1. Field of the Invention
The present invention relates in general to communication systems and components and related methods of operation. More particularly the present invention is directed to antenna systems for wireless networks and related operation and control methods.
2. Description of the Prior Art and Related Background Information
To optimize signal transmission and reception coverage in wireless markets, systems operators deploy several different antenna types. These antennas differ in the down tilt pointing angle, the azimuth pointing angle, and the coverage beamwidth. Some modern antennas include electrical and mechanical means of adjusting some or all three of these critical antenna parameters. Wireless systems operators often have difficulty during antenna installation, subsequent adjustment, and during normal operation in determining if antenna performance parameters are correctly set and maintained over time. Improper antenna performance leads to poor coverage and hence customer complaints. Currently antenna adjustments often require a site visit and perhaps climbing the antenna tower to insure proper alignment.
Accordingly, many current antenna systems and in particular adjustable antenna systems have either been operated at less than optimal operating parameters over time or had undesirably high maintenance costs.
The present invention provides a solution to the above noted problems by providing a system and method for remote antenna positioning data acquisition which can be used for antenna performance parameter monitoring and control.
In a first aspect the present invention provides an antenna system adapted for use in a wireless network and for remote position monitoring and control, comprising an antenna, a camera mounted in a fixed relation to the antenna so as to provide a view generally in the direction of the boresight of the antenna beam, and a communication connection coupled to the camera to provide image data from the camera to a remote location.
In a preferred embodiment the antenna system further comprises a radome configured about the antenna and the camera is mounted to the radome. The antenna may comprises plural radiating elements and the communication connection may receive beamwidth control signals provided from the remote location. The communication connection may also receive beam pointing direction control signals provided from the remote location.
In another aspect the present invention provides a method for remote antenna positioning data acquisition. The method comprises acquiring an image of a view from a camera mounted in a fixed relation to an antenna generally in the direction of the boresight of the antenna beam and providing the image data to a remote location.
In a preferred embodiment of the method the image includes position reference information. For example, the position reference information may include a camera pointing direction reference marker and a beam pointing direction reference marker. The method may further comprise adding beam pointing position data in text format to the image data before providing the image data to the remote location. The method may further comprise adding beamwidth information to the image data before providing the image data to the remote location. The method may further comprise using the image data at the remote location to determine antenna beam pointing position relative to desired pointing position. The method may further comprise providing beam pointing adjustment control data to the antenna location from the remote location in response to the determination of antenna beam pointing position information. For example, using the image data at the remote location to determine antenna beam pointing position relative to desired pointing position may comprise comparing the received image data to a prior image to see if the antenna or beam has moved unintentionally requiring correction. The method may further comprise providing beamwidth adjustment control data to the antenna location from the remote location. In a preferred embodiment the antenna is configured within a radome and the camera is mounted to the radome.
In another aspect the present invention provides a method for alignment of an antenna during installation. The method comprises mounting a camera in a fixed relation to an antenna, mounting the antenna and camera to a support structure, acquiring an image from the camera, comparing the pointing direction of the camera to a desired pointing direction corresponding to desired antenna positioning, and adjusting the mounting of the antenna if the image shows a deviation between desired mounting position and actual mounting position.
In a preferred embodiment of the method, mounting a camera in a fixed relation to an antenna comprises mounting the camera to a radome configured about the antenna and mounting the antenna and camera to a support structure comprises mounting the antenna and radome together to the support structure. Mounting the antenna and camera to a support structure may comprise mounting the antenna and radome to a communication tower. Alternatively, mounting the antenna and camera to a support structure may comprise mounting the antenna and radome to a building. In a preferred embodiment of the method acquiring an image from the camera may further comprise providing pointing reference information in the image.
Further aspects and features of the invention are described in the following detailed description.
The characteristics and advantages of the present invention will be better understood from the following description in conjunction with the attached drawings.
During antenna installation, the installer will generally mechanically attach the complete antenna (100) to a suitable antenna support structure. Attachments are generally performed on the back of the complete antenna structure (100). There may or may not be a means for the installer to point the exterior surface of the antenna radome (115) at the time of installation. For example on a typical communication tower, built for the purpose of antenna installation, such pointing is generally possible. When attaching to the side of a building, lease agreements with the building landlord may require a flush mounting. In either case the final pointing direction of the antenna radiating boresight can be difficult for the operator to determine after installation.
With the present invention, after installation an operator may instruct the camera (105) to take a picture via the data communication methods described above. Data regarding the antenna boresight pointing relative to the radome axes would then be communicated to the operator over the same data path.
The information in
The advantage of image provided information is the volume of the content and the simple judgments that can be based on this content. Initial correct mounting can be determined by viewing the image during and just after installation. If the borders of the image change with time, the antenna is not properly secured. If the position of the reticle changes, a change has been commanded, either intentionally or unintentionally. This information can be easily determined regardless of season.
The present invention could be used with antennas with or without pointing and beamwidth control. The above describes the advantages of using the invention on antennas with pointing and beamwidth controls. For antennas without pointing and beamwidth control, the invention would be helpful in instructing installation crews on proper mechanical alignment. Also, images from such an antenna would also show if the antenna has moved with time. For example, severe weather may cause a mounted antenna to move.
It will be appreciated from the above description that in addition to an improved antenna system the present invention also provides an antenna position data acquisition and control method. Referring to
Many specific implementations and variations in the above described embodiments will be appreciated by those skilled in the art which are purely illustrative and not limiting in nature.
The present application claims priority under 35 USC section 119(e) to U.S. Provisional Patent Application Ser. No. 60/930,842 filed May 18, 2007, the disclosure of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5798983 | Kuhn et al. | Aug 1998 | A |
5949303 | Arvidsson et al. | Sep 1999 | A |
6400903 | Conoval | Jun 2002 | B1 |
6556916 | Waite et al. | Apr 2003 | B2 |
7541943 | Manor | Jun 2009 | B2 |
20010028327 | Yamamoto et al. | Oct 2001 | A1 |
20020191082 | Fujino et al. | Dec 2002 | A1 |
20040252197 | Fraley et al. | Dec 2004 | A1 |
20060017545 | Volpi et al. | Jan 2006 | A1 |
20080218425 | Deng et al. | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080284669 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60930842 | May 2007 | US |