This invention relates generally to the authentication and authorization field, and more specifically to a new and useful system and method for proxying authentication providers in the authentication and authorization field.
Security Assertion Markup Language (SAML) is an XML-based data format used for security assertions. Service providers (SP) will typically allow an entity (e.g., a user, administrator, or enterprise) to configure the system for SAML delegation to an identity provider (IdP). For an enterprise, instead of making employees maintain multiple authentication credentials for internal enterprise system and for the service provider, the service provider can use the IdP so only one set of credentials may be used by an employee. When the user attempts to use a service of the service provider, the SP can request to authenticate the user through the IdP. Based on an identity assertion response of the IdP, the SP can make an access control decision. Many service providers only allow a single IdP service to be configured. However, such implementation limits authentication security to the security level of the IdP. Thus, there is a need in the authentication and authorization field to create a new and useful system and method for proxying authentication providers. This invention provides such a new and useful system and method.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. System for Proxying Authentication Providers
As shown in
As shown in
The federated authentication proxy system 100 of the preferred embodiment is a network accessible resource that interfaces with a service provider, an IdP, two-factor authentication transactions, and a user agent. The federated authentication proxy system 100 may be configured to run on a server, a cluster of servers, a distributed computing system or any suitable network accessible computing infrastructure. The federated authentication proxy system 100 can be a cloud hosted or externally hosted component, but the federated authentication proxy system 100 can alternatively be an on-premise component operating on machines controlled a SP or at least within a local network of the SP. The proxy system 100 additionally includes any suitable databases, load balancers, processors, or components. The SAML preferably includes an account system such that a principal entity may configure at least one IdP to be used when a corresponding user account makes an access request of a service provider.
In one variation, the federated authentication proxy system 100 is a SAML proxy 102, as shown in
In another preferred variation, the federated authentication proxy system 100 is an OpenID Connect proxy 104 as shown in
Similar to how the SAML configuration is set up to integrate the SAML proxy as an intermediary component in an SP-IdP authentication network, the OpenID Connect proxy 104 is preferably an intermediary component in the RP-OP authentication network. OpenID Connect integration with a service provider can include registering the SP emulator 120 with the OP. A URI of the OpenID Connect proxy (e.g., a URI of the service provider emulator endpoint) can be set in the OP. The OP may provide a client ID and a client secret certificate/token as well as an authorize endpoint URI, token endpoint URI, and a user info endpoint URI. Similar properties are then set in the OpenID Connect proxy 104 to configure the SP emulator 120 using Within the IdP interface 110 of the OpenID Connect proxy 104 similar configurable attributes can be provided such that properties provided by the RP can be entered in the proxy such that the RP uses the OpenID Connect proxy 104 as an OP.
In another variation, the federated authentication proxy system 100 can be a general purpose multi-protocol system that functions to proxy and optionally translate between a variety of federated authentication protocols. The SP protocol can be automatically detected and relayed, converted, or translated for an external IdP. A service provider could be SAML based, OpenID Connect based, or based on any suitable federated authentication protocol. And similarly, an IdP could be SAML based, OpenID Connect based, or based on any suitable federated authentication protocol. The SP and the IdP can use different protocols as shown in the multi-authentication service proxy 108 variation in
The IdP interface 110 of the preferred embodiment functions to simulate an authentication provider of the service provider. A service provider can preferably be configured to communicate with the IdP interface 110 in place of an existing IdP. As mentioned above, the SP may alternatively use other authentication providers, in which case the IdP interface 110 and the proxy system 100 preferably proxies as a compatibility layer for the associated authentication provider (e.g., LDAP/RADIUS). From the point of view of the SP, the proxy system 100 can appear as a standard authentication provider. The IdP interface 110 is preferably integrated within the proxy system 100, but the IdP interface 110 may alternatively be a component communicatively coupled to the proxy system 100. The IdP interface 110 manages communication with the SP, receiving SP identity requests and transmitting assertions. The assertions to the SP will preferably be based on the combined assertions of the IdP (i.e., the authentication provider) and at least the second factor of authentication.
