6606564 | Schwinn et al. | Aug 2003 | B2 |
6614382 | Cannaday et al. | Sep 2003 | B1 |
6650972 | Robinson et al. | Nov 2003 | B1 |
6667710 | Cornell et al. | Dec 2003 | B2 |
6670908 | Wilson et al. | Dec 2003 | B2 |
6677886 | Lok | Jan 2004 | B1 |
6683609 | Baron et al. | Jan 2004 | B1 |
6690317 | Szeto et al. | Feb 2004 | B2 |
6703945 | Kuntman et al. | Mar 2004 | B2 |
6720906 | Szeto et al. | Apr 2004 | B2 |
6738010 | Steele et al. | May 2004 | B2 |
6741203 | Woodell | May 2004 | B1 |
6744382 | Lapis et al. | Jun 2004 | B1 |
6771207 | Lang | Aug 2004 | B1 |
6788043 | Murphy et al. | Sep 2004 | B2 |
6791311 | Murphy et al. | Sep 2004 | B2 |
6828922 | Gremmert et al. | Dec 2004 | B1 |
6828923 | Anderson | Dec 2004 | B2 |
6839018 | Szeto et al. | Jan 2005 | B2 |
6850185 | Woodell | Feb 2005 | B1 |
6856908 | Devarasetty et al. | Feb 2005 | B2 |
6879280 | Bull et al. | Apr 2005 | B1 |
6882302 | Woodell et al. | Apr 2005 | B1 |
6917860 | Robinson et al. | Jul 2005 | B1 |
6977608 | Anderson et al. | Dec 2005 | B1 |
7030805 | Ormesher et al. | Apr 2006 | B2 |
7042387 | Ridenour et al. | May 2006 | B2 |
7082382 | Rose et al. | Jul 2006 | B1 |
7109912 | Paramore et al. | Sep 2006 | B1 |
7116266 | Vesel et al. | Oct 2006 | B1 |
7129885 | Woodell et al. | Oct 2006 | B1 |
7132974 | Christianson | Nov 2006 | B1 |
7139664 | Kelly et al. | Nov 2006 | B2 |
7145503 | Abramovich et al. | Dec 2006 | B2 |
7161525 | Finley | Jan 2007 | B1 |
7200491 | Rose et al. | Apr 2007 | B1 |
7205928 | Sweet | Apr 2007 | B1 |
7259714 | Cataldo | Aug 2007 | B1 |
7292178 | Woodell et al. | Nov 2007 | B1 |
7307576 | Koenigs | Dec 2007 | B1 |
7307577 | Kronfeld et al. | Dec 2007 | B1 |
7307583 | Woodell et al. | Dec 2007 | B1 |
7307586 | Peshlov et al. | Dec 2007 | B2 |
7307756 | Walmsley | Dec 2007 | B2 |
7352317 | Finley et al. | Apr 2008 | B1 |
7352929 | Hagen et al. | Apr 2008 | B2 |
7365674 | Tillotson et al. | Apr 2008 | B2 |
7372394 | Woodell et al. | May 2008 | B1 |
7383131 | Wey et al. | Jun 2008 | B1 |
7417578 | Woodell et al. | Aug 2008 | B1 |
7417579 | Woodell | Aug 2008 | B1 |
7427943 | Kronfeld et al. | Sep 2008 | B1 |
7436361 | Paulsen et al. | Oct 2008 | B1 |
7471995 | Robinson | Dec 2008 | B1 |
7486219 | Woodell et al. | Feb 2009 | B1 |
7486220 | Kronfeld et al. | Feb 2009 | B1 |
7492304 | Woodell et al. | Feb 2009 | B1 |
7492305 | Woodell et al. | Feb 2009 | B1 |
7515087 | Woodell et al. | Apr 2009 | B1 |
7515088 | Woodell et al. | Apr 2009 | B1 |
7528613 | Thompson et al. | May 2009 | B1 |
7541971 | Woodell et al. | Jun 2009 | B1 |
7557735 | Woodell et al. | Jul 2009 | B1 |
7576680 | Woodell | Aug 2009 | B1 |
7581441 | Barny et al. | Sep 2009 | B2 |
7598901 | Tillotson et al. | Oct 2009 | B2 |
7598902 | Woodell et al. | Oct 2009 | B1 |
7633428 | McCusker et al. | Dec 2009 | B1 |
7633431 | Wey et al. | Dec 2009 | B1 |
7664601 | Daly, Jr. | Feb 2010 | B2 |
7696921 | Finley et al. | Apr 2010 | B1 |
7714767 | Kronfeld et al. | May 2010 | B1 |
7728758 | Varadarajan et al. | Jun 2010 | B2 |
7733264 | Woodell et al. | Jun 2010 | B1 |
7859448 | Woodell et al. | Dec 2010 | B1 |
7868811 | Woodell et al. | Jan 2011 | B1 |
7917255 | Finley | Mar 2011 | B1 |
7932853 | Woodell et al. | Apr 2011 | B1 |
7973698 | Woodell et al. | Jul 2011 | B1 |
7982658 | Kauffman et al. | Jul 2011 | B2 |
8022859 | Bunch et al. | Sep 2011 | B2 |
8054214 | Bunch | Nov 2011 | B2 |
8072368 | Woodell | Dec 2011 | B1 |
8081106 | Yannone | Dec 2011 | B2 |
