The present invention generally relates to systems for operating hydraulic circuits. More particularly, this invention relates to a system and method for pump-controlled cushioning of a hydraulic actuator used to control the position of a working implement on a mobile machine.
Compact excavators, wheel loaders and skid-steer loaders are examples of multi-function machines whose operations involve controlling movements of various implements of the machines.
On conventional excavators, the control of these functions is accomplished by means of directional control valves. However, throttling flow through control valves is known to waste energy. In some current machines, the rotary functions (rotary hydraulic drive motors for the tracks 103 and rotary hydraulic swing motor for the cabin 101) are realized using displacement control (DC) systems, which notably exhibit lower power losses and allow energy recovery. In contrast, the position and velocity of the linear actuators 109-114 for the blade 104, boom 106, stick 107, bucket 108, and offset functions typically remain controlled with directional control valves. It is also possible to control linear hydraulic actuators directly with hydraulic pumps. Several pump-controlled configurations are known, using both constant and variable displacement pumps. Displacement control of linear actuators with single rod cylinders has been described in U.S. Pat. No. 5,329,767 or German Patents DE000010303360A1, EP000001588057A1 and WO002004067969, and offers the possibility of large reductions in energy requirements for hydraulic actuation systems. Other aspects of using displacement control systems can be better appreciated from further reference to Zimmerman et al., “The Effect of System Pressure Level on the Energy Consumption of Displacement Controlled Actuator Systems,” Proc. of the 5th FPNI PhD Symposium, Cracow, Poland, 77-92 (2008), and Williamson et al., “Efficiency Study of an Excavator Hydraulic System Based on Displacement-Controlled Actuators,” Bath ASME Symposium on Fluid Power and Motion Control (FPMC2008), 291-307 (2008), whose contents are incorporated herein by reference.
Hydraulic actuators have a limited position range, or stroke. When the piston of the actuator reaches either end of its stroke, the piston assembly makes contact with the cylinder body and stops. Without some form of cushioning, the impact between the piston and cylinder can cause undesirable wear, vibration and operator discomfort. For some machines, other safety problems such as vehicle instability may result from a sudden actuator stop. To prevent these problems, hydraulic actuators are commonly equipped with viscous dampers called “cushions” that slow the actuator piston near the end of its stroke by forcing the hydraulic fluid through small orifices. If an actuator is not equipped with a cushion, the operator must manually control the actuator velocity to avoid an end-of-stroke impact. However, manually regulating the actuator velocity requires skill and attention.
The present invention provides a system and method for cushioning pump-controlled hydraulic actuators that do not require the use of a fluid component such as a viscous damper. The system is particularly well suited for automatically controlling the position and velocity of a hydraulic cylinder used to control the movement of an implement of an earthmoving machine.
According to a first aspect of the invention, the system includes a hydraulic actuator adapted to move the implement. The actuator includes a piston that defines first and second chambers within the actuator and a piston rod coupled to the piston and to the implement. A variable displacement pump is coupled to the actuator for delivering a pressurized fluid to and receiving pressurized fluid from the chambers of the actuator. A sensor generates an output based on the position of the piston or the piston rod of the actuator. A controller controls the displacement of the variable displacement pump in response to the output of the sensor, wherein the controller is operable to execute an algorithm to reduce the flow rate of the fluid to the first chamber and from the second chamber of the actuator and thereby reduce the velocity of the piston of the actuator as the piston approaches an end of a piston stroke thereof within the actuator and prevent the piston from impacting the actuator at the end of the piston stroke.
According to a second aspect of the invention, the method includes using a variable displacement pump to deliver a pressurized fluid to and receive pressurized fluid from first and second chambers of a hydraulic actuator adapted to move the implement. The actuator comprises a piston that defines the first and second chambers and a piston rod coupled to the piston and to the implement. An output is generated based on the position of the piston or the piston rod of the actuator, and the displacement of the variable displacement pump is controlled in response to the output by reducing the flow rate of the fluid to the first chamber and from the second chamber of the actuator and thereby reduce the velocity of the piston as the piston approaches an end of a piston stroke thereof within the actuator and prevent the piston from impacting the actuator at the end of the piston stroke.
Another aspect of the invention is an earthmoving machine equipped with the system described above.
In view of the above, it can be seen that significant advantages of this invention include the ability to provide a cushioning effect without physically implementing conventional actuator cushions such as viscous dampers within the hydraulic circuit, and energy savings as a result of eliminating the need to throttle flow through directional control valves. Another advantage is the option for providing adjustment of the cushioning function based on the stroke position at which velocity of the actuator begins to slow and/or the rate of deceleration of the actuator, thereby providing greater flexibility for satisfying machine safety and operating requirements.
Other aspects and advantages of this invention will be better appreciated from the following detailed description.
The system 10 of
In view of the above, the present invention can be seen to offer various advantages over the prior art. For example, the system 10 provides a cushioning effect without physically implementing conventional actuator cushions such as viscous dampers within the hydraulic circuit. The invention allows the same functionality as traditional actuator cushioning systems, but with reduced costs. Due to cost constraints, most mobile hydraulic machines do not have cushions on all actuators controlling the movement of a machine's implements, and actuator cushioning is often provided for one direction only, for example, only on the extension limit or the retraction limit, but not both. The present invention has the advantage of enabling all pump-controlled actuators to be cushioned in both directions, resulting in a machine that is easier and more comfortable to operate.
Actuator cushioning can also be readily adjustable with the present invention. In the prior art, the stroke position at which an actuator slows and the rate of deceleration are fixed by design, for example, the orifice size of a viscous damper that slows the actuator piston near the end of its stroke. The present invention allows the stroke position at which velocity of the actuator 12 begins to slow and the rate of deceleration of the actuator 12 to be adjusted through inputs to the micro-controller 28 according to machine type, operating task, operator preference, or some other variable of interest. In this way, the invention can provide greater flexibility for satisfying machine safety and operating requirements.
The invention also offers the advantage of energy savings. Traditional cylinder controls allow pressurized fluid to be supplied to an actuator even after it reaches a stroke limit. The fluid is then throttled to a reservoir by a pressure relief valve, wasting energy and generating heat. The present invention reduces energy usage by reducing flow to the actuator 12 when the piston 20 has reached a stroke limit, instead of throttling excess flow.
While the invention has been described in terms of a specific embodiment, it is apparent that other forms could be adopted by one skilled in the art. For example, if the actuator 12 forms a closed kinematic loop with the machine structure, an angular position sensor attached to any joint in the loop may be used instead of the linear position sensor 26 located at the actuator 12. Another possible alternative is a set of proximity sensors that detect the presence of the actuator piston 22 as the actuator stroke limit is reached, without continuously measuring the position of the piston rod 24 throughout its entire range. The invention is also applicable to a wide variety of machines with one or more implements whose movements are controlled by actuators. Accordingly, it should be understood that the invention is not limited to the specific embodiments illustrated in the
This application claims the benefit of U.S. Provisional Application No. 61/111,748, filed Nov. 6, 2008, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61111748 | Nov 2008 | US |