The present teachings generally relate to tissue anchor systems and uses thereof in treating tricuspid regurgitation.
Tricuspid valve diseases relate to conditions in which the valve between the two right heart chambers (i.e., the right ventricle and the right atrium) doesn't function properly and these diseases often occur with other heart valve problems. Examples of tricuspid valve diseases include tricuspid valve regurgitation, tricuspid valve stenosis, tricuspid valve atresia, and the Ebstein's anomaly. In the tricuspid valve regurgitation, the tricuspid valve doesn't close properly and blood flows back into the right atrium; in the tricuspid valve stenosis, the tricuspid valve is narrowed and reduces the amount of blood flowing into the right ventricle; in the tricuspid atresia, a congenital heart disease, a solid wall of tissues blocks the blood from flowing between the two right heart chambers; and in the Ebstein's anomaly, a malformed tricuspid valve situates at a position lower than the normal position in the right ventricle and causes blood to flow back into the right atrium. There are other tricuspid valve diseases generally known to a person with ordinary skill in the art and these tricuspid valve diseases are also included in the present teachings.
A tricuspid valve disease can be corrected by an annuloplasty ring. In some instances, this device is preferred for surgically repairing a defective tricuspid valve. An annuloplasty ring is an anatomically-correct three-dimensional (3D) ring and can flexibly conform to the heart valve opening. This ring is implanted into a defective tricuspid valve and reduces the valve opening. Properly implanted, an annuloplasty ring allows the valve to open and close properly.
Tricuspid valve repair surgeries can be done in one of the following two ways: a minimally invasive surgery or an open-heart surgery. A minimally invasive method involves making a small incision in the upper or lower chest and inserting a valve repairing system/device percutaneously. After the valve is repaired, the incision may be closed with dissolving sutures. In some minimally invasive techniques the initial incision or puncture can be allowed to heal without sutures. In this event any bleeding is stopped with manual compression following the procedure. Comparing to an open-heart surgery, advantages of a minimally invasive approach include a shorter recovery time, less post-operation pain, and earlier return to work and normal daily activities.
However, there are drawbacks in either procedures and therefore needs still exist for repairing a diseased tricuspid valve with alternative approaches.
One aspect of the present teachings provides a percutaneous repair system for reducing a tricuspid annulus circumference. The system comprises a first anchor configured to be deployed inside the coronary sinus, and a second anchor configured to be deployed across the tricuspid annulus. The system further comprises a first tensioning member configured to apply tension to the first anchor with a fixed end connecting to the first anchor and a free end; and a second tensioning member configured to apply tension to the second anchor with a fixed end connecting to the second anchor, and a free end. The system further comprises a lock member joining the free ends of both first and second tensioning members. The lock member is configured to maintain the tension on both the anchors.
Another aspect of the present teachings provides a percutaneous repair system for reducing a tricuspid annulus circumference. The system comprises a first anchor configured to be deployed inside the coronary sinus, and a second anchor configured to be deployed across the tricuspid annulus. The system further comprises a first tensioning member configured to apply tension to the first anchor with a first end connecting to the first anchor and a second end joining a lock member. The second anchor is configured to slide over the first tensioning member. The first tensioning member is configured to apply tension to the first anchor, and the lock member is configured to maintain the tension.
Another aspect of the present teachings provides a percutaneous repair system for reducing a tricuspid annulus circumference. The system comprises a first anchor configured to be deployed inside the coronary sinus and a second anchor configured to be deployed across the tricuspid annulus. The system further comprises a first distance between the first and second anchors and a second reduced distance between the first and second anchors.
Another aspect of the present teachings provides a method for percutaneously reducing the circumference of a tricuspid annulus. This method comprises implanting a first anchor into the coronary sinus and implanting a second anchor across the tricuspid annulus. In various embodiments, each of the first and second anchors connects to a tensioning member. The method further comprises applying tension to both the tensioning members so as to reduce the distance between the first and second anchors from a first distance to a second distance. The method further comprises implanting a locking member to secure the second distance between the first and second anchors. The method further comprises reducing the circumference of the tricuspid valve by tensioning both the tensioning members.
Certain specific details are set forth in the following description and figures to provide an understanding of various embodiments of the present teachings. Those of ordinary skill in the relevant art would understand that they can practice other embodiments of the present teachings without one or more of the details described herein. Thus, it is not the intention of the Applicant(s) to restrict or in any way limit the scope of the appended claims to such details. While various processes are described with reference to steps and sequences in the following disclosure, the steps and sequences of steps should not be taken as required to practice all embodiments of the present teachings.
As used herein, the term “lumen” means a canal, a duct, or a generally tubular space or cavity in the body of a subject, including a vein, an artery, a blood vessel, a capillary, an intestine, and the like. The term “lumen” can also refer to a tubular space in a catheter, a sheath, a hollow needle, a tube, or the like.
As used herein, the term “proximal” shall mean close to the operator (less into the body) and “distal” shall mean away from the operator (further into the body). In positioning a medical device inside a patient, “distal” refers to the direction away from a catheter insertion location and “proximal” refers to the direction close to the insertion location.
As used herein, the term “wire” can be a strand, a cord, a fiber, a yarn, a filament, a cable, a thread, or the like, and these terms may be used interchangeably.
As used herein, the term “sheath” may also be described as a “catheter” and, thus, these terms can be used interchangeably.
Unless otherwise specified, all numbers expressing quantities, measurements, and other properties or parameters used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, it should be understood that the numerical parameters set forth in the following specification and attached claims are approximations. At the very least and not as an attempt to limit the application of the doctrine of equivalents to the scope of the attached claims, numerical parameters should be read in light of the number of reported significant digits and the application of ordinary rounding techniques.