IdP (or an OP in the variation of OpenID Connect) or more generally an authentication provider can depend on various attributes (as in SAML) or scopes (as in OpenID Connect). These attributes can be detected and automatically translated for use with the protocol of the intended IdP. These attributes are preferably passed into the IdP interface 110, translated or reformatted, and delivered through the SP emulator 120. The system can include automatic protocol detector that uses attributes and protocol communications to automatically select and engage different forms of protocols of the SP and/or the SP.
The SP emulator 120 of the preferred embodiment functions to simulate the requesting SP to an outside IdP. The SP emulator 120 may use the SP identity requests received by the IdP interface 110. Alternatively, the SP emulator may process, modify, supplement, generate or augment SP identity requests sent to the IdP. The IdP will preferably perform the regular authentication process since the emulation of a SP by the SAML proxy is preferably substantially transparent to the IdP. As described above, the SP emulator may additionally or alternatively be configured to interface with other types of authentication providers such as LDAP/RADIUS systems.
The secondary-layer authentication engine 130 of the preferred embodiment functions to facilitate a second factor of authentication. The secondary-layer authentication engine 130 may be an implementation of two-factor authentication (TFA), but alternatively, the secondary-layer authentication engine 130 may be an interface to a two-factor authentication service or other service for an additional factor of authentication. The SAML proxy 102 may additionally include any suitable number of additional factors of authentication. There can be an authorization layer, a secondary device factor of authentication, a biosecurity factor of authentication, an informational challenge layer, a permissions layer, or any suitable additional layer of authentication or authorization to supplement the services of the IdP. The secondary-layer authentication engine 130 can be executed in parallel to IdP, but may alternatively be sequence (e.g., as an initial stage before IdP or as a follow up stage after use of the IdP). The SAML proxy 102 may additionally be configured to use any suitable logic to direct the use of additional authentication factors. For example, some requests may be processed with one form of two-factor authentication, and other types of requests may be processed with a second form of two-factor authentication.
The system is preferably configured such that authentication requests are initiated by the service provider. As an alternative or additional configuration, the system can be integrated in a system architecture where an authentication assertion is initiated by the IdP entity. For example, single-sign on systems can function as an interface to an IdP like service, but instead of pushing an authentication to an external IdP, the single-sign on system can generate an authentication assertion and then publish the assertion to one or more service providers through an access control proxy 109 as shown in
The system can additionally include an account system 140 that includes account databases and records to coordinate multi-tenant use of the services of a proxy service. The account system manages different SP, IdP, and/or secondary layer of authentication configuration. In one exemplary implementation, a plurality of proxy systems 100 can be implemented with a loadbalancer or other suitable work distributor. The authentication requests (and similarly any authentication assertions) can be distributed to different proxy server instances, which functions to allow multiple different service providers to use the system for different customized types of authentication. General IdP interfaces 110 (e.g., one URI) can be used, wherein authentication requests are processed according to account instance identifier attributes submitted in a request. Alternatively, individually assigned IdP interfaces can be used to further distinguish between authentication requests of different service providers.
2. Method for Proxying Authentication Providers
As shown in
As described above, a federated authentication proxy is preferably employed when a principal entity (e.g., an enterprise with a plurality of employees using a service) wants to enable a second layer of authentication and/or authorization security on top of an existing IdP. The principal entity (i.e., the managing account”) preferably configures federated authentication proxy settings of an SP to use a URI (or other suitable identifier) of the IdP interface of the federated authentication proxy service. Additionally, the principal entity can configure the federated authentication proxy service with an IdP. For example, Company A will set the SAML delegation URI field in a Sales Service Provider from a previous setting of idp.example.com to idp-proxy.duosecurity.com, and configure account settings of the SAML proxy to use idp.example.com and a two-factor authentication service. In such an exemplary use-case scenario, the principal entity can use existing IdP systems while adding additional authentication and authorization security through use of the SAML proxy. Other variations of federated authentication proxy solutions can similarly be implemented such as an OpenID Connect proxy.
