1. Field of the Invention
The present invention relates to hearing aid amplifiers.
2. Description of Related Art
A hearing aid is typically comprised of a microphone which receives an acoustic input signal and converts it into an electrical signal, a filter which processes the signal, an amplifier which produces an amplified output signal, and a speaker which delivers the output signal.
With many hearing aid designs, especially those including Class D amplifiers, the amplifier will lose gain control under low battery conditions which may produce a loud squeal or gun shot noise. This may occur as the battery charge depletes with use, and also when a loud tone enters the hearing aid at a low frequency, causing the battery voltage to momentarily drop. Some hearing aids have been equipped with a latch which disables the hearing aid output when the amplifier oscillator frequency reaches a certain level. These prior art latches have not been completely effective, as latch activation can erroneously disable the hearing aid during a power supply transient in addition to a true low battery condition.
In one embodiment, the invention includes a circuit for reducing squeal comprising a battery supplying a battery output voltage, a voltage sensor having an output dependent on said battery output voltage, an audio amplifier, a cutoff circuit connected to substantially disable the audio amplifier in response to the voltage sensor output, and a crowbar circuit connected to load the battery in response to the voltage sensor output.
In another embodiment, the invention includes a hearing aid comprising an audio amplifier having an audio input, a power supply input, and an amplification input, and having an output. The hearing aid further comprises a microphone connected to the audio input of the audio amplifier, a speaker connected to the output of the audio amplifier, a battery having an output voltage, a voltage sensor having an input receiving the modified voltage and having a cutoff output, and a crowbar output, wherein the voltage sensor determines if the battery output voltage is below a threshold voltage. The hearing aid further comprises a cutoff circuit having an input connected to the cutoff output, and having an amplification output connected to the amplification input of the audio amplifier, such that in response to the cutoff output indicating the battery output voltage is below the threshold voltage the amplification output substantially disables the audio amplifier and a crowbar circuit having an input connected to the crowbar output, and connected to load the battery with a circuit element in response to the crowbar output indicating the battery output voltage is below the threshold voltage.
Embodiments of the invention will now be described with reference to the accompanying Figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
The squeal stopper circuit 20 is coupled directly to the battery output at node 13, and has an output 24 coupled to the audio amplifier 18. The squeal stopper circuit 20 reduces squeal generally caused by a low battery in two ways. First, when the battery voltage, and thus the power supply voltage, drops to a first threshold level the output 24 to audio amplifier 18 changes state. In response, the audio amplifier 18 is disabled, thus preventing any signal from reaching the speaker 16, and preventing squeal. In addition, when the battery voltage drops to a second threshold level, the squeal stopper circuit loads the battery with, for example, a current source or resistive element. This load prevents a bad battery from momentarily recovering voltage and causing the hearing aid to turn back on, potentially causing a squeal. However, a good battery will be relatively unaffected by the additional load and may continue to provide power to the hearing aid for its remaining useful life.
Due to size considerations, the audio amplifier, power supply, and squeal stopper circuitry will normally be fabricated as part of a common integrated circuit, although separate circuits may be used. The input and output transducers and battery are typically separate electromechanical components that attach to the integrated circuit via contact pads and/or wires.
As shown in
Cutoff circuit 34 has an input coupled to the voltage sensor 32 and an output 24 coupled to the audio amplifier 18. When the cutoff input 33 indicates that the battery 12 voltage has dropped below a first threshold voltage (0.8 volts in one embodiment) the output 24 of the cutoff circuit 34 changes state. This state change disables the amplifier 18. The cutoff circuit may include simply a transistor or as a controlled current source. Depending on amplifier design, the cutoff output 24 may interact with the amplifier in different ways. In one embodiment, a transconductance preamplifier is disabled by opening the bias current path. In another embodiment, a “digitally controlled” amplifier is disabled by the output 24 changing state from a non-asserted to an asserted state. These embodiments are illustrated in
Crowbar circuit 36 has an input coupled to voltage sensor 32 and an output coupled to the battery 12. As indicated above, the crowbar signal 35 indicates whether the battery 12 has dropped below a second threshold level (0.75 volts in one embodiment). When crowbar circuit 36 senses an input 35 indicating that the battery 12 has dropped below the threshold level, the crowbar output 26 loads the battery with a current source or a resistive element. In one embodiment, a resistor in the 1-10 kohm range has been found suitable for use in the crowbar circuit 36 to load the battery 12. In an advantageous embodiment of the invention, the battery loading circuit element is a 2000 ohm resistive element. If a current source is used, it may be configured to draw about 500 microamps from the battery to provide the desired loading. As mentioned above, this load prevents a bad battery from momentarily recovering and potentially causing a squeal on the hearing aid speaker 16.