The present teachings relate to devices and methods for treating a tricuspid valve regurgitation percutaneously. Although referring to
An aspect of the present teachings relates to methods of reducing the circumference of a tricuspid valve (2). For example, now referring to
According to some embodiments of the present teachings, the vascular anchor (12) deployed inside the coronary sinus has an elongated body which is suitable for being positioned inside the vasculature. In some embodiments, the vascular anchor (12) is configured to collapse into a radially profile which is suitable to be delivered percutaneously by a delivery system (30, 30′) as described above, for example, as shown in
In some embodiments, the vascular anchor (12) is to be delivered through a vascular anchor delivery mechanism (34, 34′). The delivery mechanism (34, 34′) is designed to engage the vascular anchor (12) during its delivery, which allows the vascular anchor (12) to be pushed distally, pulled proximally, or held steady while the vascular anchor (12) transitions from its collapsed delivery profile into its radially expanded deployed profile. The engagement between the delivery mechanism (34, 34′) and the vascular anchor (12) is configured to be detachable, for example, at the distal end (42) of the vascular anchor (12), at the proximal end (44) of the vascular anchor (12), or through a central lumen (46) of the vascular anchor (12). The connecting flexible tensioning member (18) is configured to be disposed inside the delivery mechanism (34, 34′), or alternatively, along the delivery mechanism (34, 34′) while locating inside the delivery sheath (32, 32′).
In some embodiments, the vascular anchor (12) is made from a super-elastic or shape-memory material such as Nitinol. The super-elastic material would allow the vascular anchor (12) to be advanced to the implantation site in a collapsed configuration. Simply unsheathing the vascular anchor (12) could then allow the vascular anchor (12) to expose, expand, and contact the walls of the vasculature, for example, the coronary sinus. According to one embodiment of the present teachings, as shown in
In other embodiments, the vascular anchor (12) is made of a plastically deformable material such as stainless steel, cobalt chromium, or similar materials. In some embodiments, the vascular anchor (12) is made from a polymeric material such as PET or other plastically deformable material. In some embodiments, the deformable anchor (12) includes a collapsed deployment configuration and an expanded implanting configuration. In the collapsed deployment configuration, the anchor (12) is collapsed around a deflated endovascular balloon, as shown in
As shown in
According to some embodiments, the overall length of the vascular anchor (12) in its deployed profile is 15-25 mm. According to some embodiments, the general size of the vascular anchor (12) is 12-18 mm in diameter. According to some embodiments, the vascular anchor (12) has a generally tubular deployed profile. In another embodiment, the vascular anchor (12) has a conical or frustro-conical deployed configuration with its proximal end having a larger general diameter, and the distal end having a relatively smaller diameter. One skilled in the art should understand that the overall size of a vascular anchor (12) is designed for even distribution of the force to the surrounding tissue. As a result, it could vary based on an individual patient.
In another embodiment, the proximal end of the anchor is positioned approximately to the ostium (6) of the coronary sinus. In another embodiment, the proximal end of the vascular anchor (12) is positioned significantly into the coronary sinus. In a particular embodiment, the vascular anchor (12) is advanced until it resides along the posterior aspect of the left heart approximately 20-80 mm into the coronary sinus, for example the proximal end of the anchor is positioned 15 mm from the ostium and inside the coronary sinus A clinician should determine the optimum implantation location based on each patient's symptom and anatomy. Thus, what has been disclosed here is merey an example, and should not be viewed as limiting.
In some embodiments of the present teachings, the vascular anchor (12) has a hollow surface structure along its tubular surface. As illustrated, each hollowed surface structure is separated by struts with wavy or zigzag patterns. A wavy and zigzag pattern allows the tubular body of the anchor to expand radially. According to some embodiments, the vascular anchor (12) with a hollow surface structure is fabricated by laser-cutting or acid-etching a pattern into a preformed tube, then shape-setting the anchor to the intended deployed configuration. In such embodiments, the vascular anchor (12) with a hollow surface structure is formed by slotting a hollow tube, for example, with a machining laser, a water drill, or other methods, and expanding the slotted hollow tube to form an open structure. Alternatively, a vascular anchor (12) with a hollow surface structure can be formed with a woven, knitted, or braided tubular metallic fabrics made out of metallic strands. The term “strand” used herein can be wires, cords, fibers, yarns, filaments, cables, threads, or the like, and these terms may be used interchangeably.
A vascular anchor (12) of the present teachings is configured to engage the surrounding tissues when the vascular anchor (12) is deployed. According to one embodiment, once exiting from the delivery sheath, the vascular anchor (12) expands radially so that it secures itself to the surrounding tissues. In some embodiments, the vascular anchor (12) is made of a thermal shape memory material so that once exposed inside the blood stream, the vascular anchor (12) expands radially by itself. In another embodiment, the vascular anchor (12) is expanded by a vascular balloon.
Once deployed inside a vasculature, the vascular anchor (12) expands and secures itself at a location inside the coronary sinus without migrating along the length of the vein. In some embodiments, the vascular anchor (12) secures to the surrounding tissues through interference between its tubular surface and the vasculature. In another embodiment, the vascular anchor (12) has tissue engagement features such as barbs, hooks. In some embodiments, the vascular anchor (12) is designed to locally expand the coronary sinus significantly. In some embodiments, the vascular anchor (12) when deployed causes the internal diameter of the vascular anchor (12) to increase by 50%. Due to the anatomical structure of the heart, it is sometimes preferred that the tissue engagement feature is oriented facing inward of the heart.
In some embodiments, the vascular anchor (12) is configured to engage the internal diameter of the coronary sinus near the coronary sinus ostium (6). In some embodiments, the vascular anchor (12) is configured to engage the Eustachian valve near the coronary sinus ostium (6). In some embodiments, the vascular anchor (12) completely punctures the ridge of tissue separating the coronary sinus ostium (6) from the right atrium. This ridge of tissue may be referred to as a Eustachian valve. In patients with significant tricuspid regurgitation, this tissue ridge is often enlarged or at least more pronounced by the dilation of the surrounding heart chambers. In yet other embodiments, the vascular anchor (12) is implanted into one of the venous branches extending from the coronary sinus.
