The present invention pertains to systems and methods for ophthalmic laser surgical procedures. More particularly, the present invention pertains to laser surgery wherein a desired refractive correction requires removal of more corneal tissue than can be efficaciously removed by a single procedure. The present invention is particularly, but not exclusively, useful for surgery wherein a removal of corneal tissue by ablation is complemented by a weakening of stromal tissue by Laser Induced Optical Breakdown (LIOB) to collectively achieve a required refractive correction for an eye.
Presently there are several different types of procedures that can be used for performing refractive surgery on the cornea of an eye to correct vision defects. In general, these procedures can be categorized according to the kind of instrument that is used to perform the surgery (e.g. a “mechanical means” or a “laser means”). Further, within the “laser means” category, there are essentially two methodologies for altering stromal tissue that differ from each other depending on whether tissue is actually removed by photoablation, or is merely weakened by a phenomenon commonly referred to as Laser Induced Optical Breakdown (LIOB).
A removal of tissue from the cornea of an eye, when using a laser means to correct a vision defect, is typically accomplished by the photoablation of exposed corneal tissue. For example, the well-known procedures of LASIK and PRK (Photo Refractive Keratectomy) both rely on the removal of exposed tissue by photoablation. On the other hand, it is also known that tissue inside the stroma can be merely weakened to correct a vision defect. For example, the weakening of intrastromal tissue for the purpose of correcting a vision defect is disclosed and claimed in U.S. patent application Ser. No. 11/958,202 for an invention entitled “Method for Intrastromal Refractive Surgery” which is assigned to the same assignee as the present invention. More specifically, the result of weakening tissue is a redistribution of biomechanical stresses in the stroma that responds to Intra-Ocular Pressure (IOP) to reshape the cornea. It can happen, however, that neither the removal of corneal tissue, nor the weakening of stromal tissue, when performed alone, may be able to achieve the desired refractive result. Much here depends on the cause of the vision defect that needs to be corrected. Thus, there are limits to the extent of an effective refractive correction when either a weakening of stromal tissue or an actual removal of tissue are considered separately.
The inherent limitations of tissue removal procedures are primarily a result of the amount of corneal tissue that can be removed. Specifically, for the rather common visual defects of myopia, hyperopia and astigmatism, it is known that going beyond the limits set forth below can cause unwanted instabilities in the cornea. In general, the practical limits for effective refractive corrections to be achieved for the more common visual defects, by tissue removal alone, are:
Also, it is known that presbyopia, in combination with the visual defects considered above, may require a refractive correction that goes beyond the limits set forth above.
On the other hand, when stromal tissue is weakened, rather than removed, refractive corrections are limited to approximately 2 or 2.5 diopter. Further, for safety reasons, any stromal tissue that is to be weakened should not be within the one hundred microns immediately anterior to Descemet's membrane and the endothelium.
With the above in mind, it is an object of the present invention to provide a system and method for making myopic/hyperopic/astigmatic corrections requiring refractive changes that go beyond the limits provided by only removing corneal tissue. Another object of the present invention is to provide a system and method for combining corneal tissue removal with an intrastromal redistribution of biomechanical stresses to achieve a predetermined refractive correction for an eye. Still another object of the present invention is to provide a system and method for both removing and weakening corneal tissue, in combination, to provide refractive corrections for an eye that are relatively easy to implement and comparatively cost effective.
A system and method are provided for performing an ophthalmic laser surgical procedure, wherein a required (desired) refractive correction for an eye necessitates removal of more corneal tissue than can be efficaciously removed by photoablation alone. It follows that the required refractive correction also necessitates a greater weakening of stromal tissue than is possible by LIOB alone. The present invention, however, recognizes that the removal of an optimal amount of corneal tissue, by ablation, can be complemented by a weakening of stromal tissue, by LIOB, to achieve a required overall refractive correction for an eye.
To begin, a required diopter refractive correction for an eye “dreqd” is established. Typically, this is done diagnostically. Next, the maximum permissible diopter refractive correction by tissue removal (i.e. ablation) and the maximum permissible diopter refractive correction by weakening stromal tissue (i.e. LIOB) are respectively determined. Stated differently, a first maximum diopter correction for the eye “d1max” is clinically determined. Specifically, d1max is the refractive correction that is achievable by removing corneal tissue from the eye. Also, a second maximum diopter correction for the eye “d2max” is clinically determined. In this case, d2max is the refractive correction that is achievable by changing a biomechanical stress distribution in the stroma of the eye (i.e. a weakening of the stroma). As envisioned for the present invention, dreqd will be greater than d1max,. And, dreqd will also be greater than d2max.