It will be appreciated by those in the art that all voltages and resistor values discussed herein are examples only. It is contemplated that any battery voltage may be implemented in the present invention. In addition, the first and second threshold levels may be set to any value, and the threshold levels may be in reference to the battery voltage, the power supply voltage, or any combination of the two.
When a fresh battery 12 is in the hearing aid (e.g. a battery with voltage above both the first and second threshold levels), the audio amplifier 18 is operating at a determined amplification level, and the squeal stopper circuit draws only a small amount of current from the battery. With a fresh battery, the voltage at node 43 is still high enough after the drop across the diode bank 42 to force cutoff transistor 54 and inverting transistor 52 to the on state. When inverting transistor 52 is in the on state, crowbar transistor 50 is turned off because the on state of inverting transistor 52 ties the gate of crowbar transistor 50 to ground 60. In this state of normal, fresh battery operation, the crowbar circuit is open such that the battery is not affected, and the state of the output line 24 is grounded through cutoff transistor 54. It may be desirable, but not necessary, to include a filter capacitor 53 on the gate of crowbar transistor 50.
During normal operation, current is drawn from the power supply to ground through two pathways. One is through the diode bank 42 and resistor 46. The other is through resistor 44 and inverting transistor 52. In advantageous embodiments of the invention, resistors 44 and 46 are each at least about 100 megohms, thus limiting the total current draw from a 5 V power supply to no more than about 100 nanio-amps. In one suitable embodiment, approximately 200 megohm resistors are used for both resistors, whereby with a 5 V power supply output, each resistor draws about 25 nanoamps from the power supply. In another embodiment, resistor 44 is about 200 megohms, and resistor 46 is about 100 megohms. In these embodiments, therefore, during normal operation of the hearing aid when the power supply voltage 15 is about 2.5-5 volts, the squeal stopper circuit 20 draws a total of less than about 50-75 nanoamps from the battery 12, making it substantially transparent to the remainder of the circuit, and not causing a significant reduction in battery life.
When the battery 12 voltage decreases over time to a first threshold level (e.g. about 0.8 volts), the cutoff transistor 54 begins to turn off as its gate receives a decreased voltage through diode bank 42. At the same time, inverting transistor 52 begins to turn off. As the battery voltage reaches a second threshold level (e.g. about 0.75 volts), the increase in voltage on the gate of crowbar transistor 50 due to the increase in impedance of inverting transistor 52 turns on the crowbar transistor 50. When the crowbar transistor 50 is fully on, the battery is shunted to ground through resistor 48, which as discussed above, may be about 1000-10,000 ohms, with 2000 ohms having been found suitable in one embodiment. In addition to a resistor 48, other battery loading circuit elements are possible to be used in place of the resistive element shown in
In the embodiment of
Turning back to both
As seen in
Shortly after cutoff transistor 54 begins to approach a completely off high impedance state when power supply 15 voltage reaches approximately 2.6 volts, crowbar transistor 50 begins going to low impedance due to the operation of inverter transistor 52. Node 40 then begins to decrease in voltage as crowbar transistor 50 continues closing and grounding this node. The voltage at node 40 continues to decrease, as transistor 50 continues to close, until the voltage at node 40 reaches approximately zero volts.
Once the crowbar transistor 50 is fully on, the behavior of the system will depend on whether the battery is old and weak or fresh. If the battery is fresh, the load from crowbar resistor 48 will not prevent the battery voltage from recovering and going back up after a transient load.
On the other hand, with a weak battery, the voltage at node 13 will continue to drop due to the additional crowbar resistor load as illustrated by curve 74a. This will also reduce the power supply output voltage curve 70 at node 15. It can be recognized that eventually curve 70 meets curve 74 and eventually transistor 50 shuts off beyond the useful range of interest.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3769919 | Johnson | Nov 1973 | A |
3924159 | Hoover | Dec 1975 | A |
5131046 | Killion et al. | Jul 1992 | A |
6320969 | Killion | Nov 2001 | B1 |