As shown in
Now referring to
Deployment of the annulus anchor (14) starts with an annulus anchor delivery system (60) gaining access to the right atrium.
Once inside the right atrium, the annulus anchor delivery system (60) further extends downwardly towards the tricuspid annulus (8). After an implant location is identified, a locating wire (68) punctures the annulus (8) to create an aperture. A tissue anchor is deployed at the location. Methods of locating and placing a locating wire (68) at a selected implant location is disclosed in U.S. patent application Ser. No. 14/190,732 (now U.S. Pat. No. 9,724,084), filed on Feb. 26, 2014, entitled “Devices and Methods for Percutaneous Tricuspid Valve Repair,” the content of which is incorporated by reference herein in its entirety.
Once an implant location is identified and marked with a locating wire (68), as shown in
According to some embodiments, upon deployment, the distal portion (52) of the annulus anchor (14) pivots automatically and assumes its profile perpendicular to the center portion (54) of the anchor (14), as shown in
The center portion (54) of the annulus anchor (14) also has an elongated profile. The center portion (54) of the annulus anchor (14) pivotably joins the distal portion (52) of the anchor (14), and, in some embodiments, pivotably attaches to the proximal portion (56) of the anchor (14). As shown in
According to some embodiments, the proximal portion (56) of the anchor (14) is an extension of the center portion (54) of the anchor (14). Thus, the connection between the center portion (54) and the proximal portion (56) is rigid. One skilled in the art should understand, for example, that the proximal portion (56) of the anchor (14) can adopt other profiles, for example, those similar to the profiles of the distal portion (52). Once released from the delivery system (60), the proximal portion (56) of the annulus anchor (14) can also pivot and assume its expanded profile, sometimes similar to the distal portion (52) of the annulus anchor (14).
Many other shapes and profiles could be adopted for the purpose of this application, including, for example, the annulus anchors (14) disclosed in U.S. patent application Ser. No. 12/273,670 (now U.S. Pat. No. 8,951,286), filed on Nov. 19, 2008, entitled “Tissue Anchor and Anchoring System,” U.S. patent application Ser. No. 11/174,951 (now U.S. Pat. No. 8,951,285), filed on Jul. 5, 2005, entitled “Tissue Anchor, Anchoring System and Methods of Using the Same,” U.S. patent application Ser. No. 13/777,042 (now U.S. Pat. No. 9,259,218), filed on Feb. 26, 2013, entitled “Tissue Anchor and Anchoring System,” each of which is incorporated by reference herein in its entirety. One skilled in the art should also understand that examples of suitable tissue anchors include, but not be limited to, tissue fasteners, tissue pledgets, or tissue staples etc.
As shown in
According to some embodiments, as shown in
Suitable lock members include those known in the art and those described in U.S. application Ser. No. 11/753,921 (which published as US 2007/0276437), filed on May 25, 2007, entitled “Lockers for Surgical Tensile Members and Methods of Using the Same to Secure Surgical Tensile Members,” the entire disclosure of which is incorporated herein by reference. With the tensioning members secured by a lock member (not shown), the excess tensioning member(s) proximal to the lock member can be removed by a cutter, including, for example, a cutter disclosed in U.S. patent application Ser. No. 11/935,054 (now U.S. Pat. No. 8,911,461), filed on Nov. 5, 2007, entitled “Suture Cutter and Method of Cutting Suture,” the entire disclosure of which is incorporated herein by reference.
Upon the deployment of the lock member (70) to lock the tensioning members in place, the circumference of the tricuspid annulus (8) is then reduced by some first reduction amount. The reduced tricuspid valve annulus therefore has lower regurgitation and allows the body to remodel.
According to some embodiments, the tensioning member (18) joins the distal end (42) of the vascular anchor (12), such as shown and described herein. One skilled in the art should understand that the tensioning member (18) could also joins the proximal end (44) of the vascular anchor (12). In some embodiments, where a vascular anchor (12) joins the tensioning member (18) at its distal end (42), the reduced tricuspid annulus (8) valve reduces and/or eliminates valve regurgitation. As the body remodels, the right atrial pressure and coronary sinus venous pressure should decrease with the decreased tricuspid valve regurgitation. This positive remodeling allows the previously dilated coronary sinus to shrink in diameter. According to some embodiments of the present teachings, the reduction in diameter of the coronary sinus causes the vascular anchor (12) to elongate, thereby reducing its diameter. As the vascular anchor (12) elongates, its distal end (42) extends further distally to the inside of the coronary sinus, applying additional tension to the tensioning member (18) connected at its distal end. This could supply additional distance reduction between the vascular anchor (12) and annulus anchor (14), thereby plicating the annulus (8) further. This effect further reduces the circumference of the tricuspid annulus (8), and further accelerates the reduction of the tricuspid valve regurgitation. According to some embodiment of the present teaching, the vascular anchor is designed with a pre-set tension limiting mechanism. Once the pre-set tension limit is reached, for example during implantation or sometimes triggered by post procedure coronary sinus remodeling, the vascular anchor will change its shape/form in part or in whole to prevent further tension increase. For example, the proximal portion of the vascular could elongate under excess tension and thereby extend proximally.
Continuing referring to
Upon removing both the position wire (68) and annulus anchor delivery system (60), a tension can be applied by a clinician to the tensioning member (18), thereby pulling two anchors (16, 18) closer to each other, and effectively reducing the circumference of the tricuspid annulus (8). Then, a clinician slides a lock member (70) over the tensioning member's proximal end. Using a lock delivery system similar to what has been described above, a lock member (70) is then deployed against the annulus anchor (14), holding the pre-loaded tension on the tensioning member, maintaining the desired circumference reduction on the tricuspid annulus (8). Upon completion of the procedure, the excess tensioning member is then cut and removed from the body.
