The invention relates generally to telecommunications methods and hardware. More specifically, the invention relates to private branch exchange systems of telecommunications services.
A private branch exchange (PBX) typically is used to provide telephony services to a relatively large number of users. For example, a business may use a PBX to provide telephone services between employees. A primary function of a PBX is to direct signals between various telecommunication devices that are coupled to the PBX. For example, an incoming signal may be switched from one connection to any of a large number of other connections depending on the ultimate destination of the incoming signal. To enhance the telecommunication service provided to users, current PBXs typically provide many optional features such as call transfer, auto attendant, voicemail, call forwarding, automatic ring back, conference call and others.
Historically, implementing a PBX has been expensive and difficult to afford for many small businesses and individuals. However, since the 1990′s, there has been an increasing number of “off-the-shelf’ solutions, including consumer-grade and consumer-size PBXs. These PBXs are not generally comparable in size, robustness or flexibility to commercial-grade PBXs, but still provide an attractive set of features.
Some proponents of more recent open source projects claim that their initiatives have finally brought PBXs within the reach of even more individuals and small businesses. The mentioned open source projects provide more flexibility and more features (often not needed or understood by average users) on standard hardware platforms, plus the ability to actually inspect and change the inner working of a PBX, They have also opened business opportunities for newcomers to the market of mid-size PBX, since they have lowered the entry barrier for new manufacturers.
Typically, in order for a personal computer (PC) to serve as an element of a PBX, the PC is linked or coupled to telecommunication interface modules. A link should be adaptable so that a variety of telecommunication interface modules can be coupled to the personal computer. Further, a link should provide a full duplex exchange of control information and telecommunication data between the personal computer and the telecommunication interface modules. One component typically included in the link is a conversion circuit (converter). Converters are generally expensive and often have little or no flexibility in providing custom PBX features. Thus, while various solutions permit smaller business and individuals to utilize PBX functionality, many solutions are still quite expensive to upgrade and to expand their functionality.
In some aspects, the invention relates to a telecommunications system, comprising: a first IP PBX located at a first site and configured for coupling to IP user devices; a second IP PBX located at a second site and coupled to the first IP PBX over a packet network, the second IP PBX configured for coupling to IP user devices; and logic for automatically initiated migration from the first IP PBX to the second IP PBX when a failure of the first IP PBX occurs wherein the first IP PBX and the second IP PBX have an optimized premise PBX software.
In other aspects, the invention relates to a telecommunications system, comprising: a first IP PBX located at a first site and configured for coupling to IP user devices; a second IP PBX located at a second site and coupled to the first IP PBX over a packet network, the second IP PBX configured for coupling to IP user devices; and means for transferring the configuration of the first IP PBX to the second IP PBX when a failure of the first IP PBX occurs.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
It should be noted that identical features in different drawings are shown with the same reference numeral.
PBX.
An embodiment of communication system 100 in accordance with the present disclosure is depicted in
In one embodiment the modified premise IP PBX 31 provides exchange service for the IP phones 20 and other device typically attached to a branch exchange. In the event of failure of the modified premise IP PBX 31 a notification signal activates the modified hosted IP PBX 56 to provide service to IP devices that were using the modified premise IP PBX 31. The modified hosted IP PBX 56 provides service until premise available notification is received. The time to migrate between the PBXs 31, 56 is seamless and essentially undetected by a user. The premise available notification is sent from the premise when the failure of the modified premise IP PBX 31 is resolved.
For some customer having limited PBX needs, such as having 2 or 3 IP phones, a hosted IP PBX is the best value. However, as the needs of the customer increase it is often advantageous to migrate from a hosted system to a premise system. The structure shown in
A method embodiment for providing IP PBX backup is depicted in
A method embodiment for migrating from a hosted exchange service to a premise exchange service 400 is depicted in
The disclosure is a system that allows a seamless transition to and from a premises PBX solution and a hosted PBX solution. The system creates, stores, and shares a platform-agnostic, abstracted representation of a system's configuration (an ‘abstracted snapshot’), and to applies the abstracted snapshot seamlessly to an on-premises system or to a hosted system. This system is useful to consumers because it offers a seamless upgrade to a more robust system, it is also useful because it offers a seamless process for failing over to a different system.
For example, a small company with 5 employees chooses to use a Switchvox™ hosted service for their telecommunications needs. As the business grows, and the business may be employing 30 people and have outgrown the hosted system, and now it is desired to have their own system on-premises. With Switchvox™, they simply plug in a new Switchvox™ computer at their premises, and apply the abstracted snapshot from their hosted system. All of their extensions, voicemail, IVRs etc., along with historical logs, are available to them and their telecommunications system is intact and functioning as normal.
For example, if failover occurs there is a seamless migration. A company with 200 employees desires to ensure that their telecommunications system has minimal downtime. A primary system is on-premises, and a remote failover system available in the event that their premises system fails. With Switchvox™, they establish a periodic upload of their on-premises abstracted snapshot to the remote failover system. In the event that their primary on-premises system fails, they apply the abstracted snapshot to the remote system, with minimal downtime and little fuss, their telecommunications system is intact and functioning as normal. The migration of the snapshot can be automatic and/or manual. A manually initiated migration will be needed to restore the most recent data that was accumulated since the last backup.
The Switchvox™ software that enables the software to operate seamlessly in the hosted IP PBX and the premise IP PBX is a platform-agnostic, abstracted representation of a consumer's system is what allows the seamless transition to another system. There is code that creates, stores, and uploads this abstract snapshot and may be a component of the disclosure. In another embodiment, Asterisk™ is the software component within Switchvox™ that provides tile calling capabilities including most of the phone system functions.
The premise PBX and hosted PBX of the disclosure perform call processing duties including: establishing connections (circuits) between the telephone sets of two users (e.g., mapping a dialed number to a physical phone, ensuring the phone isn't already busy); maintaining such connections as long as the users require them (e.g., channeling voice signals between the users); disconnecting those connections as per the user's requirement; and providing information for accounting purposes (e.g., metering calls).
In addition to the above functions, the disclosed system may offer other advantages. The premise PBX and hosted PBX combination can provide a user with growth or shrinkage capabilities with the use of multiple premise PBX systems at a users location. While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed here. Accordingly, the scope of the invention should be limited only by the attached claims.
This application claims priority as a continuation-in-part of U.S. patent application Ser. No. 12/640,209 entitled “SYSTEM AND METHOD FOR PROVIDING IP PBX SERVICE” that was filed on Dec. 17, 2009 which claims priority from U.S. Provisional Patent Application No. 61/138,318 entitled “SYSTEM AND METHOD FOR PROVIDING IP PBX SERVICE” that was filed on Dec. 17, 2008 which is incorporated herein by reference. This application is related to U.S. patent application Ser. No. 11/585,787 filed on Oct. 24, 2006 entitled “Method and Apparatus for Converting Parallel Bit Data into Multi-Port Steered Serial Data Stream”, which is incorporated herein by reference. This application is also related to U.S. Pat. No. 6,795,448 issued on Sep. 21, 2004 entitled “IP Packet Ready PBX Expansion Circuit for a Conventional Personal Computer with Expandable, Distributed DSP Architecture” and U.S. Pat. No. 7,023,867 issued on Apr. 4, 2006 entitled “PBX with Configurable Analog CO Line and T1 Signaling Protocols Using Packet Bus and Software Switch WAV Channels DSP Architecture”, which are both incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61138318 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12640209 | Dec 2009 | US |
Child | 12722452 | US |