The present invention generally involves a system and method for reducing combustion dynamics in a combustor.
Combustors are commonly used in industrial and power generation operations to ignite fuel to produce combustion gases having a high temperature and pressure. For example, gas turbines typically include one or more combustors to generate power or thrust. A typical gas turbine used to generate electrical power includes an axial compressor at the front, one or more combustors around the middle, and a turbine at the rear. Ambient air may be supplied to the compressor, and rotating blades and stationary vanes in the compressor progressively impart kinetic energy to the working fluid (air) to produce a compressed working fluid at a highly energized state. The compressed working fluid exits the compressor and flows through one or more nozzles into a combustion chamber in each combustor where the compressed working fluid mixes with fuel and ignites to generate combustion gases having a high temperature and pressure. The combustion gases expand in the turbine to produce work. For example, expansion of the combustion gases in the turbine may rotate a shaft connected to a generator to produce electricity.
Various design and operating parameters influence the design and operation of combustors. For example, higher combustion gas temperatures generally improve the thermodynamic efficiency of the combustor. However, higher combustion gas temperatures also promote flashback or flame holding conditions in which the combustion flame migrates towards the fuel being supplied by the nozzles, possibly causing severe damage to the nozzles in a relatively short amount of time. In addition, higher combustion gas temperatures generally increase the disassociation rate of diatomic nitrogen, increasing the production of nitrogen oxides (NOX). Conversely, a lower combustion gas temperature associated with reduced fuel flow and/or part load operation (turndown) generally reduces the chemical reaction rates of the combustion gases, increasing the production of carbon monoxide and unburned hydrocarbons.
In a particular combustor design, a plurality of premixer tubes may be radially arranged in an end cap to provide fluid communication for the working fluid and fuel through the end cap and into the combustion chamber. Although effective at enabling higher operating temperatures while protecting against flashback or flame holding and controlling undesirable emissions, some fuels and operating conditions produce very high frequencies with high hydrogen fuel composition in the combustor. Increased vibrations in the combustor associated with high frequencies may reduce the useful life of one or more combustor components. Alternately, or in addition, high frequencies of combustion dynamics may produce pressure pulses inside the premixer tubes and/or combustion chamber that affect the stability of the combustion flame, reduce the design margins for flashback or flame holding, and/or increase undesirable emissions. Therefore, a system and method that reduces resonant frequencies in the combustor would be useful to enhancing the thermodynamic efficiency of the combustor, protecting the combustor from catastrophic damage, and/or reducing undesirable emissions over a wide range of combustor operating levels.
Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One embodiment of the present invention is a system for reducing combustion dynamics in a combustor. The system includes an end cap that extends radially across at least a portion of the combustor, and the end cap includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and a plurality of tubes extend from the upstream surface through the downstream surface of the end cap. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor.
Another embodiment of the present invention is a system for reducing combustion dynamics in a combustor that includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap, and each tube provides fluid communication through the end cap to the combustion chamber. A first obstruction extends at least partially across a first set of tubes.
The present invention may also include a method for reducing combustion dynamics in a combustor. The method includes flowing a working fluid through a plurality of tubes that extend axially through an end cap that extends radially across at least a portion of the combustor and obstructing at least a portion of the working fluid flowing through a first set of the plurality of tubes.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Various embodiments of the present invention include a system and method for reducing combustion dynamics in a combustor. In particular embodiments, the system and method may set up disturbance areas of combustion dynamics in which a resonant frequency in one or more tubes dampens the frequencies of combustion dynamics excited through surrounding tubes. As a result, various embodiments of the present invention may allow extended combustor operating conditions, extend the life and/or maintenance intervals for various combustor components, maintain adequate design margins of flashback or flame holding, and/or reduce undesirable emissions. Although exemplary embodiments of the present invention will be described generally in the context of a combustor incorporated into a gas turbine for purposes of illustration, one of ordinary skill in the art will readily appreciate that embodiments of the present invention may be applied to any combustor and are not limited to a gas turbine combustor unless specifically recited in the claims.
The tubes 24 are radially arranged in an end cap 28 upstream from the combustion chamber 26. As used herein, the terms “upstream” and “downstream” refer to the relative location of components in a fluid pathway. For example, component A is upstream from component B if a fluid flows from component A to component B. Conversely, component B is downstream from component A if component B receives a fluid flow from component A. Various embodiments of the combustor 10 may include different numbers and arrangements of tubes 24, and
A fuel conduit 46 may extend from the end cover 14 through the upstream surface 32 of the end cap 28 to provide fluid communication for fuel to flow from the end cover 14, through the fuel conduit 46, and into the fuel plenum 40. One or more of the tubes 24 may include a fuel port 48 that provides fluid communication through the one or more tubes 24 from the fuel plenum 40. The fuel ports 48 may be angled radially, axially, and/or azimuthally to project and/or impart swirl to the fuel flowing through the fuel ports 48 and into the tubes 24. In this manner, the working fluid may flow through the tube inlets 36 and into the tubes 24, and fuel from the fuel plenum 40 may flow through the fuel ports 48 and into the tubes 24 to mix with the working fluid. The fuel-working fluid mixture may then flow through the tubes 24 and into the combustion chamber 28.
