Remotely Operated Vehicles (ROV) such as an unmanned submarine vessel or an unmanned aircraft drone may rely on Direct Current (DC) motors for physical motivation and maneuvering. DC motors may be driven from a DC power source such as a battery.
One such DC motor than provides power sufficient for such operations is a brushless DC motor. Brushless DC motors often use Pulse Width Modulation (PWM) techniques to generate multi-phase (e.g., three-phase) electrical power into the windings of a motor to produce a rotating magnetic field. Other apparatuses like switching power supplies may also use PWM or other switching techniques to generate a regulated output voltage. As a result, an ROV may be equipped with one or more brushless DC motors and/or power supplies that are each driven by a set of multiple (e.g., three) PWM signals generated by a controller for the drive system.
PWM and other switching techniques typically use solid state switching devices such as MOSFET transistors or IGBT transistors. The fast rising and falling edges of pulses from such devices may generate sequences of pulses (e.g., one sequence per phase per motor) with such polarity, amplitude, and duration so as to drive each respective brushless DC motor coil with a specified current waveform, e.g., a sinusoidal current.
However, the very nature of pulses generated from a PWM technique may generate undesirable acoustic noise and electro magnetic interference (EMI) that may be electronically or audibly detected or may interfere with the operation of other circuits that are near the pulse source. For example, a sonar array from a nearby hostile vessel may be able to detect the audible acoustic signature, or an antenna may be able to detect an electronic EMI signature. Similarly, the pulse-induced EMI may cause signal interference on e.g., a microchip, a cell phone, or a radio operated in the vicinity of a PWM-driven, brushless DC motor or switching power supply.
Furthermore, because such EMI may be periodic or predictable in time due to the repeating nature of the pattern of pulses, it may provide a periodic EMI signature that may be detected from a remote location and that may be used to identify the device generating the signature. Yet another negative effect of the PWM technique is the acoustic signature that may be caused by the high speed switching devices. This acoustic signature may be radiated out and be detected or otherwise may interfere with other acoustically sensitive devices in air or in water.
Aspects and advantages of the subject matter disclosed herein will become more readily appreciated as the same become better understood by reference to the following non-limiting detailed description, when taken in conjunction with the accompanying drawings, wherein:
The following discussion is presented to enable a person skilled in the art to make and use the subject matter disclosed herein. The general principles described may be applied to embodiments and applications other than those detailed above without departing from the spirit and scope of the subject matter disclosed herein. This disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed or suggested.
By way of overview, an embodiment of the subject matter disclosed herein is described in the following paragraphs. One embodiment comprises a system and method for driving a first device, such as a brushless DC motor, with a first series of pulses, each pulse in this series having a rising edge and a falling edge. The system and method further include driving a second device with a second series of pulses, each pulse in the second series of pulses also having a rising edge and a falling edge. These series of pulses are then synchronized such that each rising edge in the first series occurs substantially simultaneous with a falling edge in the second series and vice versa.
Such a system and method may provide several advantages over the prior art. First, as pulses in a PWM driven motor tend to generate acoustic noise, the synchronization of the PWM pulses may reduce or eliminate the level of acoustic noise generated by the two motors. Further, the PWM pulses also generate EMI. Synchronizing the rising and falling edges of the PWM pulses may reduce or eliminate stray EMI. Such reductions are accomplished as the acoustic noise and/or EMI from each source effectively cancels each other out when they occur substantially simultaneously. These and other advantages will become evident with respect to the following detailed descriptions.
Each of the motors 120-123 may be coupled to a drive source 130 that includes a controller 131 and a power source 132. The power source 132 may be a battery-powered source that is self-contained and rechargeable. Further, each of the motors 120-123 that drive the propulsion devices 110-113 may be a brushless DC motor that may be driven from a DC power source such as a battery. The controller 131 may be configured to control each brushless DC motor 120-123 with PWM signals. The synchronization of pulses in these PWM signals are described in greater detail below with respect to
Still referring to
The ROV 100 may be a small, unmanned vehicle that is compact with many components, devices, and instruments in close proximity to each other. To this end, such an ROV 100 may have particular usefulness in stealth operations, surveillance operations, and other dangerous environment deployments without risking the life of a pilot or operator. As such, the need for the ROV 100 to be stealthy and undetectable is desirable. As the motors 120-123 that drive the propulsion devices 110-113 are engaged and operated, the very nature of brushless DC motors may generate EMI as well as acoustic noise. EMI may be undesirable when in close proximity to sensitive instrumentation and sensors such as may be present within the ROV 100. Further, EMI signatures that may be detected by remote detection equipment in hostile territory may also be undesirable. Further, in an effort to be stealthier, a designer may wish to reduce as much as possible the acoustic noise and signature from the propulsion devices 110-113 as well as from the motors 120-123 driving them. But, as discussed below, both the EMI and acoustic signatures may be reduced or eliminated by driving each motor with synchronized PWM signals as controlled by the controller 131.