The method can include configuring a managing account instance with SP configuration, secondary layer authentication configuration and/or IdP configuration S108, which functions to set a federated authentication proxy to setup an IdP, a two-factor authentication system or service, an SP, and/or any suitable settings of the proxy. Configuring the managing account instance can include providing an administration interface to the federated authentication proxy server service. Each entity preferably configures use of the federated authentication proxy at least partially through account settings as shown in
The SP configuration is provided through the administration interface (i.e., a control panel) such that an account user of the SP can set up their SP account to use the proxy server as a federated authentication proxy server. The IdP configuration is provided through the administration interface such that the account user can additionally configure the proxy server to simulate a service provider to a selected IdP.
Providing the administration interface can additionally include providing an automatic configuration interface, wherein the SP and/or the IdP are automatically configured by authenticating with the SP and/or the IdP in an administrator control panel of the proxy service. In one variation, read/write privileges of the existing IdP settings in the SP and/or IdP can be granted to the proxy service. If the SP exposes an API for setting of the IdP service, the system of the federated authentication proxy may programmatically set the federated authentication proxy as the IdP service. The existing configuration are accessed to determine the original SP and IdP setup; then the configuration settings are modified to splice the authentication proxy server as an intermediary authentication node that supplements federated authentication with an additional layer of authentication. Alternatively, a user can select the SP and the IdP, authenticate with both services, and the settings are modified based on the selection.
In one preferred implementation, the federated authentication proxy is used as a multitenant federated authentication proxy shared by a plurality of entities. Each entity may additionally be configured for individually configured IdP services and/or two-factor or alternative authentication/authorization. Preferably, an IdP interface URI that is unique to each entity account may be provided to the respective entity. In that way, when an SP makes requests to the federated authentication proxy server, the federated authentication proxy server can determine which entity account and/or IdP configuration to use. An entity account may additionally include a plurality of proxy settings for various service providers. In an alternative implementation, the SAML proxy is a service component or components operating within an internal network of a principal entity as an on-premise solution.
In one preferred implementation, the federated authentication proxy is provided in combination with a two-factor authentication service. The settings of an existing two-factor authentication system may be applied to account settings of the federated authentication proxy. In an alternative implementation, configuring a two-factor authentication service may include receiving two-factor authentication account credentials.
Step S110, which includes receiving a service provider (SP) identity request through an identity provider interface, functions to emulate an IdP during execution of the authentication protocol from the perspective of the SP. The SP will preferably be configured to communicate with the federated authentication proxy. The SP will preferably identify an identifier of the federated authentication proxy when identifying a preferred IdP of a user agent, and redirect the user agent to the federated authentication proxy. The identifier of the federated authentication proxy is preferably a URI and more preferably a URL, but may be any suitable identifier. Communication to the URL is preferably retrieved and managed by the IdP interface of the federated authentication proxy. The SP will preferably be anticipating an IdP assertion response according to the federated authentication protocol. An SP configured to use a SAML based IdP will use the SAML protocol. An SP configured to use OpenID Connect will follow the OpenID Connect communication protocol. Upon initially receiving the SP authentication request the federated authentication proxy initiates a process of submitting the request to an IdP and conditionally performing a second-factor of authentication.
Step S120, which includes transmitting a proxy identity request to a configured identity provider (IdP) through a SP emulator, functions to convert the identity request of the SP to be a proxy identity request from the federated authentication proxy to the IdP. From the perspective of the IdP, the federated authentication proxy is a SP. Blocks S120 and S130, which function to retrieve an identity assertion from an IdP, include emulating a service provider in a second instance of a federated authentication protocol when transmitting, receiving, or performing other stages of the authentication protocol. When initiating communication (e.g., transmitting the proxy identity request), an appropriate IdP and configuration is selected. The selection of the IdP is preferably based on the identifying properties of the identity request from the SP. An identifier. In one variation, a unique URI is given to the SP to be used for a particular managing account instance.
