The invention relates to the use of cooling steam provided from a boiler for limiting metal stresses in a turbine of a turbomachine.
WO 01/86121 A1 discloses a method for cooling a shaft in a high-pressure expansion section of a steam turbine. A steam generator is provided to produce live steam with a temperature and a pressure that is higher and lower, respectively, than cooling steam that is removed from the steam generator for cooling the shaft. A high pressure expansion section is provided with a feed for the cooling steam.
Japanese Patent Application Publication 9-250306 discloses that steam bred from an intermediate stage of a boiler is mixed with high pressure initial stage nozzle outlet leak steam to prevent lowering of material force of an intermediate pressure initial stage bucket stud part.
In one embodiment of the invention, a system for cooling a high pressure section of a turbomachine comprises a conduit configured to carry cooling steam from a boiler to a space upstream of a first stage nozzle of the turbomachine. The conduit extends through a housing of the turbomachine and a nozzle diaphragm of the first stage nozzle. The system further comprises a control valve in the conduit configured to regulate the flow of cooling steam.
In another embodiment of the invention, a turbomachine comprises a housing; a turbine shaft rotatably supported in the housing; and a plurality of turbine stages located along the turbine shaft and contained within the housing. Each turbine stage comprises a diaphragm attached to the housing. The diaphragm comprises a plurality of nozzles. A hole is provided in the diaphragm upstream of a first stage of the plurality of stages for the introduction of cooling steam.
In a further embodiment of the invention, a method of cooling a high pressure section of a turbomachine is provided. The turbomachine comprises a housing, a turbine shaft rotatably supported in the housing, and a plurality of turbine stages located along the turbine shaft and contained within the housing. Each turbine stage comprises a diaphragm attached to the housing. The diaphragm comprises a plurality of nozzles and at least one hole provided in the diaphragm upstream of a first stage of the plurality of stages. The method comprises introducing cooling steam into the turbomachine through the at least one hole.
Referring to
The pipe 8 has a control valve 6 that allows the flow of cooling steam to be adjusted in accordance with the load requirements of the turbine 24. The flow of cooling steam travels along the pipe 8 and is fed to the turbine 24 through the outer housing or shell 20 of the turbine 24. The pipe 8 is branched off into a first branch 8a and a second branch 8b.
Referring to
Referring to
The nozzle diaphragm inner ring portion 22 supports seals 16 provided between the nozzle diaphragm inner ring portion 22 and the outer surface of the rotor 10. The nozzle diaphragm outer ring portion 28 supports spill strip seal rings 18 which surround the turbine blades 14. It should be appreciated that the turbine blades 14 may be provided with a cover on the outer radial surface of the turbine blades 14.
As shown in
Referring to
By using the high reaction, full arc first stage in the high pressure expansion turbine 24, the cooling steam limits the metal stresses in the turbine 24 because the cooling steam is provided to the high pressure area of the turbine 24, the cooling flow is provided from the boiler 2, as the pressure needs to be higher than the throttle pressure of the turbine 24.
The control valve 6 is used to regulate the cooling flow by allowing the cooling flow to be adjusted with the load requirements of the turbine 24. This allows the use of a high efficiency, low reaction first stage without compromising the performance of the turbine 24. The configuration shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4309873 | Koran et al. | Jan 1982 | A |
5253976 | Cunha | Oct 1993 | A |
5320483 | Cunha et al. | Jun 1994 | A |
5340274 | Cunha | Aug 1994 | A |
6224327 | Aoki et al. | May 2001 | B1 |
6397604 | Eldrid et al. | Jun 2002 | B2 |
6779972 | Farrell et al. | Aug 2004 | B2 |
6896482 | Parry | May 2005 | B2 |
7003956 | Yamashita et al. | Feb 2006 | B2 |
Number | Date | Country |
---|---|---|
9-250306 | Sep 1997 | JP |
WO 0186121 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100021283 A1 | Jan 2010 | US |