With an annulus anchor (14) deployed across tricuspid annulus (8), a tensioning member (16) fixedly joins to the annulus anchor (14) at its proximal end, and extends proximally outside of the body. With the proximal end of the tensioning member (16) extending to the outside of the body, a clinician then slides a vascular anchor (12) over the proximal end of the tensioning member (16), then transforms the vascular anchor (12) into its collapsed delivery profile and assembles it to the distal end portion of the vascular anchor delivery system (30). The vascular anchor delivery system assembly is similar to what has been described above for example in relation to what has been described in
The vascular anchor (12) is then deployed in accordance with what has been disclosed above. Upon deployment, as shown in
At this point, a tension is applied by a clinician to the tensioning member (16), thereby pulling two anchors (12, 14) closer to each other and effectively reducing the circumference of the tricuspid annulus (8). A clinician then slides a lock member (70) over the proximal end of the tensioning member (16), and uses a lock delivery system similar to what has been described above to deploy a lock member (70) against the vascular anchor (12), holding the pre-loaded tension on the tensioning member (16), maintaining the desired circumference reduction on the tricuspid annulus (8). Upon completion of the procedure, the excess tensioning member (16) is then cut and removed from the body.
Although
According to some embodiments, the vascular anchor has a general tubular profile, as illustrated in the figures. The vascular anchor can also have a general conical profile as disclosed above with its proximal end having a larger profile than its distal end. One skilled in the arts should understand that the vascular anchor could take on other profile that is suitable for deploying inside the coronary sinus.
According to some embodiments, the vascular anchor (80, 90) as shown in
In some embodiments, the wire used to form such vascular anchor is a super-elastic shape-memory wire. The shape memory wire may be pre-set into a series of large loops. The vascular anchor is delivered in a collapsed profile and once exposed inside the coronary sinus, it resumes it pre-set profile. In some embodiments, the shape memory wire has a diameter of 0.3-0.6 mm.
In one embodiment, a tensioning member (88, 98) joins the distal portion (82, 92) of the vascular anchor (80, 90). In another embodiment, a tensioning member (88, 98) joins the proximal portion of the vascular anchor (80, 90). Yet in another embodiment, the wire that forms the vascular device (80, 90) becomes a tensioning member (88, 98) that joins the vascular anchor and is used for tensioning the device.
According to various embodiments of the present teachings, a radiopaque marker or textured surface is used to make the device visible by using a radiographic imaging equipment such as an X-ray, magnetic resonance, ultrasound or other imaging technique. A marker disclosed herein may be applied to any part of the guide, catheter, or devices disclosed in present teachings. A radiopaque marker can be sewed, adhered, swaged riveted, or otherwise placed and secured on the guide, catheter, and/or devices. The radiopaque marker may be made from a material selected from tantalum, tungsten, platinum, irridium, gold, an alloy thereof, or another material known to those with ordinary skill in the art. The radiopaque marker can also be made from cobalt, fluorione, or another paramagnetic material, or another MR visible material known to those with ordinary skill in the arts. Additionally, a contrast media injected into the atrium, ventricle, or artery may also be used to confirm the positioning under a fluoroscope.
Exemplary methods for treating tricuspid valve regurgitation described herein comprises a number of other steps. One skilled in the art should understand that the sequence of the steps can be changed, or each of steps can be omitted or modified according to each patient's needs. And those modifications should also be considered as within the scope of the present teachings. For example, access to the right atrium is gained by entering the jugular vein according to some embodiments described herein, but one skilled in the art should understand that access to the right atrium can also be achieved by entering the femoral vein and through the inferior vena cava (IVC). In addition, although the tensioning member and tissue anchor, as well as the tensioning member and vascular anchor are described as separate components according to some embodiments, one skilled in the art should understand that the tensioning member and each of the anchor can be part of an integral part. In another example, although the lock member described or incorporated above is a component separate from the tensioning member, one skilled in the art should understand other types of locking mechanisms can also be incorporated, including, for example, a knot that is part of the tensioning member and self-tightens as the tensioning member is pulled by a clinician. The present teachings also disclose certain exemplary delivery catheters/sheathes for delivering a tissue anchor, a vascular anchor, or/and a lock, and for removing a part of a tensioning member. A person skilled in the art should understand that some or all of the delivery catheters/sheathes can be combined, all of which are within the scope of this disclosure. Thus, any of the embodiments described herein should not be used to limit the scope of the invention.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this present teachings belong. Methods and materials similar or equivalent to those described herein can be used in the practice of the present teachings. In case of conflict, the specification, including definitions, controls. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The present application is a divisional of U.S. Ser. No. 15/393,809 to Sutherland et al., filed Dec. 29, 2016, which claims priority to U.S. patent application Ser. No. 62/272,871, filed Dec. 30, 2015. The foregoing applications are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3604488 | Wishart et al. | Sep 1971 | A |
3656185 | Carpentier | Apr 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3881366 | Bradley et al. | May 1975 | A |
3898701 | La Russa | Aug 1975 | A |
4042979 | Angell | Aug 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4214349 | Munch | Jul 1980 | A |
4261342 | Aranguren Duo | Apr 1981 | A |
4290151 | Massana | Sep 1981 | A |
4434828 | Trincia | Mar 1984 | A |