Preferably, a user agent that had been directed to the federated authentication proxy in Step S110 will be subsequently redirected to the configured IdP. The redirection to the IdP can be transparent such that the user experiences the SP simply directing to the IdP as shown in
In one preferred implementation, the SP and the IdP use common federated authentication protocols. In alternative implementations, the second instance of the authentication protocol is a different protocol, and the SP emulator (or another suitable component) translates from an authentication protocol of the SP to an authentication protocol or the IdP. For example, a SAML based SP can use an OpenID Connect based IdP. Similarly, the converse can occur for translating from an OpenID Connect protocol to a SAML protocol. The translation can be automatically invoked based on the configuration of the SP and/or the IdP. Translation between SAML and OpenID Connect can include translation between attributes of SAML and scope properties of OpenID. In one implementation a table of attribute mappings can be maintained that provide attribute translation patterns between the protocols. One exemplary mapping could translate based on an attribute name (e.g., OIDC “given_name” vs SAML “givenName”). Translation can additionally occur on attribute values. For example, the OIDC address attribute can be changed to a JSON structured object. Additionally differents in the format of the protocols spoken (e.g., between SAML and OIDC), translation of attribute envelope/messages can further be used (e.g., JSON claims in OIDC vs XML in SAML).
The IdP preferably performs the identity authentication and/or authorization of the IdP. In one variation, the IdP collects username and password information, which can be validated by the IdP. The IdP preferably includes user/account databases that can be used to authenticate credentials and then perform any suitable signing or cryptographic procedures to assert valid authentication back to the SP. The assertion of the IdP (successful or unsuccessful) is then transmitted back to the configured SP of the IdP (in this leg of communication the configured SP of the IdP is the service provider emulator of the federated authentication proxy server). The federated authentication proxy is preferably agnostic to the operational details of the IdP as the IdP is preferably an outside service selected and controlled by a principal entity. In one preferred implementation, the federated authentication proxy server and the IdP are established within a firewall of an internal network, such that username/password credentials or any suitable credentials are not exposed to the external network. In an alternative embodiment, the IdP may be any suitable alternative service capable of performing identity verification and responding with some form of identity assertion such as a LDAP/RADIUS system, OpenID Connect, and the like.
Step S130, which includes receiving an identity assertion, functions to receive the primary stage/layer of identity assertion provided by an IdP. In the case of SAML, the IdP preferably responds with an XHTML form response including a SAML response parameter. The identity assertion of the IdP preferably indicates if the identity was successfully authenticated and/or authorized. If the identity assertion indicated the IdP successfully validated the request, then the federated authentication proxy preferably proceeds to block S140. If the identity assertion indicated the IdP denied or unsuccessfully validated the identity request, then S140 may be optionally skipped and the failed assertion is transmitted to the SP as in block S160. The transmission preferably indicates that the identity request failed to be validated. Block S140 can still be implemented in a modified form such as to notify the user of the failed attempt through a secondary device used in two-factor authentication. In an alternative variation, the second layer of authentication is initially completed, and the end assertion result depends on the identity assertion of the IdP. Alternatively, block S140 and block S130 may be performed in parallel as described above.
Step S140, which includes performing a second layer of authentication, functions to execute and insert an additional factor of authentication, authorization, and/or identity security into the identity authentication process. The second layer of authentication is preferably a form of two-factor authentication through a registered device of the identity authenticated. Performing two-factor authentication will preferably include receiving verifying credentials such as a knowledge factor (e.g., something the user knows), a possession factor (e.g., something the user has), and/or an inherence factor (e.g., something the user is). Additional layers of authentication (preferably of different variations) can additionally be performed. Preferably, performing two-factor authentication includes verifying a possession factor by transmitting an authentication message to a user device. The authentication message in one variation will include interactive response capabilities to confirm, ignore, cancel, and/or perform any suitable authentication response. The authentication message in a second variation will transmit a code. In this variation, the user agent is preferably directed to an interface to enter and confirm receipt of the code. The interface is preferably presented through an interface enabled through the IdP interface of the federated authentication proxy by simulating an interface of the IdP. The interface may alternatively be presented in an alternative destination such as an accompanying application on a mobile computing device, the web, or other suitable destination. The two factor authentication may alternatively be performed in any suitable manner, such as by confirming a disconnected token, a connected token, single-use password, biometric reading, location information, or any suitable form of two-factor authentication. In an alternative variation, a two-factor authentication service is messaged with appropriate identifiers of the user/account/entity attempting to authenticate. Alternatively, the second factor identity security may be configured for authorization. For example, a permissions service may be used to check authorization of the requested action or a second user may be messaged and/or prompted to authorize the identity request. The method may include the process of performing the at least second factor of authentication/authorization, but alternatively, the SAML proxy may interface with an outside service used as the second factor of authentication.