In this embodiment, each motor 230-232 includes three windings to be controlled by the controller 131 when driving the motors 230-232. As such a first three-phase connection 220 electrically couples the first motor 230, a second three-phase connection 221 electrically couples the second motor 231, and a third three-phase connection 222 electrically couples the third motor 232. The controller 131 is configured to deliver PWM signals to each winding of each motor 230-232 for controlling the overall movements of the ROV 100 during operation. As is shown below, each PWM signal through the connections 220-222 is configured to be coordinated with every other PWM signal for every winding of each motor so that substantially each rising or falling edge of each pulse substantially corresponds in time with a respective falling or rising edge of another pulse.
The controller 131 includes a speed and torque control subsystem 250 that is configured to receive communication signals (e.g., by remote control) corresponding to movement and then generate drive signals that effectuate such movements. For example, if the ROV 100 is being controlled remotely by a human operator, a communication signal may be sent to move the ROV 100 to the left. The speed and torque control subsystem 250 receives this command and then generates one or more drive signals to engage the proper motors that will causes the ROV 100 to move left. Thus, in the example system as shown with three motors 230-232, the speed and torque control subsystem 250 may generate a signal at the drive connections 200a and 201a (corresponding to engaging motors 230 and 231) but not at the drive connection 202a (corresponding to engaging motor 232).
These drive signals 200a, 201a, and 202a are received by a master controller 251 and consequently manipulated to synchronize the stream of PWM signals to each motor 230-232. The particular manner in which a set of PWM signals are generated and synchronized may be referred to as a synchronization schema. Thus, PWM signals for the first motor 230 are sent as drive signals 200b to a first three-phase solid-state driver 210. The first three-phase solid-state driver 210 then generates corresponding synchronized PWM signals for each phase in the three-phase connection 220 to the first motor 230. Similarly, PWM signals for the second motor 231 are sent as drive signals 201b to a second three-phase solid-state driver 211. The second three-phase solid-state driver 211 then generates corresponding synchronized PWM signals for each phase in the three-phase connection 221 to the second motor 231. Finally, in this embodiment, PWM signals for the third motor 232 are sent as drive signals 202b to a third three-phase solid-state driver 212. The third three-phase solid-state driver 212 then generates corresponding synchronized PWM signals for each phase in the three-phase connection 222 to the third motor 232. Various synchronization schemas may be stored in and retrieved from a coupled memory 252 and are more fully understood and described below with respect to the timing diagrams of
For example, in one embodiment, the input power voltage may be 10 Vdc but the desired output power voltage at each connection terminal 310-312 is 5Vdc. Thus, each power converter 310-312, which may be a DC-to-DC power converter, may be driven by an appropriate PWM signal from the master controller 351 to yield a resultant 5 VDC signal at the connection terminals 310-312. Of course, any switching schema may be employed, such an AC-to-AC schema or an AC-to-DC schema as the situation demands. Further, PWM signals to the power converters may be synchronized by phase (in a case of 3-phase power supplies) or by switching supply (in a case of 3 single-phase power supplies. Again, various synchronization schemas may be stored in and retrieved from a coupled memory 252 and are more fully understood and described below with respect to the timing diagrams of
The top plot 401 shows a series of PWM pulses for phase A of a first motor and the lower plot 402 shows a series of PWM pulses for phase A of a second motor. The set of pulses in the top plot 401 yields a winding current 420 that is sinusoidal. The winding current 425 in the lower plot 402 is also sinusoidal, but shifted in phase with respect to the drive signal 420. As is described in greater detail below, each PWM pulse is synchronized (between the top plot 401 referred to as controller channel #1 401 from here on and the lower plot 402 referred to as controller channel #2 402 from here on) to reduce EMI and acoustic noise, such that when any pulse edge occurs, a pulse edge from another series occurs at substantially the same time with the opposite polarity.
Pulses are understood to be signals that do not propagate from a zero magnitude signal to a non-zero magnitude signal. That is, there exists a definite amount of time for a pulse to rise or to fall. Thus, although shown in
For a PWM controlled brushless DC motor in a system with at least two motors, the edges of the pulses used to drive the first motor are synchronized with the opposite edges of pulses used to drive the second motor. In this embodiment, a rising edge is any edge that starts at zero volts and ends at a nonzero voltage, whether positive or negative, and a falling edge is any edge that starts at a nonzero voltage, whether positive or negative, and ends at zero volts. In other embodiments, however, the definitions of rising and falling edges may be different. For example, the falling edge of a first pulse in the controller channel #1 401 is synchronized in time with the rising edge of a first pulse in the channel #2 402. This is represented by dotted line 430. Then, the falling edge of the first pulse generated by controller channel #2 402 is synchronized in time with the rising edge of the second pulse generated by controller channel #1 401. This is represented by dotted line 431. As time progresses, one can see by dotted line representations 432, 433, etc. that each rising edge in controller channel #1 401 corresponds in time to a falling edge in controller channel #2 402 and vice versa. So, effectively, any acoustic noise and EMI generated individually by one pulse edge in controller channel #1 401 is partially or fully cancelled by the acoustic noise and EMI generated individually by the other pulse edge of opposite polarity in controller channel #2 402.