4473928 | Johnson | Oct 1984 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4625727 | Leiboff | Dec 1986 | A |
4712549 | Peters et al. | Dec 1987 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4961738 | Mackin | Oct 1990 | A |
5042707 | Taheri | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5300034 | Behnke et al. | Apr 1994 | A |
5325845 | Adair | Jul 1994 | A |
5346498 | Greelis et al. | Sep 1994 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5593424 | Northrup, III | Jan 1997 | A |
5601572 | Middleman et al. | Feb 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5643317 | Pavonik et al. | Jul 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5676653 | Taylor et al. | Oct 1997 | A |
5683402 | Cosgrove et al. | Nov 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702398 | Tarabishy | Dec 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5716397 | Myers | Feb 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730150 | Peppel et al. | Mar 1998 | A |
5749371 | Zadini et al. | May 1998 | A |
5752963 | Allard et al. | May 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6042554 | Rosenman et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074417 | Peredo | Jun 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6132390 | Cookston et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6165119 | Schweich, Jr. et al. | Dec 2000 | A |
6174332 | Loch et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6228032 | Eaton et al. | May 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6328746 | Gambale | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6451054 | Stevens | Sep 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6461336 | Larre | Oct 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6503274 | Howanec, Jr. et al. | Jan 2003 | B1 |
6524338 | Gundry | Feb 2003 | B1 |
6527780 | Wallace et al. | Mar 2003 | B1 |
6530952 | Vesely | Mar 2003 | B2 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6554845 | Fleenor et al. | Apr 2003 | B1 |
6564805 | Garrison et al. | May 2003 | B2 |
6565603 | Cox | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6592593 | Parodi et al. | Jul 2003 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6682558 | Tu et al. | Jan 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764310 | Ichihashi et al. | Jul 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6764810 | Ma et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6802319 | Stevens et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6855126 | Flinchbaugh | Feb 2005 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6960217 | Bolduc | Nov 2005 | B2 |
6964684 | Ortiz et al. | Nov 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6976995 | Mathis et al. | Dec 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7007798 | Happonen et al. | Mar 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077850 | Kortenbach | Jul 2006 | B2 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7150737 | Purdy et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7186264 | Liddicoat et al. | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7192443 | Solem et al. | Mar 2007 | B2 |
7220277 | Arru et al. | May 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7226477 | Cox | Jun 2007 | B2 |
7226647 | Kasperchik et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7311729 | Mathis et al. | Dec 2007 | B2 |
7314485 | Mathis | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7329279 | Haug et al. | Feb 2008 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7361190 | Shaoulian et al. | Apr 2008 | B2 |
7364588 | Mathis et al. | Apr 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7442207 | Rafiee | Oct 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7510577 | Moaddeb et al. | Mar 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7559936 | Levine | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7585321 | Cribier | Sep 2009 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7591826 | Alferness et al. | Sep 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7686822 | Shayani | Mar 2010 | B2 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7704269 | St. Goar et al. | Apr 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7722666 | Lafontaine | May 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7883538 | To et al. | Feb 2011 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7927371 | Navia et al. | Apr 2011 | B2 |
7942927 | Kaye et al. | May 2011 | B2 |
7947056 | Griego et al. | May 2011 | B2 |
7955315 | Feinberg et al. | Jun 2011 | B2 |
7955377 | Melsheimer | Jun 2011 | B2 |
7981152 | Webler et al. | Jul 2011 | B1 |
7992567 | Hirotsuka et al. | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
7993397 | Lashinski et al. | Aug 2011 | B2 |
8012201 | Lashinski et al. | Sep 2011 | B2 |
8034103 | Burriesci et al. | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070804 | Hyde et al. | Dec 2011 | B2 |
8070805 | Vidlund et al. | Dec 2011 | B2 |
8075616 | Solem et al. | Dec 2011 | B2 |
8100964 | Spence | Jan 2012 | B2 |
8123801 | Milo | Feb 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8142496 | Berreklouw | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8152844 | Rao et al. | Apr 2012 | B2 |
8163013 | Machold et al. | Apr 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8187324 | Webler et al. | May 2012 | B2 |
8202315 | Hlavka et al. | Jun 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216302 | Wilson et al. | Jul 2012 | B2 |
8231671 | Kim | Jul 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8265758 | Policker et al. | Sep 2012 | B2 |
8277502 | Miller et al. | Oct 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8287591 | Keidar et al. | Oct 2012 | B2 |
8292884 | Levine et al. | Oct 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8328868 | Paul et al. | Dec 2012 | B2 |
8333777 | Schaller et al. | Dec 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8343174 | Goldfarb et al. | Jan 2013 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8349002 | Milo | Jan 2013 | B2 |
8353956 | Miller et al. | Jan 2013 | B2 |
8357195 | Kuehn | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8419825 | Burgler et al. | Apr 2013 | B2 |
8430926 | Kirson | Apr 2013 | B2 |
8449573 | Chu | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8460370 | Zakay | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8475491 | Milo | Jul 2013 | B2 |
8475525 | Maisano et al. | Jul 2013 | B2 |
8480732 | Subramanian | Jul 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523940 | Richardson et al. | Sep 2013 | B2 |
8551161 | Dolan | Oct 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8608797 | Gross et al. | Dec 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8728155 | Montorfano et al. | May 2014 | B2 |