Prior to performing the second layer of authentication, the method can include setting second layer of authentication properties of a user identity S142, which functions to set up the user for executing the two-factor authentication or other suitable form of additional layers of authentication as shown in
The federated authentication proxy preferably maintains a record of second layer authentication properties for a given identity and a given managing account. When an identity request comes in, a unique identifier of the identity in question is preferably used to access and select the corresponding second layer authentication properties, which are used in executing the second layer of authentication. The managing account is preferably established by the entity configuring the SP, the proxy server, and the IdP. For example, the managing account could be controlled by the IT department of an enterprise company that wants to use the SP and IdP for their employees. In this example, the employees would each have a user identity that may be authenticated. Each user identity that the managing account wants to authenticate with the additional factors of authentication provided by the federated authentication proxy server must be set with second layer authentication properties.
In one variation, an application programming interface (API), admin control portal interface, or any suitable interface provides a mechanism through which the managing account can set the properties for selected user identities. Additionally, the federated authentication proxy server can process identity requests differently depending on the status of user identity authentication properties when processing a corresponding identity request. In one implementation, only select user identities are configured with the second layer of authentication. Only identity requests for these users trigger use of the second layer of authentication; other user identity requests are processed only with the IdP. Alternatively, default authorization properties can be set so that any non-registered user identity request goes through a second layer of authorization by another entity. For example, the first time a user tries to authenticate in an SP, the IT department can be notified and asked to verify the identity request. This can provide a channel through which an IT department may efficiently enroll new user identities on demand without blocking access while a user waits for the second layer of authentication to be set up.
In another variation, the federated authentication proxy server can automatically initiate enrollment of a new user identity when authenticating a user without configured second layer authentication properties. When an identity authentication request is received, if the identity is not in the database of configured user identities, a prompt could be displayed for a user to set the authentication properties. The second layer of authentication is then subsequently dependent on the authentication properties set during the initial setting (or prior edits) of the properties. The identity request is still preferably verified by the IdP.
The result of the second layer of authentication is preferably collected, received, or obtained by the federated authentication proxy service. The second layer of authentication may alternatively be performed in parallel to the IdP identity validation of Steps S120 and S130. If the two-factor authentication determines the user is not authentic and/or authorized prior to a response from the IdP, then the SAML proxy may immediately proceed to Step S160, transmitting a proxy identity assertion that indicates the identity request failed to be validated, which parallels the alternative embodiment of Step S130.
Alternative or additional forms of authentication/authorization may be used in place of or in addition to the two-factor authentication. Herein the system and method uses two-factor authentication as the preferred form of secondary authentication/authentication service, but any suitable secondary authentication and/or service may be used, as one skilled in the art would appreciate. In one preferred embodiment, the federated authentication proxy is a component of the two-factor authentication service. With an integrated two-factor authentication service (or other suitable service of an additional authentication layer), the method can include the processes relating to the form of the second layer of authentication. For example, a two-factor authentication service preferably includes identifying a device endpoint mapped to the user identity, messaging the device endpoint, receiving authentication confirmation through messaging the device endpoint, and verifying authentication confirmation. The two-factor authentication can depend on user entry of a pincode transferred to the device endpoint, application confirmation with cryptographically secured verification, or any form of confirmation. In one implementation, the two-factor authentication uses push notifications as described in patent application Ser. No. 13/039,209 filed 2 Mar. 2011, which is hereby incorporated in its entirety by this reference.
