The present invention relates in general to remote security application client administration and, in particular, to a system and method for providing Web-based remote security application client administration in a distributed computing environment.
Corporate information technologies are built on enterprise computing environments. These environments typically consist of localized intranetworks of computer systems and resources internal to the organization and geographically distributed internetworks, including the Internet. The intranetworks make legacy databases and information resources available for controlled access and data exchange. The internetworks enable internal users to access remote data repositories and computational resources and allow outside users to access select internal resources for completing limited transactions or data transfer.
Unfortunately, enterprise computing environments are also susceptible to security compromise. A minority of surreptitious users routinely abuse and violate computer interconnectivity by disrupting information processing, defeating security measures and intruding into private computer resources without authorization. Such “hackers” pose an ongoing concern for security administrators charged with safeguarding data integrity and computer security within an enterprise computing environment.
Current tools for administering security applications are lacking and generally incapable of responding quickly enough to avoid wide-spread computer virus infections. The severity of the problem was graphically illustrated by the recent “Love Bug” and “Anna Kournikova” macro virus attacks in May 2000 and February 2001, respectively. The “Love Bug” virus was extremely devastating, saturating email systems worldwide and causing an estimated tens of millions of dollars worth of damage. These examples illustrating the alarming speed of computer virus infection rates underscore the importance of fielding up-to-date computer security applications to every client operating in an enterprise computing environment. As well, updates and patches must be applied as quickly as possible to maximize anti-computer virus protection.
The fielding and installation of security applications generally fall into three categories. The first category employs the manual installation of security applications, using the physical or electronic transfer of installation, configuration, update and patching files onto target clients, one client at a time. This process is time-consuming and offers little opportunity for efficient concurrent installation. The time required and complexity of administration increases with the number of machines and variations between configurations.
The second category employs “pull” installations. This approach is client-based, whereby each client will initiate the copying of security application files from a centralized server responsive to a periodic schedule or user command. The downloaded files are executed and the new configuration takes effect, generally upon system reboot.
The third category employs a centralized administration console, such as provided by the Systems Management Server, licensed by Microsoft Corporation, Redmond, Wash. The security administrator initiates the installation of security or other types of applications onto individual clients from a centralized server-based console. However, this approach requires a specific server configuration and can only be performed on the proprietary administrator's console.
Therefore, there is a need for an approach to provide rapid and highly concurrent installation, configuration, updating, and patching of remote security and non-security applications operating on individual clients. Preferably, such an approach would be centrally controlled with decentralized operation and include a Web-based interface for a simplified user experience.
The present invention provides a system and method for remotely administering client applications, and in particular, security client applications. A secure portal is defined by Web pages exported as dynamic content from a Web server. The administrator is credentialed and can select one or more target clients within a domain for administration. The client application is copied to each target client for remote installation and setup. By using the Web-based administration server, the administrator can have centralized control and decentralized operation.
An embodiment of the present invention is a system and a method for providing Web-based remote security application client administration in a distributed computing environment. A self-extracting configuration file is stored. The self-extracting configuration file contains an executable configuration file that is self-extractable on a target client into an administered security application. An executable control is embedded within an active administration Web page. The executable control is triggered upon each request for the active Web page and causes dynamic Web content to be generated therefrom. A Web portal including the active administration Web page is exported to a browser application independent of a specific operating environment. The executable control is interpreted to facilitate copying of the self-extracting configuration file to the target client.
Still other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein is described embodiments of the invention by way of illustrating the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modifications in various obvious respects, all without departing from the spirit and the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
A browser application 17 executes on the administrator system 11. Web pages are requested and retrieved from a server 16 interconnected to the administrator system 11 over the internetwork 15. The server 16 includes a storage device 21 in which a file system is maintained for the storage of files and information. The server 16 executes a Web server 20 which receives, processes replies to requests from the administrator system 11. Web content, in the form of Web pages, is sent to the administrator system 11 for interpretation and display on the browser application 17.