8734467 | Miller et al. | May 2014 | B2 |
8734699 | Heideman et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8778021 | Cartledge | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
8795355 | Alkhatib | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808368 | Maisano et al. | Aug 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852261 | White | Oct 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870949 | Rowe | Oct 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8889861 | Skead et al. | Nov 2014 | B2 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8911494 | Hammer et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8926697 | Gross et al. | Jan 2015 | B2 |
8932343 | Alkhatib et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8940044 | Hammer et al. | Jan 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8951286 | Sugimoto et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8961602 | Kovach et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8992604 | Gross et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011520 | Miller et al. | Apr 2015 | B2 |
9011530 | Reich et al. | Apr 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9107749 | Bobo et al. | Aug 2015 | B2 |
9119719 | Zipory et al. | Sep 2015 | B2 |
9125632 | Loulmet et al. | Sep 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9138316 | Bielefeld | Sep 2015 | B2 |
9173646 | Fabro | Nov 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9180007 | Reich et al. | Nov 2015 | B2 |
9192472 | Gross et al. | Nov 2015 | B2 |
9198756 | Aklog et al. | Dec 2015 | B2 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9326857 | Cartledge et al. | May 2016 | B2 |
9414921 | Miller et al. | Aug 2016 | B2 |
9427316 | Schweich, Jr. et al. | Aug 2016 | B2 |
9474606 | Zipory et al. | Oct 2016 | B2 |
9526613 | Gross et al. | Dec 2016 | B2 |
9561104 | Miller et al. | Feb 2017 | B2 |
9579090 | Simms et al. | Feb 2017 | B1 |
9693865 | Gilmore et al. | Jul 2017 | B2 |
9724084 | Groothuis et al. | Aug 2017 | B2 |
9730793 | Reich et al. | Aug 2017 | B2 |
9788941 | Hacohen | Oct 2017 | B2 |
9801720 | Gilmore et al. | Oct 2017 | B2 |
9907547 | Gilmore et al. | Mar 2018 | B2 |
10368852 | Gerhardt et al. | Aug 2019 | B2 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20020022862 | Grafton et al. | Feb 2002 | A1 |
20020082525 | Oslund et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020120292 | Morgan | Aug 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020169358 | Mortier et al. | Nov 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20020188301 | Dallara et al. | Dec 2002 | A1 |
20020188350 | Arru et al. | Dec 2002 | A1 |
20020198586 | Inoue | Dec 2002 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078653 | Vesely et al. | Apr 2003 | A1 |
20030083538 | Adams et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030204193 | Gabriel et al. | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20040002735 | Lizardi et al. | Jan 2004 | A1 |
20040010287 | Bonutti | Jan 2004 | A1 |
20040019359 | Worley et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040059413 | Argento | Mar 2004 | A1 |
20040068273 | Fariss et al. | Apr 2004 | A1 |
20040111095 | Gordon et al. | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040133374 | Kattan | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040176788 | Opolski | Sep 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260344 | Lyons et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050055038 | Kelleher et al. | Mar 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050090834 | Chiang et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119734 | Spence et al. | Jun 2005 | A1 |
20050125002 | Baran et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050159728 | Armour et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050187568 | Klenk et al. | Aug 2005 | A1 |
20050192596 | Jugenheimer et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050234481 | Waller | Oct 2005 | A1 |
20050240199 | Martinek et al. | Oct 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060004443 | Liddicoat et al. | Jan 2006 | A1 |
20060020326 | Bolduc et al. | Jan 2006 | A9 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060041319 | Taylor et al. | Feb 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074486 | Liddicoat et al. | Apr 2006 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060095009 | Lampropoulos et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060142694 | Bednarek et al. | Jun 2006 | A1 |
20060149280 | Harvie et al. | Jul 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060184240 | Jimenez et al. | Aug 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060206203 | Yang et al. | Sep 2006 | A1 |
20060241622 | Zergiebel | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287661 | Bolduc et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20070001627 | Lin et al. | Jan 2007 | A1 |
20070010800 | Weitzner et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070021781 | Jervis et al. | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070027536 | Mihaljevic et al. | Feb 2007 | A1 |
20070032823 | Tegg | Feb 2007 | A1 |
20070038221 | Fine et al. | Feb 2007 | A1 |
20070038293 | St.Goar et al. | Feb 2007 | A1 |
20070038296 | Navia et al. | Feb 2007 | A1 |
20070039425 | Wang | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070083235 | Jervis et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070106328 | Wardle et al. | May 2007 | A1 |
20070112359 | Kimura et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173931 | Tremulis et al. | Jul 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070239208 | Crawford | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070255397 | Ryan et al. | Nov 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070270755 | Von Oepen et al. | Nov 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070295172 | Swartz | Dec 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080027483 | Cartledge et al. | Jan 2008 | A1 |
20080027555 | Hawkins | Jan 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080058595 | Snoke et al. | Mar 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065204 | Macoviak et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080086138 | Stone et al. | Apr 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097483 | Ortiz et al. | Apr 2008 | A1 |
20080097523 | Bolduc et al. | Apr 2008 | A1 |
20080103572 | Gerber | May 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080167713 | Bolling | Jul 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080195200 | Vidlund et al. | Aug 2008 | A1 |
