The invention relates generally to a visual means for a mobile sensing system for refining camera poses used to acquire multiple views of a scene. More specifically, the invention relates to an improved system and method for estimating range including objects in the images from various distances.
A persistent issue in the sensing system is the need to determine the structure of a scene, including objects seen at long distances using a mobile platform. Scene structure recovered in the range of 50 m-1000 m is useful for planning for autonomous mobility and mapping unobserved areas. Sensing from 100 m-2000 m is useful for reconnaissance, surveillance, and target acquisition (RSTA), target designation, and cueing automatic target recognition (ATR). The difficulty with using images from a moving platform is knowing the precise relationship (position and direction) between the cameras that acquired the images. In particular, the relative pointing angles between the cameras must be known to a milliradian or better.
A conventional approach is to use a laser range finder or LADAR, but these ranges require high power, and LADAR is emissive. So, the scene structure typically recovered from LADAR sensing has power/speed/resolution limitations at the ranges of interest (hundreds of meters to a kilometer or more).
Vision stereo with a fixed baseline can also be used to acquire range information. Accurate range estimates for objects that are a kilometer away, however, requires a 10 m baseline, which is impractical for a mobile, fixed-baseline system. Passive depth recovery at mid-ranges requires longer baselines than can be achieved by a practical fixed-baseline stereo system. So, scene structure recovered from conventional stereo vision systems have a fixed baseline that limits range and/or mobility of the stereo system.
Thus, a need exists in the art for an improved sensing system for estimating range and detecting the objects from large distances.
The present invention provides a method for detecting range of at least one object of a scene. The method comprises receiving a set of images of the scene having multiple objects from at least one camera in motion. The images are obtained at different locations of the camera. The method also comprise selecting images having at least one of the object and computing data related to estimation of a position and orientation of the camera and position and orientation of the selected images. The method further comprise determining a projected location of the object based on the computed data and adjusting the estimated orientation of the camera for each of the selected images based on the projected location of the object.
Furthermore, there is provided a computer program product comprising computer readable storage medium having a computer program stored thereon for performing the method described above.
The basic scenario in the present invention is that images of essentially the same scene are captured from multiple viewpoints. The images are captured preferably due to one camera mounted on a moving platform or alternatively due to multiple cameras mounted on the moving platform that are moving through the scene. So, if the relative camera positions are known, the present invention proposes to rectify the images (correct them for differing camera orientations) prior to computing the stereo disparity (through image-matching techniques) to determine the range to objects in the scene. Referring to
The current invention assumes that the positions of the cameras are known well enough but that individual orientation measurements are not accurate enough to permit range estimation at distances of interest. So, in order to correct the error in individual camera orientations, a multiple view pose adjustment of the raw images are performed at step 110 using the measurements of the camera metadata 102. Then, using the multiple view pose adjustment 110 and the camera orientation 106, an improved orientation of the camera is obtained at step 112. Upon obtaining the adjusted improved orientation 112, the images can be rectified at step 114, which is followed by the standard stereo analysis of image pairs to obtain dense range maps at step 116. Image rectification 114 and standard stereo pair analysis 116 are procedural steps well known in the art.
The procedural steps of multiple view pose adjustment 110 and improved orientation 112 will be described in greater detail herein with respect to
In
Referring back to
The imagery including the general steps of
Now referring back to
Dense stereo for foreground objects is computed most effectively by comparing the current image with a nearby image, for which the effective baseline is short (for example, 1 m or less). Dense stereo for distant objects is computed most effectively by comparing images with a wider separation, for which the effective baseline is longer (for example, 10 m). In general, different baselines can be chosen to compute dense stereo for different regions of the image, according to the distance of features in that part of the image. Short-baseline stereo indicates where the disparity is small, requiring a longer baseline. Stereo in these areas can be computed with increasing separation between cameras, until the range to the most distant features is determined. The output is a composite range image having range estimates obtained for the distant background (1800 m) as well as the foreground (5 m) as shown in
This implementation involves a “boot-strap” element, known to one skilled in the art, in which un-corrected poses are used to identify regions of the image that are not close to the camera, to seed the feature selection. The output of the system improves as a history of tracked features accumulates, and pose adjustment becomes possible. Alternatively, one can use a conventional fixed-baseline stereo with a short baseline (on the order of 0.5 m) to obtain the range estimates needed to choose distant features.
Note as described above in
The pose adjustment process 308 will now be described in greater details with respect to the graphical representation of the ray bundles in
To estimate a single intersection point, consider the slope of each ray 402 as a function of its initial X coordinate, as illustrated in
Referring to
Furthermore, for efficiency and fidelity the correction for lens distortion is performed as part of the stereo calculation. The projective transformation used to rectify images is combined with the lens distortion correction to obtain an overall flow field. This overall flow field is applied to the raw image to obtain a rectified image with just one warp. In principle, the pose adjustment needs an image corrected for lens distortion, but without any correction for camera orientation.
In the preferred embodiment of the present invention, the camera lens distortion correction and projective rectification are combined in a single image warping operation, to reduce processing time and image smoothing due to multiple warping operations. The problem is resolved by tracking features in the raw (distorted) image, but converting the image coordinates of each feature to those for an undistorted image when the feature track is stored. The pose adjustment is then carried out using an ideal camera model. A similar problem arises with the selection of distant features. Tracking is performed with raw (distorted) images, but the range information needed for selecting features is computed in undistorted, rectified images. Here the solution is to warp the range image from rectified to distorted coordinates.
Thus, the present invention provides a visual means to determine the range to distant objects by simultaneously locating points in the world and refining camera pointing angles. The techniques described above could be used with intermediate and long range observations to refine the camera poses (positions and orientations) to obtain a self-consistent set of range information. Note that the present invention is not limited to moving platforms on ground and may preferably include moving platforms on air needed to sense the environment.
Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings without departing from the spirit and the scope of the invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 11/860,650, filed Sep. 25, 2007, and U.S. provisional patent application Ser. No. 60/847,000, filed Sep. 25, 2006. The aforementioned related patent applications are herein incorporated by reference in their entirety.
This invention was made with U.S. government support under contract number DAAD19-01-2-0012. The U.S. government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
5768443 | Michael et al. | Jun 1998 | A |
6359695 | Takahashi et al. | Mar 2002 | B1 |
7389002 | Knight | Jun 2008 | B1 |
7561188 | Kondo et al. | Jul 2009 | B2 |
20020001094 | Yoshida et al. | Jan 2002 | A1 |
20030179398 | Takano et al. | Sep 2003 | A1 |
20030210329 | Aagaard et al. | Nov 2003 | A1 |
20040247174 | Lyons et al. | Dec 2004 | A1 |
20050174586 | Yoshida et al. | Aug 2005 | A1 |
20050279172 | Schreier et al. | Dec 2005 | A1 |
20080065350 | de Groot et al. | Mar 2008 | A1 |
20090079813 | Hildreth | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120082340 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
60847000 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11860650 | Sep 2007 | US |
Child | 13242533 | US |