8089391 | Woodell et al. | Jan 2012 | B1 |
8098188 | Costes et al. | Jan 2012 | B2 |
8098189 | Woodell et al. | Jan 2012 | B1 |
8111186 | Bunch et al. | Feb 2012 | B2 |
8159369 | Koenigs et al. | Apr 2012 | B1 |
8217828 | Kirk | Jul 2012 | B2 |
8228227 | Bunch et al. | Jul 2012 | B2 |
8314730 | Musiak et al. | Nov 2012 | B1 |
8332084 | Bailey et al. | Dec 2012 | B1 |
8902100 | Woodell et al. | Dec 2014 | B1 |
9019146 | Finley et al. | Apr 2015 | B1 |
20020039072 | Gremmert et al. | Apr 2002 | A1 |
20020126039 | Dalton et al. | Sep 2002 | A1 |
20030001770 | Cornell et al. | Jan 2003 | A1 |
20030025627 | Wilson et al. | Feb 2003 | A1 |
20030117311 | Funai | Jun 2003 | A1 |
20030193411 | Price | Oct 2003 | A1 |
20040183695 | Ruokangas et al. | Sep 2004 | A1 |
20040239550 | Daly, Jr. | Dec 2004 | A1 |
20050049789 | Kelly et al. | Mar 2005 | A1 |
20050174350 | Ridenour et al. | Aug 2005 | A1 |
20060036366 | Kelly et al. | Feb 2006 | A1 |
20070005249 | Dupree et al. | Jan 2007 | A1 |
20070152867 | Randall | Jul 2007 | A1 |
20080158049 | Southard et al. | Jul 2008 | A1 |
20090177343 | Bunch | Jul 2009 | A1 |
20090219197 | Bunch | Sep 2009 | A1 |
20100019938 | Bunch | Jan 2010 | A1 |
20100042275 | Kirk | Feb 2010 | A1 |
20100110431 | Ray et al. | May 2010 | A1 |
20100194628 | Christianson et al. | Aug 2010 | A1 |
20100201565 | Khatwa | Aug 2010 | A1 |
20100245164 | Kauffman | Sep 2010 | A1 |
20100302094 | Bunch et al. | Dec 2010 | A1 |
20110074624 | Bunch | Mar 2011 | A1 |
20110148692 | Christianson | Jun 2011 | A1 |
20110148694 | Bunch et al. | Jun 2011 | A1 |
20120029786 | Calandra et al. | Feb 2012 | A1 |
20120133551 | Pujol et al. | May 2012 | A1 |
20120139778 | Bunch et al. | Jun 2012 | A1 |
20130226452 | Watts | Aug 2013 | A1 |
20130234884 | Bunch | Sep 2013 | A1 |
20140176362 | Sneed | Jun 2014 | A1 |
20140362088 | Veillette et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1 329 738 | Jul 2003 | EP |
2658617 | Aug 1991 | FR |
WO-9807047 | Feb 1998 | WO |
WO-9822834 | May 1998 | WO |
WO-03005060 | Jan 2003 | WO |
WO-2009137158 | Nov 2009 | WO |
Entry |
---|
Heymsfield, A.J., A. Bansemer, C. Schmitt, C. Twohy, and M.R. Poellot, 2004: Effective Ice Particle Densities Derived from Aircraft Data. J. Atmos. Sci., 61, 982-1003,https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2 (Year: 2004). |
Final Office Action for U.S. Appl. No. 15/213,256 dated Oct. 19, 2018. 9 pages. |
U.S. Appl. No. 11/256,845, filed Oct. 24, 2005, Woodell et al. |
U.S. Appl. No. 11/402,434, filed Apr. 12, 2006, Woodell et al. |
U.S. Appl. No. 12/075,103, filed Mar. 7, 2008, Woodell et al. |
U.S. Appl. No. 13/246,769, filed Sep. 27, 2011, Rockwell Collins. |
U.S. Appl. No. 13/717,052, filed Dec. 17, 2012, Woodell et al. |
U.S. Appl. No. 13/837,538, filed Mar. 15, 2013, Kronfeld et al. |
U.S. Appl. No. 13/841,893, filed Mar. 15, 2013, Rockwell Collins, Inc. |
U.S. Appl. No. 13/919,406, filed Jun. 17, 2013, Rockwell Collins, Inc. |
U.S. Appl. No. 14/086,844, filed Nov. 21, 2013, Rockwell Collins, Inc. |
U.S. Appl. No. 14/162,035, filed Jan. 23, 2014, Kevin M. Kronfeld et al. |
U.S. Appl. No. 14/206,239, filed Mar. 12, 2014, Rockwell Collins. |
U.S. Appl. No. 14/206,651, filed Mar. 12, 2014, Rockwell Collins, Inc. |
U.S. Appl. No. 14/207,034, filed Mar. 12, 2014, Rockwell Collins, Inc. |
U.S. Appl. No. 14/323,766, filed Jul. 3, 2014, Weichbrod et al. |
U.S. Appl. No. 14/465,730, filed Aug. 21, 2014, Breiholz et al. |
