Wavelength Division Multiplexing (WDM) is a method by which single-mode optical fibers are used to carry multiple light waves of different frequencies. In a WDM network many wavelengths are combined in a single fiber, thus increasing the carrying capacity of the fiber. Signals are assigned to specific frequencies of light (wavelengths) within a frequency band. This multiplexing of optical wavelengths is analogous to the way radio stations broadcast on different wavelengths as to not interfere with each other. Because each channel is transmitted on a different wavelength, a desired channel may be selected using a tuner. WDM channels (wavelengths) are selected in a similar manner. In a WDM network, all wavelengths are transmitted through a fiber, and demultiplexed at a receiving end. The fiber's capacity is an aggregate of the transmitted wavelengths, each wavelength having its own dedicated bandwidth.
Dense Wavelength Division Multiplexing (WDM) is a WDM network in which wavelengths are spaced more closely than in a coarse WDM network. This provides for a greater overall capacity of the fiber.
WDM may be used with dedicated protection techniques such as a Unidirectional Path Switched Ring (UPSR) in a Synchronous Optical Network (SONET). Such a dedicated protection technique uses dual counter-rotating rings that form bi-directional connections between the nodes of the network. A fully protected bi-directional connection between any two nodes may be established and dedicated to a particular wavelength. A working wavelength travels in one direction, and a protection wavelength travels in the opposite direction. The working wavelength typically takes a shorter path between the two nodes while the protection wavelength takes a longer path. The frequency of the working and protection wavelengths may be identical, as they travel in opposite directions. Every section of the dual counter-rotating rings are occupied by either the working wavelength or the protection wavelength (a section may be defined as the fibers directly connecting two nodes within a ring). Therefore, the working wavelength and the protection wavelength cannot be used to establish any additional connections between any other two nodes. Additional connections require the use of additional wavelengths.
It should be noted that WDM equipment within a given WDM node can only support a finite number of wavelengths; therefore, there is often an economic benefit associated with limiting the number of wavelengths used when designing a WDM network.
An embodiment of the present invention includes a network, or corresponding method, with at least four network nodes that are each coupled to at least three network paths. At least two of the at least three network paths couple the network nodes. The network also includes at least two sub-networks that each include at least two of the network nodes and use at least one wavelength in common with the other sub-network.
Another embodiment of the present invention includes a network, or corresponding method, with (i) at least one network node coupled to at least four network paths and (ii) at least two sub-networks each including the at least one network node and using at least one wavelength in common.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
A description of preferred embodiments of the invention follows.
According to some embodiments of the present invention, a total number of wavelengths used in a WDM network may be reduced by designing a network using multi-degree nodes that form multiple sub-networks. Isolated sub-networks that do not share common network paths may reuse the same wavelengths used for communications within the other sub-networks.
An embodiment of the present invention includes a network, or corresponding method, with at least four network nodes that are each coupled to at least three network paths. At least two of the at least three network paths couple the network nodes. The network also includes at least two sub-networks that each include at least two of the network nodes and use at least one wavelength in common with the other sub-network.
The sub-networks may use at least one wavelength, in addition to the at least one wavelength in common, that supports communications between the nodes of different sub-networks. The sub-networks may be ring networks, mesh networks, or a combination thereof.
The network may include at least four network paths that couple the network nodes and define a third sub-network. Additional sub-networks may be defined with an addition of an even number of network paths. The network paths may themselves include multiple network nodes or sub-networks.
The network nodes may be reconfigurable; that is, they may be used to selectively reconfigure the optical interconnections associated with the network paths. This reconfiguration may be in the optical domain and may be achieved through the use of Reconfigurable Optical Add/Drop Multiplexers (ROADMs). Additionally, the nodes of the network may include add/drop ports that are used for adding or dropping wavelengths to and from the network.
A network path carries a data stream between network nodes and may be a single fiber for uni-directional traffic or multiple fibers for bi-directional communications.
Details of the network embodiments described above are presented below in reference to FIGS. 5 and 13-18.