As is known from Fourier analysis, a periodic sequence of PWM pulses may also generate aggregate EMI at harmonics of the sequence period, where a majority of the EMI energy is within a corresponding bandwidth. Thus, another way to reduce the EMI within a specific bandwidth is to spread the EMI harmonics over a wider bandwidth. And one way to spread the EMI harmonics over a wider bandwidth is to vary the period of time over which the sequence of PWM pulses repeats itself.
Thus, in several synchronization schemas, the period at which the pulse sequences in each channel repeat themselves changes, thereby spreading any non-cancelled EMI energy over a wider bandwidth. Because the sinusoidal winding current waveform is known a priori, the master controller 251 may determine in advance the timing of the pulse edges for each phase of each motor, so that the pulse-edge synchronization may be precise. In other embodiments, the synchronization schemas may be stored in look-up table (LUT) such that the master controller 251 need only implement a specific synchronization schema that may correspond to a specific control action (e.g., full speed ahead, impulse speed, etc.). In yet further embodiments, the synchronization schema may be a series of pseudo-randomized pulse sequences that attempt to spread EMI energy out in a less detectable manner.
Still referring to
For example, referring to
The preceding synchronization schemas are described in the context of a system having a first motor and a second motor. Further, each motor may be a brushless DC motor having three phases driven by a three-phase sinusoidal drive signal. Other dual motor synchronization schemas are contemplated. For example, instead of driving each brushless DC motor with a three-phase sinusoidal signal, each motor may be driven with a single-phase sinusoidal signal. In such an embodiment, the synchronization schemas remain similar as a rising edge of a pulse generated by controller channel #1 401 typically corresponds in time to a falling edge of a pulse generated by controller channel #2 402. As can be seen in other embodiments described below with respect to
Such a synchronization schema may be repeated indefinitely so long as any rising edge of a pulse in any controller channel is synchronized with a falling edge of a pulse from another controller channel. Again, a rising edge is any edge that starts at zero volts and ends at a nonzero voltage, whether positive or negative, and a falling edge is any edge that starts at a nonzero voltage, whether positive or negative, and ends at zero volts. In other embodiments, however, the definitions of rising and falling edges may be different.
Further, additional synchronization schemas may be implemented. For example, the master controller 251 may synchronize each rising edge of each pulse from controller channel #1 501 with each falling edge of each pulse from controller channel #2 502 and vice versa. Additionally, the master controller 251 may synchronize each rising edge of each pulse from controller channel #3 503 with each falling edge of each pulse from controller channel #4 (not shown) and vice versa. Further yet, the master controller 251 may implement a synchronization schema that is more randomized such that any rising edge in any controller channel is synchronized with a falling edge from another controller channel.
During the transition between any two synchronization schemas, the master controller 251 may implement a transition synchronization schema. For example, the master controller 351 may temporarily suspend generation of the controller channel #2 502 pulses, and temporarily synchronize the rising and falling edges of a pulse on controller channel #1 501 to the falling and rising edges of a pulse on controller channel #3 503 pulse. Subsequently, the master controller 351 may temporarily suspend generation of the controller channel #3 503 pulses, and temporarily synchronize the rising and falling edges of a pulse on controller channel #1 501 to the falling and rising edges of a pulse on controller channel #2 502. Thereafter, the master controller 351 may commence any synchronization schema discussed above, and may periodically transition to other synchronization schemas as needed or desired.
Other embodiments and synchronization schemas are contemplated. For example, a system may exist with a single motor wherein the pulses driving each of three phases are synchronized with each other as discussed above. Further, the controller channels may deliver a series of PWM pulses for driving a device other than a motor. For example, the controller channels may be for driving multiple switching power supplies, or for driving, multiple outputs of a single switching power supply. In addition, although only one phase from each motor is shown as being pulse edge synchronized to a corresponding phase of another motor, the remaining phases of each motor (e.g., two remaining phases for a total of three phases per motor) may be synchronized to corresponding phases of the other motors in a similar manner.
Still referring to
For example, referring to
While the subject matter discussed herein is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. Furthermore, those skilled in the art will understand that various aspects described in less than all of the embodiments may, nevertheless, be present in any embodiment. It should be understood, however, that there is no intention to limit the subject matter disclosed herein to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the subject matter.
This patent application claims priority from a related U.S. Provisional Patent Application No. 60/999,650 entitled ‘PULSE EDGE SYNCHRONIZATION’ filed on Oct. 19, 2007 which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60999650 | Oct 2007 | US |