The following includes information that may be useful in understanding the present disclosure. It is not an admission that any of the information provided herein is prior art nor material to the presently described or claimed inventions, nor that any publication or document that is specifically or implicitly referenced is prior art.
The present invention relates generally to the field of ships and more specifically relates to fluid-current motors.
As the human population grows, more and more people are becoming acutely aware of the environmental impact we have on the world. Vehicles powered by fossil fuels are a large contributor to harmful emissions in our environment. For the last twenty years, motor vehicle manufacturers have produced a wide variety of hybrid vehicles to combat the emissions of the internal combustion engine. A hybrid vehicle uses multiple distinct types of power to power the vehicle such as an internal combustion engine and an electrical engine in combination.
While motor vehicles such as passenger cars have been quick to adopt the hybrid trend, many other types of motor vehicles are still behind the curve. One such motor vehicle is watercraft such as boats, ships, and yachts. Watercraft in general tend to consume much more fuel than motor vehicles for land. Furthermore, many watercraft used for commercial purposes such as fishing and shipping have been in service for many years and have outdated, less fuel-efficient engines. The cost of replacing the outdated technology in these watercraft is often obviated by the price of purchasing an entirely new watercraft. A suitable solution is desired.
U.S. Pat. No. 6,508,191 to Raymond Spoljaric relates to an Aqua Turbo Generator. The described Aqua Turbo Generator includes an underwater generator for use with a surface vessel, having a cylindrical housing with two major parts: a turbine and a generator. The turbine is located in the front portion of the device and is connected to the generator in the rear of the device through a set of gears. A conical shaped filter pointed forward is located in the front of the turbine to prevent clogging of the device. The size of the filter rib openings is smaller than the spacing between the turbine blades so that any particulate matter that passes through the filter can freely pass through the turbine and out the housing. At the junction between the conical filter and the main body of the housing, the water is deflected into the housing by a special deflector thus forcing the water to pass through the turbine. A water flow passage is provided for a water outlet and a leak proof enclosure surrounds the turbine, gears and generator. The housing is connected to the vessel by way of mounting frame.
In view of the foregoing disadvantages inherent in the known ships art, the present disclosure provides a novel system and method for recharging power storage devices on a watercraft. The general purpose of the present disclosure, which will be described subsequently in greater detail, is to provide a system and method for recharging power storage devices on a watercraft.
A system and method for recharging power storage devices on a watercraft is disclosed herein. The system and method for recharging power storage devices on a watercraft includes a shell, at least one channel fixedly mounted inside the shell, a turbine and a generator.
According to another embodiment, a system and method for recharging power storage devices on a watercraft is also disclosed herein. The system and method for recharging power storage devices on a watercraft includes a shell configured to cover the hull of a watercraft from a bow of the watercraft to a stern of the watercraft at least partially below the waterline on a watercraft.
The system also includes at least one linear channel, horizontally positioned and traversing the length of the shell. The system may further comprise a turbine positioned within the engine room of the watercraft and a generator positioned within the engine room of the watercraft. According to this embodiment, the shell comprises at least one fastener configured to fixedly attach the shell to the hull of the watercraft. The linear-channel is tapered directionally toward the stern of the watercraft, the linear-channel including a first-opening configured to allow water to enter the linear-channel and a second-opening configured to allow expulsion of water from the linear-channel, and a chamber centrally located along the length of the linear-channel. The chamber may comprise at least one opening to allow water to enter the chamber from the linear-channel and at least one opening to allow water to exit the chamber into the linear-channel.
According to this embodiment, the system provides a turbine having at least one rotor which is housed by the chamber of the linear-channel. The rotor further comprises a shaft which extends from the center of the rotor, through the shell, through the hull of the watercraft into the turbine. The turbine is further communicatively coupled to the generator.
According to another embodiment, a method for recharging power storage devices on a watercraft is also disclosed herein. The method for recharging power storage devices on a watercraft may include the steps of: installing a shell of a system for recharging power storage devices onto a bottom of the watercraft, channeling water into a channel of the shell via forward movement of the watercraft, rotating a rotor positioned along the channel via passing water, generating kinetic energy via a rotational force of the rotor caused by the passing water, converting potential energy into kinetic energy via a generator to produce electrical current, storing the electrical current to charge a power storage device, and channeling water outside the channel of the shell via at least one exit port.