Block S150, which includes determining a proxy identity assertion from the identity assertion and results of the second layer of authentication, functions to apply logic in determining the resulting assertion from the set of information including the identity assertion and results of the second layer of authentication. Since the federated authentication proxy preferably requires at least two forms/layers of identity validation, if either the IdP or the two-factor authentication fail to confirm that the identity request is indeed valid (authentic and/or authorized), then the response to the SP preferably reflects the invalidity of the identity request. A positive, confirmed, or verified proxy identity assertion is determined by the combination of a successful identity assertion and successful completion of the second layer of authentication. In one variation, the result of the IdP identity assertion is not inspected by the federated authentication proxy; the proxy identity assertion packages the result of the IdP identity assertion to be dependent on the success or failure of the second layer of authentication. In this variation, the SP will determine the identity assertion to be successful only if the assertion from the second layer of authentication is successful when the IdP had been successful. In an alternative embodiment, at least a second IdP may additionally be configured. Steps S120 and S130 may be repeated for each additional IdP configured for the principal entity. Similarly block S140 can be repeated for additional layers of authentication
Step S160, which includes transmitting a proxy identity assertion to the service provider, functions to send a response to the initial request of the service provider. The federated authentication proxy preferably considers the identity assertion of the at least one IdP and the result of the two-factor authentication. Preferably, all forms of identity security (e.g., the identity assertion and the two-factor authentication) positively confirm, approve, or validate the request of the SP. In one alternative variation, if one of the security factors fails to adequately validate the request, then a subsequent security factor or security channel may be used. Similarly, the federated authentication proxy may be configured to trigger some outside response for particular security validation scenarios. For example, if the IdP validates the request and two-factor authentication does not, then the federated authentication proxy may trigger an account alert, send an email to an appropriate destination, alter account/user identity privileges or security measures, or perform any suitable action in addition to transmitting the proxy identity assertion to the service provider. In an alternative variation, the proxy identity assertion can be posted to a status resource. The status resource can be a URI where an encrypted assertion result can be accessed. The status resource is preferably used if and when the authentication protocol dictates that the SP polls the status resource for results.
In an alternative embodiment, a method S200 for single sign-on proxying can include receiving an identity assertion of an identity provider through a federated identity protocol S210, facilitating execution of a second layer of authentication S220, and transmitting a proxy identity assertion to a service provider through a second instance of a federated authentication protocol comprising emulating an identity provider in the second instance of a federated authentication protocol S230 as shown in
The method S200 can share substantial similarities to the variations and aspects of the method S100 above. However, S200 is preferably initiated by an identity assertion from an identity provider as opposed to the embodiment described above that preferably initiates in response to an identity request of a service provider. The method can include, in association with a managing account instance, configuring the first instance of a federated authentication protocol and the second instance of a federated authentication protocol; and prior to transmitting the proxy identity assertion, selecting the second instance according to an identifier of the managing account from the first instance in manner substantially similar to selecting an identity provider of a service provider in method S100. The second layer of authentication is preferably used as an additional check that must be determined to be successful before a positive identity assertion is delivered to the service provider. If the second layer of authentication is unsuccessful, the proxy server can return an error message to the identity provider, send an unsuccessful identity assertion to the service provider, ignore the identity assertion, the identity request, or perform any suitable action in response to an unsuccessful second layer authentication/authorization.
As in method S100, method S200 can be applied to a variety of protocols. As one example, a first party protocol of a single sign-on service can interface with the federated authentication proxy server. In another example, the IdP and/or the SP can user ADFS (active directory federation service) or any suitable claim-based access control authorization protocol. The method S200 can additionally include translating between federated authentication protocols. For example, when the protocol between the identity provider and the federated authentication proxy server (i.e., a first protocol instance) and the protocol between the federated authentication proxy server and a service provider (i.e., a second protocol instance), the method can include translating attributes between the first type of protocol and the second type of protocol.
The system and methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the SAML proxy and/or two-factor security system. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.