In operation, corneal tissue is first ablated to achieve a first actual (i.e. an optimized) diopter correction “d1actual”. Preferably, this is done using an excimer laser to remove corneal tissue by either a LASIK or a PRK procedure. In either case, d1actual (i.e. the optimized refractive correction by ablation) is equal to or less than d1max. Then, a complementary refractive correction is performed using a pulsed femtosecond laser to weaken stromal tissue. This is done by causing a Laser Induced Optical Breakdown (LIOB) of the tissue. In this case, LIOB achieves a second actual diopter correction “d2actual”. For the present invention, d2actual (i.e. the complementary refractive correction) is less than d2max. Importantly, d1actual+d2actual equals dreqd (dreqd=d1actual+d2actual).
As envisioned for the present invention, the photoablation of corneal tissue and the weakening of stromal tissue can be accomplished substantially simultaneously, in a same procedure. It may be preferable, however, to accomplish photoablation and weakening of tissue in separate procedures that are separated from each other by a time interval that may be as much as several weeks (e.g. three weeks). In such a case, it is most likely that the photoablation (PRK or LASIK) will be accomplished first.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
Anatomically, the cornea 16 of an eye is shown in
In
When the desired (required) refractive correction for the cornea 16 is greater than the maximum effective photoablation (i.e. dreqd>d1max), methodology 38 indicates that a subsequent inquiry is needed at inquiry block 46. Specifically, the question at this point (i.e. inquiry block 46) concerns whether the desired (required) refractive correction is less than the sum of the maximum permissible photoablation and the maximum permissible LIOB (i.e. is dreqd<d1max+d2max ?). If so, (i.e. if dreqd<d1max+d2max), block 48 indicates that an effective ablation “d1actual” and an effective LIOB “d2actual” for refractive corrections need to be respectively determined. Block 50 then shows that the procedure is performed using “d1actual” and “d2actual”. On the other hand, if dreqd>d1max+d2max, reevaluation block 44 would indicate that a procedure should, most likely, not be performed.
While the particular System and Method for Refractive Surgery with Augmentation by Intrastromal Corrective Procedures as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4309998 | Aron nee Rosa et al. | Jan 1982 | A |
4391275 | Fankhauser et al. | Jul 1983 | A |
4406285 | Villasenor et al. | Sep 1983 | A |
4669466 | L'Esperance | Jun 1987 | A |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4721379 | L'Esperance | Jan 1988 | A |
4732148 | L'Esperance, Jr. | Mar 1988 | A |
4770172 | L'Esperance, Jr. | Sep 1988 | A |
4887592 | Loertscher | Dec 1989 | A |
4907586 | Bille et al. | Mar 1990 | A |
4941093 | Marshall et al. | Jul 1990 | A |
4988348 | Bille | Jan 1991 | A |
5549632 | Lai | Aug 1996 | A |
5984916 | Lai | Nov 1999 | A |
5993438 | Juhasz et al. | Nov 1999 | A |
6110166 | Juhasz | Aug 2000 | A |
6325792 | Swinger et al. | Dec 2001 | B1 |
6610051 | Bille | Aug 2003 | B2 |
20020103478 | Gwon et al. | Aug 2002 | A1 |
20030212387 | Kurtz et al. | Nov 2003 | A1 |
20040044355 | Nevyas | Mar 2004 | A1 |
20050085800 | Lenzner et al. | Apr 2005 | A1 |
20050165386 | Kurtz et al. | Jul 2005 | A1 |
20060155265 | Juhasz et al. | Jul 2006 | A1 |
20060173445 | Bille | Aug 2006 | A1 |
20070185475 | Frey et al. | Aug 2007 | A1 |
20080039825 | Lai | Feb 2008 | A1 |
20100191229 | Bille et al. | Jul 2010 | A1 |
20100217247 | Bille et al. | Aug 2010 | A1 |
20100241108 | Wullner et al. | Sep 2010 | A1 |
Entry |
---|
Sakimoto et al., “Laser eye surgery for refractive errors,” The Lancet vol. 367 , 9520 pp. 1432-1447 Apr. 29-May 5, 2006. |
Number | Date | Country | |
---|---|---|---|
20100191228 A1 | Jul 2010 | US |