For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. The features of the invention which are believed to be novel are particularly pointed out and distinctly claimed in the concluding portion of the specification. These and other features, aspects, and advantages of the present invention will become better understood with reference to the following drawings and detailed description.
The figures which accompany the written portion of this specification illustrate embodiments and methods of use for the present disclosure, a system and method for recharging power storage devices on a watercraft, constructed and operative according to the teachings of the present disclosure.
The various embodiments of the present invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements.
As discussed above, embodiments of the present disclosure relate to a fluid-current motor and more particularly to a system and method for recharging power storage devices on a watercraft as used to improve the production of usable energy on watercrafts.
Generally, the present invention provides a system and method for recharging power storage devices on a watercraft. The present invention aims to provide a method to manufacture or attach a device to the hull of a watercraft below the waterline that is configured to funnel incoming water into a turbine to produce electricity. The funnel may advantageously decrease in size as it traverses the length of the watercraft, pressurizing the water before it is expelled into a chamber housing a rotor. The pressurized water imparts its energy on the rotor, rotating the blades of the rotor and rotating a shaft which is connected at one end to the rotor. At the opposite end of the shaft there is a generator attached to convert the rotational energy of the turbine into electrical energy which can then be stored in a power storage device and used by the electrical engine of the watercraft.
The system and method for recharging power storage devices on a watercraft may be configured to retrofit onto an existing watercraft to provide hybrid-electric power to a watercraft. The retrofit embodiment of the system may be removably or permanently fixable to the hull of a watercraft. The system may also be manufactured into the hulls of newly manufactured watercraft to provide an additional, optional power source for a watercraft. The size of the components of the present invention may vary based upon the size of the watercraft to which they are being applied.
Referring now more specifically to the drawings by numerals of reference, there is shown in
As shown, the system 100 for recharging power storage devices on the watercraft 5 may include a shell 110, the shell 110 having a front, a rear, a first side, a second side, a bottom, and an open top, the open top dimensionally configured to encase a hull of the watercraft 5. The invention may further comprise at least one linear-channel 120 fixedly mounted inside the shell 110. The linear-channel(s) 120 may be horizontally positioned and traverse the length of the shell 110. The linear-channel(s) 120 is/are tapered directionally toward the stern of the watercraft 5. The linear-channel(s) 120 may comprise a first-opening configured to allow water to enter the linear-channel 120 and a second-opening configured to allow expulsion of water from the linear-channel 120.
According to one embodiment, the system 100 for recharging power storage devices on a watercraft 5 may be arranged as a kit 105. In particular, the system 100 for recharging power storage devices on a watercraft 5 may include a set of instructions 155. The instructions 155 may detail functional relationships in relation to the structure of the system 100 and method 500 for recharging power storage devices on a watercraft 5 (such that the 100 and method 500 for recharging power storage devices on a watercraft 5 can be used, maintained, or the like, in a preferred manner). The kit 105 may be useful for retrofit installment of the shell 110 having at least one linear-channel 120 on a watercraft 5.
In continuing to refer to
In continuing to refer to
Preferably, the turbine 200 further comprises a housing which contains the components of the turbine 200 and which may be located in or adjacent to the engine room 10 of a watercraft 5. This arrangement allows for efficient conversion of the rotational energy from the turbine 200 into electrical energy. The turbine 200 may further include various gearing to increase or decrease the speed of rotation or reverse the direction of the rotational energy provided by the rotor 205. Furthermore, the turbine 200 may include gearing to transmit the rotational energy provided by the rotor 205 to a different axis to suit the generator 300 to which the energy is being supplied.
The rotational energy provided by the turbine 200 may move an electrical conductor such as a wire containing electric charges in a magnetic field to convert the energy into electricity. The electricity produced by the generator 300 may then be used to charge a power storage device 400 on a watercraft 5 for storage for later use. Furthermore, the electricity produced by the generator 300 may be used to directly power an electrical engine or other electrical systems in the watercraft 5.
It should be noted that step six 506 is an optional step and may not be implemented in all cases. Optional steps of method of use 500 are illustrated using dotted lines in
The embodiments of the invention described herein are exemplary and numerous modifications, variations and rearrangements can be readily envisioned to achieve substantially equivalent results, all of which are intended to be embraced within the spirit and scope of the invention. Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientist, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application.
The present application is related to and claims priority to U.S. Provisional Patent Application No. 62/346,112 filed Jun. 6, 2016, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62346112 | Jun 2016 | US |