The shroud 38 may include a plurality of air ports 50 that provide fluid communication for the working fluid to flow through the shroud 38 and into the air plenum 42. In particular embodiments, a gap 52 between one or more tubes 24 and the downstream surface 34 may provide fluid communication from the air plenum 42, through the downstream surface 34, and into the combustion chamber 28. In this manner, a portion of the working fluid may flow through the air ports 50 in the shroud 38 and into the air plenum 42 to provide convective cooling around the lower portion of the tubes 24 before flowing through the gaps 52 and into the combustion chamber 28.
Each embodiment of the combustor 10 further includes means for reducing combustion dynamics excited through the tubes 24. Referring back to
As illustrated in the particular embodiment shown in
In the embodiment shown in
In the embodiment shown in
In the embodiment shown in
The various embodiments described and illustrated with respect to
The systems and methods described herein may provide one or more of the following advantages over existing nozzles and combustors. For example, the creation of disturbance areas 54 of combustion dynamics in the combustor may extend the operating capability of the combustor 10 over a wide range of fuels without decreasing the useful life and/or maintenance intervals for various combustor 10 components. Alternately, or in addition, the reduced resonant frequencies in the combustor 10 may maintain or increase the design margin against flashback or flame holding and/or reduce undesirable emissions over a wide range of combustor 10 operating levels. In addition, the obstructions, fluid boundaries 60, and/or perforated plates 64, 66 described herein may be installed in existing combustors 10, providing a relatively inexpensive modification of existing combustors 10 that reduces resonance frequencies.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other and examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This invention was made with Government support under Contract No. DE-FC26-05NT42643, awarded by the Department of Energy. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3692460 | Morck, Jr. | Sep 1972 | A |
3771500 | Shakiba | Nov 1973 | A |
4100733 | Striebel | Jul 1978 | A |
4104873 | Coffinberry | Aug 1978 | A |
4408461 | Bruhwiler et al. | Oct 1983 | A |
4412414 | Novick et al. | Nov 1983 | A |
5104310 | Saltin | Apr 1992 | A |
5205120 | Obländer et al. | Apr 1993 | A |
5213494 | Jeppesen | May 1993 | A |
5341645 | Ansart et al. | Aug 1994 | A |
5439532 | Fraas | Aug 1995 | A |
5592819 | Ansart et al. | Jan 1997 | A |
5707591 | Semedard et al. | Jan 1998 | A |
6098407 | Korzendorfer et al. | Aug 2000 | A |
6123542 | Joshi et al. | Sep 2000 | A |
6394791 | Smith et al. | May 2002 | B2 |
6438961 | Tuthill et al. | Aug 2002 | B2 |
6796790 | Venizelos et al. | Sep 2004 | B2 |
6983600 | Dinu et al. | Jan 2006 | B1 |
7003958 | Dinu et al. | Feb 2006 | B2 |
7007478 | Dinu | Mar 2006 | B2 |
7631499 | Bland | Dec 2009 | B2 |
7752850 | Laster et al. | Jul 2010 | B2 |
8079218 | Widener | Dec 2011 | B2 |
8381530 | Singh et al. | Feb 2013 | B2 |
20040216463 | Harris | Nov 2004 | A1 |
20060213201 | Lupkes et al. | Sep 2006 | A1 |
20080016876 | Colibaba-Evulet et al. | Jan 2008 | A1 |
20080304958 | Norris et al. | Dec 2008 | A1 |
20090297996 | Vatsky et al. | Dec 2009 | A1 |
20100008179 | Lacy et al. | Jan 2010 | A1 |
20100024426 | Varatharajan et al. | Feb 2010 | A1 |
20100031662 | Zuo | Feb 2010 | A1 |
20100060391 | Ristola et al. | Mar 2010 | A1 |
20100084490 | Zuo et al. | Apr 2010 | A1 |
20100089367 | Johnson et al. | Apr 2010 | A1 |
20100095676 | Uhm et al. | Apr 2010 | A1 |
20100139280 | Lacey et al. | Jun 2010 | A1 |
20100186413 | Lacey et al. | Jul 2010 | A1 |
20100192581 | Ziminsky et al. | Aug 2010 | A1 |
20100218501 | York et al. | Sep 2010 | A1 |
20100236247 | Davis, Jr. et al. | Sep 2010 | A1 |
20100252652 | Johnson et al. | Oct 2010 | A1 |
20100287942 | Zuo et al. | Nov 2010 | A1 |
20110016866 | Boardman et al. | Jan 2011 | A1 |
20110016871 | Kraemer et al. | Jan 2011 | A1 |
20110072824 | Zuo et al. | Mar 2011 | A1 |
20110073684 | Johnson et al. | Mar 2011 | A1 |
20110083439 | Zuo et al. | Apr 2011 | A1 |
20110089266 | Stoia et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
101876451 | Nov 2010 | CN |
101893243 | Nov 2010 | CN |
2213941 | Aug 2010 | EP |
2634488 | Sep 2013 | EP |
Entry |
---|
Co-pending U.S. Appl. No. 12/499,777, filed Jul. 8, 2009. |
Co-pending U.S. Appl. No. 12/877,385, filed Sep. 8, 2010. |
Co-pending U.S. Appl. No. 12/877,399, filed Sep. 8, 2010. |
Co-pending U.S. Appl. No. 13/020,156, filed Feb. 3, 2011. |
Unofficial translation of CN office action issued on Apr. 30, 2015 in relation to corresponding CN application 201210202431.7. |
EP Search Report issued on May 11, 2015 in relation to corresponding EP application 12171673.2. |
Number | Date | Country | |
---|---|---|---|
20130045450 A1 | Feb 2013 | US |