20080208265 | Frazier et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080228223 | Alkhatib | Sep 2008 | A1 |
20080234729 | Page et al. | Sep 2008 | A1 |
20080262480 | Stahler et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275300 | Rothe et al. | Nov 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080275551 | Alfieri | Nov 2008 | A1 |
20080281353 | Aranyi et al. | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080287862 | Weitzner et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080294251 | Annest et al. | Nov 2008 | A1 |
20080300537 | Bowman | Dec 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20090024110 | Heideman et al. | Jan 2009 | A1 |
20090028670 | Garcia et al. | Jan 2009 | A1 |
20090043381 | Macoviak et al. | Feb 2009 | A1 |
20090054723 | Khairkhahan et al. | Feb 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090062866 | Jackson | Mar 2009 | A1 |
20090076586 | Hauser et al. | Mar 2009 | A1 |
20090076600 | Quinn | Mar 2009 | A1 |
20090082797 | Fung | Mar 2009 | A1 |
20090088837 | Gillinov et al. | Apr 2009 | A1 |
20090093670 | Annest | Apr 2009 | A1 |
20090093877 | Keidar et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105816 | Olsen et al. | Apr 2009 | A1 |
20090125102 | Cartledge et al. | May 2009 | A1 |
20090166913 | Guo et al. | Jul 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090177274 | Scorsin et al. | Jul 2009 | A1 |
20090248148 | Shaolian et al. | Oct 2009 | A1 |
20090254103 | Deutsch | Oct 2009 | A1 |
20090264994 | Saadat | Oct 2009 | A1 |
20090287231 | Brooks et al. | Nov 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100001038 | Levin et al. | Jan 2010 | A1 |
20100010538 | Juravic et al. | Jan 2010 | A1 |
20100023118 | Medlock et al. | Jan 2010 | A1 |
20100030014 | Ferrazzi | Feb 2010 | A1 |
20100030328 | Seguin et al. | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100049213 | Serina et al. | Feb 2010 | A1 |
20100063542 | van der Burg et al. | Mar 2010 | A1 |
20100063550 | Felix et al. | Mar 2010 | A1 |
20100076499 | McNamara et al. | Mar 2010 | A1 |
20100094248 | Nguyen et al. | Apr 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100106141 | Osypka et al. | Apr 2010 | A1 |
20100114180 | Rock et al. | May 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20100121435 | Subramanian et al. | May 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100130989 | Bourque et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100152845 | Bloom et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100179574 | Longoria et al. | Jul 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234935 | Bashiri et al. | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100249920 | Bolling et al. | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100262233 | He | Oct 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20100305475 | Hinchliffe et al. | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110004210 | Johnson et al. | Jan 2011 | A1 |
20110004298 | Lee et al. | Jan 2011 | A1 |
20110009956 | Cartledge et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110026208 | Utsuro et al. | Feb 2011 | A1 |
20110029066 | Gilad et al. | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110118832 | Punjabi | May 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110144576 | Rothe et al. | Jun 2011 | A1 |
20110144703 | Krause et al. | Jun 2011 | A1 |
20110202130 | Cartledge et al. | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110230941 | Markus | Sep 2011 | A1 |
20110230961 | Langer et al. | Sep 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110257433 | Walker | Oct 2011 | A1 |
20110257633 | Cartledge et al. | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20110276062 | Bolduc | Nov 2011 | A1 |
20110288435 | Christy et al. | Nov 2011 | A1 |
20110301498 | Maenhout et al. | Dec 2011 | A1 |
20120053628 | Sojka et al. | Mar 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120078355 | Zipory et al. | Mar 2012 | A1 |
20120078359 | Li et al. | Mar 2012 | A1 |
20120089022 | House et al. | Apr 2012 | A1 |
20120089125 | Scheibe et al. | Apr 2012 | A1 |
20120095552 | Spence et al. | Apr 2012 | A1 |
20120109155 | Robinson et al. | May 2012 | A1 |
20120150290 | Gabbay | Jun 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120158023 | Mitelberg et al. | Jun 2012 | A1 |
20120179086 | Shank et al. | Jul 2012 | A1 |
20120191182 | Hauser et al. | Jul 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120271198 | Whittaker et al. | Oct 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20120296417 | Hill et al. | Nov 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20130018459 | Maisano | Jan 2013 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130053884 | Roorda | Feb 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130085529 | Housman | Apr 2013 | A1 |
20130090724 | Subramanian et al. | Apr 2013 | A1 |
20130096673 | Hill et al. | Apr 2013 | A1 |
20130103055 | Schaller et al. | Apr 2013 | A1 |
20130116776 | Gross et al. | May 2013 | A1 |
20130123910 | Cartledge et al. | May 2013 | A1 |
20130131791 | Hlavka et al. | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190863 | Call et al. | Jul 2013 | A1 |
20130204361 | Adams et al. | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130231701 | Voss et al. | Sep 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130282059 | Ketai et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130297013 | Klima et al. | Nov 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20130331930 | Rowe et al. | Dec 2013 | A1 |
20140067054 | Chau et al. | Mar 2014 | A1 |
20140081394 | Keranen et al. | Mar 2014 | A1 |
20140088368 | Park | Mar 2014 | A1 |
20140088646 | Wales et al. | Mar 2014 | A1 |
20140094826 | Sutherland et al. | Apr 2014 | A1 |
20140094903 | Miller et al. | Apr 2014 | A1 |
20140094906 | Spence et al. | Apr 2014 | A1 |
20140114390 | Tobis et al. | Apr 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140142619 | Serina et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140148849 | Serina et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140163670 | Alon et al. | Jun 2014 | A1 |
20140163690 | White | Jun 2014 | A1 |
20140188108 | Goodine et al. | Jul 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140188215 | Hlavka et al. | Jul 2014 | A1 |
20140194976 | Starksen et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140243859 | Robinson | Aug 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140243963 | Sheps et al. | Aug 2014 | A1 |