The administrator system 11 is responsible for the remote administration of applications and, in particular, security applications, fielded to the clients 12 and remote clients 14. For convenience, clients are administered by domain. By way of example and illustration, the clients 12 connected over the intranetwork 13 are grouped into a first domain 18, Domain A, and the remote client 14 is grouped into a second domain 19, Domain B. Client applications executing in each of the domains 18, 19 can be remotely administered by the administrator system 11. Remote administration includes the operations of installing, configuring, updating and patching applications and, in particular, security applications, such as virus scanning, virus screening, active security, firewall, and virtual personal networks (VPNs).
For each domain 18, 19, the administrator system 11 executes a credentialed administration Web page, as further described below beginning with reference to
In addition to credentialing users, the administration Web page includes controls for copying applications (apps) 23 from the storage device 21 of the server 16 to the individual clients 12 transparently to the administration system 11. The applications 23 are stored as self-extracting configuration files, that is, self-extractable on a target client.
Through the use of Web-based administration, the clients 12 and remote clients 14 can be remotely administered using a centralized administration console with decentralized operation available on any system upon which a browser application can operate. As would be recognized by one skilled in the art, other network topologies and configurations, including various configurations using intranets, internetworks, direct connections, dial-up connections, or by a combination of the foregoing are possible.
The individual computer systems, including the administrator 11, clients 12, remote client 14, and server 16 are general purpose, programmed digital computing devices consisting of a central processing unit (CPU), random access memory (RAM), non-volatile secondary storage, such as a hard drive or CD ROM drive, network interfaces, and peripheral devices, including user interfacing means, such as a keyboard and display. Program code, including software programs, and data are loaded into the RAM for execution and processing by the CPU and results are generated for display, output, transmittal, or storage.
The control admin.asp 32 provides security to each domain 18, 19. Any attempt to administer applications on the individual clients 12, 14 requires a user to first credential with the Web server 20 before being allowed to copy applications 23 onto each of the individual clients 12, 14.
A library of applications 23 is maintained with the controls 22. In the described embodiment, each client application 23 is stored on a cabinet (.cab) file, a standardized convention for compressing and distributing a repository of files comprising an individual application. Thus, once credentialed, an individual client applications program.cab1 through program.cabn is copied from the applications library 23 onto the target client as an executable installation file program.cabi 35. Once copied to the target client, the content of the file 35 is extracted and installed on the target client 12, 14, as further described below with reference to
Each control 22 is a computer program, procedure or module written as source code in a conventional programming language, such as the Java or Visual Basic programming languages, and is presented for execution by the CPU of the server 20 as object or byte code, as is known in the art. The various implementations of the source code and object and byte codes can be held on a computer-readable storage medium or embodied on a transmission medium in a carrier wave. The server 20 operates in accordance with a sequence of process steps, as further described below beginning with reference to
In the described embodiment, the executable configuration file 33 is remotely copied to the individual clients 12 and remote clients 14 using digital signature technology, thereby adding an additional layer of security to the remote administration process.
Once credentialed, the administrator control 32 (shown in
During operation, the administrator can interactively select (blocks 73–76) client application installation (block 74), as further described below with reference to
The portal consists of a series of Web pages and panels that are dynamically generated by the Web server 20 responsive to administrator requests sent by the browser application 17. Active controls 22 are executed by the Web server 20, using the languaging script interpreter 31, and executable configuration files 35 (shown in
First, a domain selection screen is exported, such as shown, by way of example, in the screen shot 40 discussed above with reference to
In the described embodiment, the Windows NT (v.4, Service Pack 3 or higher), and Windows 9X (Windows 95, Windows 98, Windows ME, Windows 2000) operating environments are supported, although other similar operating environments could also be administered, as would be recognized by one skilled in the art. The conventions described herein are based on the aforementioned operating environments, but can be generalized to other forms of file directories and installation methodologies.
For all installations, the administrator must have remote administration privileges for each of the target clients. The administration folder admin$ is located and mapped to the browser application 17 (shown in
The status of the installation is then reported, such as by way of the status screen 55 described above with reference to
While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6035423 | Hodges et al. | Mar 2000 | A |
6108420 | Larose et al. | Aug 2000 | A |
6256668 | Slivka et al. | Jul 2001 | B1 |
6347398 | Parthasarathy et al. | Feb 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6675382 | Foster | Jan 2004 | B1 |
6742026 | Kraenzel et al. | May 2004 | B1 |
20040139430 | Eatough et al. | Jul 2004 | A1 |