According to an embodiment of the present invention, add and drop ports (not shown) are associated with each ROI. Multiple wavelengths may be dropped at a given ROI. When wavelengths are dropped, each dropped wavelength is placed on an individual fiber 170a, 170b. It should be appreciated that the single line 170a, 170b in
A wavelength (λ) arriving on the multi-wavelength input port 130a, 130b of a given ROI 110, 120 may be directed to either the associated drop port 170a, 170b or may be passed-through to the multi-wavelength output port 140b, 140a of the other ROI 120, 110. Pass-through channels 190a, 190b are illustrated in
WDM equipment within a given WDM node can only support a finite number of wavelengths (e.g., 4 wavelengths, 8 wavelengths, or 12 wavelengths, etc.); therefore, there is often an economic benefit associated with better utilizing the wavelengths used when designing a WDM network. The use of multi-degree nodes within a network may help limit the number of wavelengths utilized in constructing a network and its associated connections. As an example, suppose that a network such as the network 1100 shown in
As an example of how the number of wavelengths may be reduced by utilizing the four 3-degree nodes, suppose that a network such as the network 1300 shown in
Sub-Ring 11310 and Sub-Ring 31330 may use the same wavelengths for communications between their nodes because they are isolated from each other (e.g., wavelength number 1 (λ1) is used for communications between both nodes A and B, and D and E). Sub-Ring 21320 may not use the same wavelengths as Sub-Ring 11310 or Sub-Ring 31330 because Sub-Ring 21320 shares network paths in common with Sub-Ring 11310 and Sub-Ring 31330 (e.g., the paths between nodes B and C, and the paths between nodes D and F). Instead, Sub-Ring 21320 must use wavelengths that are not used by either Sub-Ring 11310 or Sub-Ring 31330 (e.g., wavelength number 7 (λ7) is used for communications between nodes B and D). Communications between nodes of different sub-rings (i.e., communications along a main outer ring 1340) must use wavelengths that are not used by any of the sub-rings (e.g., wavelength number 4 (λ4) is used for communications between nodes A and D).
As an example of how the number of wavelengths may be reduced by utilizing the four 4-degree nodes, suppose that a network such as the network 1400 shown in
Because each sub-ring is isolated from the other sub-rings, the same wavelengths may be used in each of the sub-rings (e.g., wavelength number 1 (λ1) may be used for communications between nodes A and B, nodes B and D, and nodes D and E). Sub-Ring 21420 uses an additional wavelength because it includes four nodes (e.g., wavelength number 4 (λ4) may be used for communications between nodes C and F). It should be noted that λ4 can be reused in sub-ring 3 in order to transport additional traffic between two nodes on sub-ring 3. Similarly, λ4 can be reused in sub-ring 1 in order to transport additional traffic between two nodes on sub-ring 1. Communications between nodes of different sub-rings must use wavelengths that are not used by any of the sub-rings (e.g., wavelength number 5 (λ5) is used for communications between nodes A and E).
Additional isolated sub-networks may be created by adding to the network 1400 an even number of paths that couple at least two of the multi-degree nodes. For example, in
In the description above, for purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the embodiments of the present invention. However, it will be apparent to one skilled in the art that specific details in the description may not be required to practice the embodiments of the present invention. In other instances, well-known components are shown in block diagram form to avoid obscuring embodiments of the present invention unnecessarily.
In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the embodiments of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/636,706 filed on Dec. 16, 2004. The entire teachings of the above application are incorporated herein by reference.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5351146 | Chan et al. | Sep 1994 | A |
| 5774244 | Tandon et al. | Jun 1998 | A |
| 6038044 | Fee et al. | Mar 2000 | A |
| 6154296 | Elahmadi et al. | Nov 2000 | A |
| 6295146 | Nathan et al. | Sep 2001 | B1 |
| 7161898 | Mazzurco et al. | Jan 2007 | B1 |
| 20020067883 | Lo | Jun 2002 | A1 |
| 20020196490 | Smith | Dec 2002 | A1 |
| 20030156317 | Ruhl et al. | Aug 2003 | A1 |
| 20040120711 | Elbers et al. | Jun 2004 | A1 |
| 20040208573 | Gumaste | Oct 2004 | A1 |
| 20040208574 | Gumaste | Oct 2004 | A1 |
| 20040218921 | Kuroyanagi et al. | Nov 2004 | A1 |
| 20060110162 | Tian et al. | May 2006 | A1 |
| Number | Date | Country |
|---|---|---|
| 0 677 935 | Oct 1995 | EP |
| 0 716 521 | Jun 1996 | EP |
| 0 907 266 | Apr 1999 | EP |
| 1 659 724 | May 2006 | EP |
| 06-104845 | Apr 1994 | JP |
| WO 03104849 | Dec 2003 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20060133807 A1 | Jun 2006 | US |
| Number | Date | Country | |
|---|---|---|---|
| 60636706 | Dec 2004 | US |