U.S. Appl. No. 14/465,753, filed Aug. 21, 2014, Arlen E. Breiholz et al. |
U.S. Appl. No. 14/608,071, filed Jan. 28, 2015, Breiholz et al. |
3-D Weather Hazard and Avoidance System, Honeywell InteVue Brochure dated Nov. 2008, 4 pages. |
Advisory Action for U.S. Appl. No. 12/075,103, dated Feb. 13, 2013, 3 pages. |
Advisory Action for U.S. Appl. No. 12/075,103, dated Nov. 8, 2010, 3 pages. |
Advisory Action for U.S. Appl. No. 12/075,103, dated Oct. 15, 2010, 3 pages. |
Boudevillain et al., 2003, Assessment of Vertically Integrated Liquid (VIL) Water Content Radar Measurement, J. Atmos. Oceanic Technol., 20, 807-819. |
Bovith et al., Detecting Weather Radar Clutter by Information Fusion with Satellite Images and Numerical Weather Prediction Model Output; Jul. 31-Aug. 4, 2006, 4 pages. |
Burnham et al., Thunderstorm Turbulence and Its Relationship to Weather Radar Echoes, J. Aircraft, Sep.-Oct. 1969, 8 pages. |
Corridor Integrated Weather System (CIWS), www.II.mit.edu/mission/aviation/faawxsystems/ciws.html, received on Aug. 19, 2009, 3 pages. |
Decision on Appeal for Inter Parties Reexamination Control No. 95/001,860, dated Oct. 17, 2014, 17 pages. |
Doviak et al., Doppler Radar and Weather Observations, 1984, 298 pages. |
Dupree et al.,FAA Tactical Weather Forecasting in the United States National Airspace, Proceedings from the World Weather Research Symposium on Nowcasting and Very Short Term Forecasts, Toulouse, France, 2005, 29 pages. |
Final Office Action on U.S. Appl. No. 12/892,663 dated Mar. 7, 2013, 13 pages. |
Final Office Action on U.S. Appl. No. 13/238,606 dated Apr. 1, 2014, 11 pages. |
Final Office Action on U.S. Appl. No. 13/238,606 dated Jan. 22, 2015, 6 pages. |
Final Office Action on U.S. Appl. No. 13/246,769 dated Sep. 16, 2014, 18 pages. |
Goodman et al., LISDAD Lightning Observations during the Feb. 22-23, 1998 Central Florida Tornado Outbreak, http:www.srh.noaa.gov/topics/attach/html/ssd98-37.htm, Jun. 1, 1998, 5 pages. |
Greene et al., Vertically Integrated Liquid Water—A New Analysis Tool, Monthly Weather Review, Jul. 1972, 5 pages. |
Hodanish, Integration of Lightning Detection Systems in a Modernized National Weather Service Office, http://www.srh.noaa.gov/mlb/hoepub.html, retrieved on Aug. 6, 2007, 5 pages. |
Honeywell, RDR-4B Forward Looking Windshear Detection/Weather Radar System User's Manual with Radar Operation Guidelines, Jul. 2003. |
Keith, Transport Category Airplane Electronic Display Systems, Jul. 16, 1987, 34 pages. |
Klingle-Wilson et al., Description of Corridor Integrated Weather System (CIWS) Weather Products, Aug. 1, 2005, 120 pages. |
Kuntman et al, Turbulence Detection and Avoidance System, Flight Safety Foundation 53rd International Air Safety Seminar (IASS), Oct. 29, 2000. |
Kuntman, Airborne System to Address Leading Cause of Injuries in Non-Fatal Airline Accidents, ICAO Journal, Mar. 2000. |
Kuntman, Satellite Imagery: Predicting Aviation Weather Hazards, ICAO Journal, Mar. 2000, 4 pps. |
Lahiff, 2005, Vertically Integrated Liquid Density and Its Associated Hail Size Range Across the Burlington, Vermont County Warning Area, Eastern Regional Technical Attachment, No. 05-01, 20 pages. |
Liu, Chuntao et al., Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics, Journal of Geophysical Research, vol. 177, D06212, doi:10.1029/2011JDo17123,2012, American Geophysical Union, 2012, 19 pages. |
Meteorological/KSC/L71557/Lighting Detection and Ranging (LDAR), Jan. 2002, 12 pages. |