20140251042 | Asselin et al. | Sep 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140276648 | Hammer et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20140303720 | Sugimoto et al. | Oct 2014 | A1 |
20140309661 | Sheps et al. | Oct 2014 | A1 |
20140309730 | Alon et al. | Oct 2014 | A1 |
20140343668 | Zipory et al. | Nov 2014 | A1 |
20140350657 | Headley | Nov 2014 | A1 |
20140350660 | Cocks et al. | Nov 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150018940 | Quill | Jan 2015 | A1 |
20150051697 | Spence et al. | Feb 2015 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150100116 | Mohl et al. | Apr 2015 | A1 |
20150112432 | Reich et al. | Apr 2015 | A1 |
20150119936 | Gilmore | Apr 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150133997 | Deitch et al. | May 2015 | A1 |
20150182336 | Zipory et al. | Jul 2015 | A1 |
20150230919 | Chau et al. | Aug 2015 | A1 |
20150272586 | Herman et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150351910 | Gilmore et al. | Dec 2015 | A1 |
20160008132 | Cabiri et al. | Jan 2016 | A1 |
20160029920 | Kronstrom et al. | Feb 2016 | A1 |
20160058557 | Reich et al. | Mar 2016 | A1 |
20160113767 | Miller et al. | Apr 2016 | A1 |
20160120642 | Shaolian et al. | May 2016 | A1 |
20160120645 | Alon | May 2016 | A1 |
20160158008 | Miller et al. | Jun 2016 | A1 |
20160242762 | Gilmore et al. | Aug 2016 | A1 |
20160256149 | Sampson et al. | Sep 2016 | A1 |
20160262755 | Zipory et al. | Sep 2016 | A1 |
20160302917 | Schewel | Oct 2016 | A1 |
20160317302 | Madjarov et al. | Nov 2016 | A1 |
20160361058 | Bolduc et al. | Dec 2016 | A1 |
20160361168 | Gross et al. | Dec 2016 | A1 |
20160361169 | Gross et al. | Dec 2016 | A1 |
20170000609 | Gross et al. | Jan 2017 | A1 |
20170042670 | Shaolian et al. | Feb 2017 | A1 |
20170100119 | Baird et al. | Apr 2017 | A1 |
20170224489 | Starksen et al. | Aug 2017 | A1 |
20170245993 | Gross et al. | Aug 2017 | A1 |
20180008409 | Kutzik et al. | Jan 2018 | A1 |
20180049875 | Iflah et al. | Feb 2018 | A1 |
20180140420 | Hayoz et al. | May 2018 | A1 |
20180168803 | Pesce et al. | Jun 2018 | A1 |
20180228608 | Sheps et al. | Aug 2018 | A1 |
20180256334 | Sheps et al. | Sep 2018 | A1 |
20180289480 | D'ambra et al. | Oct 2018 | A1 |
20180318080 | Quill et al. | Nov 2018 | A1 |
20180318083 | Bolling et al. | Nov 2018 | A1 |
20190029498 | Mankowski et al. | Jan 2019 | A1 |
20190038411 | Alon | Feb 2019 | A1 |
20190111239 | Bolduc et al. | Apr 2019 | A1 |
20190117400 | Medema et al. | Apr 2019 | A1 |
20190125325 | Sheps et al. | May 2019 | A1 |
20190151093 | Keidar et al. | May 2019 | A1 |
20190159898 | Kutzik et al. | May 2019 | A1 |
20190175344 | Khairkhahan | Jun 2019 | A1 |
20190175345 | Schaffner et al. | Jun 2019 | A1 |
20190175346 | Schaffner et al. | Jun 2019 | A1 |
20190183648 | Trapp et al. | Jun 2019 | A1 |
20190240023 | Spence et al. | Aug 2019 | A1 |
20190290260 | Caffes et al. | Sep 2019 | A1 |
20190290431 | Genovese et al. | Sep 2019 | A1 |
20190321049 | Herman et al. | Oct 2019 | A1 |
20190343633 | Garvin et al. | Nov 2019 | A1 |
20200015971 | Brauon et al. | Jan 2020 | A1 |
20200289267 | Peleg et al. | Sep 2020 | A1 |
20200337840 | Reich | Oct 2020 | A1 |
20210015475 | Lau | Jan 2021 | A1 |
20210059820 | Clark et al. | Mar 2021 | A1 |
20210085461 | Neumark et al. | Mar 2021 | A1 |
20210093453 | Peleg et al. | Apr 2021 | A1 |
20210145584 | Kasher et al. | May 2021 | A1 |
20220000464 | Schaller et al. | Jan 2022 | A1 |
20220071620 | Brauon et al. | Mar 2022 | A1 |
20220096232 | Skaro et al. | Mar 2022 | A1 |
20220142779 | Sharon | May 2022 | A1 |
20220176076 | Keidar | Jun 2022 | A1 |
20220233316 | Sheps et al. | Jul 2022 | A1 |
20220273436 | Aviv et al. | Sep 2022 | A1 |
20220313438 | Chappel-Ram | Oct 2022 | A1 |
20220323221 | Sharon et al. | Oct 2022 | A1 |
20230016867 | Tennenbaum | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
113331995 | Sep 2021 | CN |
1034753 | Sep 2000 | EP |
3531975 | Sep 2019 | EP |
9205093 | Apr 1992 | WO |
9846149 | Oct 1998 | WO |
02085250 | Feb 2003 | WO |
03047467 | Jun 2003 | WO |
2007098512 | Sep 2007 | WO |
2010000454 | Jan 2010 | WO |
2012176195 | Mar 2013 | WO |
2014064964 | May 2014 | WO |
2015063580 | May 2015 | WO |
2019145941 | Aug 2019 | WO |
2019145947 | Aug 2019 | WO |
2019182645 | Sep 2019 | WO |
2019224814 | Nov 2019 | WO |
2020240282 | Dec 2020 | WO |
2021014440 | Jan 2021 | WO |
2021038559 | Mar 2021 | WO |
2021038560 | Mar 2021 | WO |
2022064401 | Mar 2022 | WO |
2022090907 | May 2022 | WO |
2022101817 | May 2022 | WO |
2022153131 | Jul 2022 | WO |
2022157592 | Jul 2022 | WO |
2022172108 | Aug 2022 | WO |
2022172149 | Aug 2022 | WO |
2022200972 | Sep 2022 | WO |
2022224071 | Oct 2022 | WO |
2022229815 | Nov 2022 | WO |
2022250983 | Dec 2022 | WO |
Entry |
---|
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009:2;2;565-573 (2009). |
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319. |
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522. |
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493. |
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001). |
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000). |
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011). |
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008. |
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008. |
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014). |
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008. |
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success—midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. |
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005). |
Dictionary.com definition of “lock”, Jul. 29, 2013. |
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003). |
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154. |
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007. |
Langer et al. Ring+String, Successful Repair technique for ischernic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008. |
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. |
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006). |
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995). |
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484. |
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994). |
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3. |
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391. |
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545. |
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978. |
Number | Date | Country | |
---|---|---|---|
20210038378 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62272871 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15393809 | Dec 2016 | US |
Child | 17083127 | US |