1. Field of the Invention
The present invention relates in general to the field of information handling system distributed capacitance, and more particularly to a system and method for reducing the effect of distributed capacitance associated with light generation to illuminate a liquid crystal display using Cold Cathode Fluorescent Light (CCFL).
2. Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Information handling systems are sometimes assembled in portable configurations to allow a user to operate the information handling system independent of external peripherals and external power. Typical portable information handling systems include an integrated power supply, such as an internal rechargeable battery, and an integrated display, such as a liquid crystal display (LCD) integrated in a lid that opens for operation and shuts for storage. The LCD generates a display by altering the light-passage characteristics of pixels so that light that passes from the back of the display through the pixels presents a desired image. The backlight that generates light to illuminate the pixels is typically a fluorescent light, such as a cold cathode fluorescent lamp (CCFL), aligned along an edge of the display to pass light through a light guide for even distribution across the display. Generally, the CCFL is placed in a semi-circle shaped reflector to direct light into the light guide.
CCFL lights are typically used as portable display backlights due to the relatively effective illumination provided with relatively low power consumption and heat generation. Often, portable information handling system displays are the system component that takes the greatest toll on internal battery charge life when the information handling system operates on internal power. Internal battery direct current power is converted to high voltage and high frequency alternating current with an internal inverter, such as voltages of approximately 600 Volts and frequency of approximately 50 KHz. One difficulty that arises with the transmission of high voltages and frequencies through a CCFL is that the passage of the current through the CCFL gas plasma results in generation of distributed capacitance where grounded metallic surfaces are proximate to the CCFL. For example, the semi-circle shaped reflector that directs light to the light guide is typically metallic and generally grounded for ease of assembly and reduced electromagnetic emissions (EMI). The proximity of the reflector to the lamp and its length form one side of the distributed capacitance that affects power transmitted from the inverter to the ground of the lamp. Distributed capacitance often increases power consumption by 10 to 20% and also impacts the quality of light produced by making the brightness across the lamp uneven. Increased power consumption due to distributed capacitance of the lamp and wiring to system ground thus may have a substantial negative impact on a portable information handling system's battery charge life.
Therefore a need has arisen for a system and method which reduces the impact of distributed capacitance on information handling system operations.
In accordance with the present invention, a system and method are provided which substantially reduce the disadvantages and problems associated with previous methods and systems for managing distributed capacitance. An impedance element interfaced in series between a display lamp reflector and ground provides a reduced resultant distributed capacitance for less power waste and improved lamp illumination.
More specifically, an information handling system display presents image information through image pixel elements that are illuminated by a fluorescent lamp, such as a CCFL. A reflector aligned along the length of the lamp directs light generated by the lamp to a light guide for distribution across the image elements. Physical distributed capacitance forms between the grounded metal inner surface of the reflector and the lamp due to the alternating current path from an inverter to the lamp and then to ground. The impact of the physical distributed capacitance on information handling system operations is reduced by interfacing an impedance element in series with the distributed capacitance between the lamp and ground to provide a reduced resultant distributed capacitance. In one embodiment, the impedance element is a capacitor integrated with the lamp assembly by encasing the outer surface of the reflector with an insulating dielectric assembled to ground and having some common surface area between the reflector and ground, such as the frame of the information handling system.
The present invention provides a number of important technical advantages. One example of an important technical advantage is that introduction of capacitance or other impedance element in series with distributed capacitance formed between a lamp and ground reduces the impact of the distributed capacitance on display illumination by the lamp, such as a CCFL. Reduced distributed capacitance reduces power loss by display illumination to increase effective portable information handling system battery life. Reduced distributed capacitance also stabilizes power to the display lamp for more even brightness and thus improved image quality of the display.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
Physical distributed capacitance formed by current flow through information handling system components increases power use and impacts system performance. Distributed capacitance is reduced by interfacing an impedance element in series with the source of the distributed capacitance to produce a lower resultant capacitance. For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
Referring now to
Information handling system 10 is powered with direct current from a battery 28 that is grounded to frame 26. Battery 28 provides direct current to inverter 30, which converts the direct current to alternating current for supply to lamp 12. For instance, inverter 30 provides alternating current of approximately 600 Volts and approximately 50 KHz to a CCFL that illuminates image pixels 24. The relatively high voltage and high frequency applied by inverter 30 to lamp 12 generates current through the physical distributed capacitance associated with lamp 12 and the wiring of lamp 12 to ground through inverter 30. The greater the physical distributed capacitance associated with operation of lamp 12, the greater the amount of power that is wasted for a given illumination of lamp 12. Metal of reflector 14 in proximity to lamp 12 and along the length of lamp 12 plus wiring of reflector 14 to ground form the opposing side of the physical distributed capacitance along the length corresponding between lamp 12 and reflector 14.
Referring now to
In one embodiment, the values for Z are selected to further minimize the effects of distributed capacitance in the frequency domain, such as by matching the frequency of the alternating current that passes through lamp 12.
Referring now to
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6919697 | Jang | Jul 2005 | B1 |
20020003525 | Hwang | Jan 2002 | A1 |
20020041280 | Woo | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20060006810 A1 | Jan 2006 | US |