Nathanson, Fred E., “Radar and Its Composite Environment,” Radar Design Principles, Signal Processing and the Environment, 1969, 5 pages, McGraw-Hill Book Company, New York et al. |
Non-Final Office Action on U.S. Appl. No. 13/238,606 dated May 27, 2015, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/452,235 dated Apr. 23, 2015, 9 pages. |
Non-Final Office Action on U.S. Appl. No. 14/681,901 dated Jun. 17, 2015, 21 pages. |
Non-Final Office Action on U.S. Appl. No. 12/892,663 dated May 29, 2013, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 13/238,606 dated Jul. 8, 2014, 12 pages. |
Non-Final Office Action on U.S. Appl. No. 13/238,606 dated Mar. 27, 2015, 21 pages. |
Non-Final Office Action on U.S. Appl. No. 13/238,606 dated Sep. 23, 2013, 15 pages. |
Non-Final Office Action on U.S. Appl. No. 13/717,052 dated Feb. 11, 2015, 15 pages. |
Non-Final Office Action on U.S. Appl. No. 13/717,052 dated Sep. 9, 2014, 8 pages. |
Non-Final Office Action on U.S. Appl. No. 13/841,893 dated Jun. 22, 2015, 27 pages. |
Non-Final Office Action on U.S. Appl. No. 13/913,100 dated May 4, 2015, 25 pages. |
Non-Final Office Action on U.S. Appl. No. 13/919,406 dated Jul. 14, 2015, 23 pages. |
Non-Final Office Action on U.S. Appl. No. 14/162,035, dated Feb. 4, 2016, 9 pages. |
Non-Final Office Action on U.S. Appl. No. 14/086,844, dated Nov. 10, 2015, 17 pages. |
Notice of Allowance for U.S. Appl. No. 10/631,253, dated Jul. 28, 2005, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/256,845, dated May 27, 2009, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/370,085, dated Dec. 30, 2008, 6 pages. |
Notice of Allowance for U.S. Appl. No. 11/402,434, dated Nov. 4, 2008, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/474,102, dated Jan. 20, 2012, 6 pages. |
Notice of Allowance on U.S. Appl. No. 12/075,103 dated Aug. 4, 2014, 10 pages. |
Notice of Allowance on U.S. Appl. No. 13/246,769 dated Jan. 8, 2015, 10 pages. |
Notice of Allowance on U.S. Appl. No. 13/707,438 dated Feb. 25, 2015, 11 pages. |
Notice of Allowance on U.S. Appl. No. 14/681,901, dated Dec. 23, 2015, 8 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Aug. 21, 2007, 4 pages. |
Office Action for U.S. Appl. No. 10/631,253, dated Jan. 14, 2004, 5 pages. |
Office Action for U.S. Appl. No. 10/631,253, dated Jun. 30, 2004, 4 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Dec. 5, 2006, 5 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Jul. 28, 2008, 5 pages. |
Office Action for U.S. Appl. No. 11/256,845, dated Jun. 22, 2006, 5 pages. |
Office Action for U.S. Appl. No. 11/370,085, dated Aug. 15, 2007, 10 pages. |
Office Action for U.S. Appl. No. 11/370,085, dated Dec. 4, 2007, 13 pages. |
Office Action for U.S. Appl. No. 11/370,085, dated Oct. 9, 2008, 5 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Jul. 17, 2008, 5 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Mar. 29, 2007, 8 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Oct. 26, 2006, 7 pages. |
Office Action for U.S. Appl. No. 11/402,434, dated Sep. 20, 2007, 7 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Feb. 26, 2010, 11 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Jul. 29, 2010, 7 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Jun. 20, 2012, 5 pages. |
Office Action for U.S. Appl. No. 12/075,103, dated Nov. 29, 2012, 6 pages. |
Office Action for U.S. Appl. No. 12/474,102, dated Sep. 7, 2011, 8 pages. |