Although omitted for conciseness, the preferred embodiments include every combination and permutation of the various system components and the various method processes.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 14/517,078, filed 17 Oct. 2014, which is a continuation of U.S. patent application Ser. No. 14/188,449, filed 24 Feb. 2014, which claims the benefit of U.S. Provisional Application Ser. No. 61/768,233, filed on 22 Feb. 2013, all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5838792 | Ganesan | Nov 1998 | A |
5870723 | Pare et al. | Feb 1999 | A |
6119096 | Mann et al. | Sep 2000 | A |
6694025 | Epstein et al. | Feb 2004 | B1 |
6758394 | Maskatiya et al. | Jul 2004 | B2 |
6823359 | Heidingsfeld et al. | Nov 2004 | B1 |
6934858 | Woodhill | Aug 2005 | B2 |
6956950 | Kausik | Oct 2005 | B2 |
6996716 | Hsu | Feb 2006 | B1 |
7085840 | de Jong | Aug 2006 | B2 |
7096354 | Wheeler et al. | Aug 2006 | B2 |
7331518 | Rable | Feb 2008 | B2 |
7386720 | Sandhu et al. | Jun 2008 | B2 |
7447784 | Eun | Nov 2008 | B2 |
7463637 | Bou-Diab et al. | Dec 2008 | B2 |
7526792 | Ross | Apr 2009 | B2 |
7562382 | Hinton et al. | Jul 2009 | B2 |
7574733 | Woodhill | Aug 2009 | B2 |
7793110 | Durfee et al. | Sep 2010 | B2 |
7953979 | Borneman et al. | May 2011 | B2 |
7982595 | Hanna et al. | Jul 2011 | B2 |
8136148 | Chayanam et al. | Mar 2012 | B1 |
8161527 | Curren | Apr 2012 | B2 |
8200980 | Robinson et al. | Jun 2012 | B1 |
8245044 | Kang | Aug 2012 | B2 |
8250635 | Chari | Aug 2012 | B2 |
8332627 | Matthews et al. | Dec 2012 | B1 |
8335933 | Humphrey et al. | Dec 2012 | B2 |
8397301 | Hering et al. | Mar 2013 | B2 |
8402526 | Ahn | Mar 2013 | B2 |
8434129 | Kannappan | Apr 2013 | B2 |
8458798 | Williams et al. | Jun 2013 | B2 |
8495720 | Counterman | Jul 2013 | B2 |
8499339 | Chao et al. | Jul 2013 | B2 |
8538028 | Yeap et al. | Sep 2013 | B2 |
8627437 | Dietrich | Jan 2014 | B2 |
8627438 | Bhimanaik | Jan 2014 | B1 |
8646086 | Chakra et al. | Feb 2014 | B2 |
8689287 | Bohmer et al. | Apr 2014 | B2 |
8700729 | Dua | Apr 2014 | B2 |
8732475 | Fahrny et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8763077 | Oberheide et al. | Jun 2014 | B2 |
8850516 | Hrebicek et al. | Sep 2014 | B1 |
8891772 | D Souza et al. | Nov 2014 | B2 |
8893230 | Oberheide et al. | Nov 2014 | B2 |
8898762 | Kang | Nov 2014 | B2 |
9049011 | Agrawal | Jun 2015 | B1 |
9137228 | Newstadt | Sep 2015 | B1 |
9491175 | Oberheide | Nov 2016 | B2 |
20020123967 | Wang | Sep 2002 | A1 |
20030061506 | Cooper et al. | Mar 2003 | A1 |
20030115452 | Sandhu et al. | Jun 2003 | A1 |
20030126472 | Banzhof | Jul 2003 | A1 |
20030147536 | Andivahis et al. | Aug 2003 | A1 |
20040064706 | Lin et al. | Apr 2004 | A1 |
20050218215 | Lauden | Oct 2005 | A1 |
20050221268 | Chaar et al. | Oct 2005 | A1 |
20050268107 | Harris et al. | Dec 2005 | A1 |
20060031938 | Choi | Feb 2006 | A1 |
20060130139 | Sobel et al. | Jun 2006 | A1 |
20060165060 | Dua | Jul 2006 | A1 |
20060182276 | Sandhu et al. | Aug 2006 | A1 |
20060242692 | Thione et al. | Oct 2006 | A1 |
20070199060 | Touboul | Aug 2007 | A1 |
20070228148 | Rable | Oct 2007 | A1 |
20070250914 | Fazal | Oct 2007 | A1 |
20070284429 | Beeman | Dec 2007 | A1 |
20070297607 | Ogura et al. | Dec 2007 | A1 |
20080049642 | Gudipudi et al. | Feb 2008 | A1 |
20080120411 | Eberle | May 2008 | A1 |