Office Action for U.S. Appl. No. 12/892,663, dated Oct. 22, 2012, 12 pages. |
Office Action for U.S. Appl. No. 13/717,052, dated Aug. 22, 2013, 15 pages. |
Office Action on U.S. Appl. No. 12/075,103 dated Apr. 9, 2014, 5 pages. |
Office Action on U.S. Appl. No. 12/075,103 dated Jul. 31, 2013, 8 pages. |
Office Action on U.S. Appl. No. 13/246,769 dated Apr. 21, 2014, 18 pages. |
Office Action on U.S. Appl. No. 13/717,052 dated Dec. 23, 2013, 7 pages. |
Pessi et al., On the Relationship Between Lightning and Convective Rainfall Over the Central Pacific Ocean, date unknown, 9 pages. |
Robinson et al., En Route Weather Depiction Benefits of the Nexrad Vertically Integrated Liquid Water Product Utilized by the Corridor Integrated Weather System, 10th Conference on Aviation, Range, and Aerospace Meteorology (ARAM), 2002, 4 pages. |
Stormscope Lightning Detection Systems, L3 Avionics Systems, retrieved on Jul. 11, 2011, 6 pages. |
TOA Technology, printed from website: http://www.toasystems.com/technology.html on Dec. 29, 2010, 2 pages. |
Triangulation, from Wikipedia, printed from website: http://en.wikipedia.org/wiki/Triangulation on Dec. 29, 2010, 6 pages. |
U.S. Office Action on U.S. Appl. No. 13/717,052 dated Mar. 27, 2014, 6 pages. |
U.S. Office Action on U.S. Appl. No. 14/206,239 dated Jun. 16, 2016. |
U.S. Office Action on U.S. Appl. No. 14/206,651 dated Jun. 23, 2016. |
Waldvogel et al., The Kinetic Energy of Hailfalls. Part I: Hailstone Spectra, Journal of Applied Meteorology, Apr. 1978, 8 pages. |
Wilson et al., The Complementary Use of Titan-Derived Radar and Total Lightning Thunderstorm Cells, paper presented on Oct. 16, 2005, 10 pages. |
Zipser et al., The Vertical Profile of Radar Reflectivity and Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability? America Meteorological Society, 1994, 9 pages. |
Final Office Action on U.S. Appl. No. 14/206,239, dated Oct. 13, 2016, 17 pages. |
Final Office Action on U.S. Appl. No. 14/206,651, dated Dec. 8, 2016, 14 pages. |
Final Office Action on U.S. Appl. No. 14/207,034, dated Oct. 13, 2016, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 14/207,034 dated Mar. 24, 2017. 16 pages. |
Non-Final Office Action for U.S. Appl. No. 15/213,256 dated Apr. 27, 2018. 6 pages. |
Non-Final Office Action on U.S. Appl. No. 14/162,035 dated Jul. 11, 2016, 10 pages. |
Non-Final Office Action on U.S. Appl. No. 14/206,239, dated Feb. 24, 2017, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/207,034 dated Jun. 23, 2016, 14 pages. |
Non-Final Office Action on U.S. Appl. No. 14/465,753, dated Apr. 4, 2016, 12 pages. |
Non-Final Office Action on U.S. Appl. No. 15/137,645 dated Aug. 8, 2016, 6 pages. |
Notice of Allowance for U.S. Appl. No. 14/206,239 dated Aug. 31, 2017. 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/207,034 dated Jul. 13, 2017. 9 pages. |
Notice of Allowance on U.S. Appl. No. 14/086,844, dated Jun. 22, 2016, 8 pages. |
Notice of Allowance on U.S. Appl. No. 14/206,651, dated Mar. 3, 2017, 8 pages. |
Notice of Allowance on U.S. Appl. No. 14/465,753, dated Aug. 29, 2016, 8 pages. |
Entry for the word, “gradient” at Britannica Academic, at academic.eb.com. Accessed on Oct. 16, 2018. (Year:2018). |
Entry for the word, “gradient” at Wolfram MathWorld, at mathworld.wolfram.com. Accessed on Oct. 16, 2018. (Year:2018). |
Final Office Action for U.S. Appl. No. 15/213,256 dated Oct. 19, 2018. 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/213,256 dated Jan. 11, 2019. |