20090055906 | Wendorff | Feb 2009 | A1 |
20090167489 | Nan et al. | Jul 2009 | A1 |
20090187986 | Ozeki | Jul 2009 | A1 |
20090198997 | Yeap et al. | Aug 2009 | A1 |
20090271863 | Govindavajhala et al. | Oct 2009 | A1 |
20090300596 | Tyhurst et al. | Dec 2009 | A1 |
20090300707 | Garimella et al. | Dec 2009 | A1 |
20100023781 | Nakamoto | Jan 2010 | A1 |
20100042954 | Rosenblatt et al. | Feb 2010 | A1 |
20100069104 | Neil et al. | Mar 2010 | A1 |
20100100725 | Ozzie et al. | Apr 2010 | A1 |
20100114740 | Dominguez et al. | May 2010 | A1 |
20100115578 | Nice et al. | May 2010 | A1 |
20100121767 | Coulter et al. | May 2010 | A1 |
20100125737 | Kang | May 2010 | A1 |
20100180001 | Hardt | Jul 2010 | A1 |
20100202609 | Sandhu et al. | Aug 2010 | A1 |
20100216425 | Smith | Aug 2010 | A1 |
20100217986 | Schneider | Aug 2010 | A1 |
20100233996 | Herz et al. | Sep 2010 | A1 |
20100263021 | Arnott et al. | Oct 2010 | A1 |
20100330969 | Kim et al. | Dec 2010 | A1 |
20110086616 | Brand et al. | Apr 2011 | A1 |
20110107389 | Chakarapani | May 2011 | A1 |
20110138469 | Ye et al. | Jun 2011 | A1 |
20110197267 | Gravel et al. | Aug 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110277025 | Counterman | Nov 2011 | A1 |
20110302410 | Clarke et al. | Dec 2011 | A1 |
20110302630 | Nair et al. | Dec 2011 | A1 |
20120063601 | Hart | Mar 2012 | A1 |
20120090028 | Lapsley et al. | Apr 2012 | A1 |
20120096274 | Campagna et al. | Apr 2012 | A1 |
20120198050 | Maki et al. | Aug 2012 | A1 |
20120216239 | Yadav et al. | Aug 2012 | A1 |
20120290841 | Jentzsch | Nov 2012 | A1 |
20120300931 | Ollikainen et al. | Nov 2012 | A1 |
20130042002 | Cheeniyil et al. | Feb 2013 | A1 |
20130081101 | Baer et al. | Mar 2013 | A1 |
20130097585 | Jentsch et al. | Apr 2013 | A1 |
20130110676 | Kobres | May 2013 | A1 |
20130124292 | Juthani | May 2013 | A1 |
20130125226 | Shah et al. | May 2013 | A1 |
20130174246 | Schrecker et al. | Jul 2013 | A1 |
20130179681 | Benson et al. | Jul 2013 | A1 |
20130263211 | Neuman et al. | Oct 2013 | A1 |
20130310006 | Chen et al. | Nov 2013 | A1 |
20130326493 | Poonamalli et al. | Dec 2013 | A1 |
20140047546 | Sidagni | Feb 2014 | A1 |
20140181517 | Alaranta et al. | Jun 2014 | A1 |
20140181520 | Wendling et al. | Jun 2014 | A1 |
20140188796 | Fushman et al. | Jul 2014 | A1 |
20140201841 | Deshpande et al. | Jul 2014 | A1 |
20140208405 | Hashai | Jul 2014 | A1 |
20140235230 | Raleigh | Aug 2014 | A1 |
20140237236 | Kalinichenko et al. | Aug 2014 | A1 |
20140245278 | Zellen | Aug 2014 | A1 |
20140247140 | Proud | Sep 2014 | A1 |
20140351954 | Brownell et al. | Nov 2014 | A1 |
20140376543 | Malatack et al. | Dec 2014 | A1 |
20150012914 | Klein et al. | Jan 2015 | A1 |
20150026461 | Devi | Jan 2015 | A1 |
20150242643 | Hankins et al. | Aug 2015 | A1 |
20160286391 | Khan | Sep 2016 | A1 |
Entry |
---|
Simske et al., “APEX: Automated Policy Enforcement eXchange”, Sep. 21-24, 2010, ACM, pp. 139-142. |
Symantec, Administration Guide for Symantec Tm Endpoint Protection and Symantec Network Access Control, Aug. 1, 2007. |
Number | Date | Country | |
---|---|---|---|
20170026374 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61768233 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14517078 | Oct 2014 | US |
Child | 15286993 | US | |
Parent | 14188449 | Feb 2014 | US |
Child | 14517078 | US |