This invention relates to aftertreatment systems, such as diesel particulate filters, and more particularly to a system and method for removing particulate matter from a diesel particulate filter.
Diesel engines have been extensively used in various applications, such as locomotives, for example. Diesel engine exhaust gas is typically outputted from the engine (or a turbocharger connected to the diesel engine) and directed to an output, such as to the atmosphere for a locomotive diesel engine, for example.
More stringent emissions standards on diesel engines have led to the introduction of aftertreatment systems to reduce emissions. Particulate matter is one such emissions constituent that is being more aggressively regulated. The most strict particulate standards have led to the use of particulate trapping devices in the exhaust systems. These devices act like a filter to capture particulate matter in the exhaust.
After a prolonged period of operating time, the diesel particulate filter of the conventional system will become backlogged with excessive trapped particulate matter. This trapped particulate matter may be removed from the diesel particulate filter using various techniques, such as regeneration, for example. Regeneration is a technique used to clean particulate filters onboard the vehicle, when the filter has captured enough soot particles to restrict flow below an acceptable level. Regeneration is accomplished by increasing the temperature of the particulate filter, so the soot particles are oxidized. The regeneration process removes the carbon particles, leaving only a minor amount of ash. The accumulated ash eventually needs removed, but this is usually done during a scheduled maintenance. In order for the regeneration to happen, a control system needs to be employed to monitor the amount of particulate matters in the particulate filter, to determine the regeneration timing and raise the engine gas temperature to a certain level.
Accordingly, it would be advantageous to provide a system to remove the trapped particulate matter from the diesel particulate filter and other aftertreatment systems, to improve the flow rate of diesel exhaust gas from the diesel engine and the overall efficiency of the diesel engine.
One embodiment of the present invention provides a system for removing particulate matter from a diesel particulate filter. The diesel particulate filter includes at least one particulate filter unit to filter the particulate matter from diesel engine exhaust gas received from a diesel engine. The system includes at least one sensor positioned adjacent to at least one diesel particulate filter unit, where the at least one sensor is configured to determine the extent of particulate matter trapped within the diesel particulate filter unit. The system further includes an engine controller coupled to the at least one sensor and the diesel engine. Each sensor is configured to output a first alert signal to the engine controller upon determining that the trapped particulate matter within the diesel particulate filter unit exceeds a predetermined threshold. The engine controller is configured to increase the temperature of the diesel exhaust gas entering the diesel particulate filter upon receiving the first alert signal.
Another embodiment of the present invention provides a method for removing particulate matter from a diesel particulate filter. The diesel particulate filter includes at least one diesel particulate filter unit to filter the particulate matter from diesel engine exhaust gas received from a diesel engine. The method includes determining the extent of particulate matter trapped within the diesel particulate filter unit by positioning at least one sensor adjacent to at least one diesel particulate filter unit. The method further includes configuring each sensor to output a first alert signal to an engine controller upon determining that the trapped particulate matter within the diesel particulate filter unit exceeds a predetermined threshold. Additionally, the method includes configuring the engine controller to increase the temperature of the diesel exhaust gas entering the diesel particulate filter upon receiving the first alert signal.
Another embodiment of the present invention provides a system for removing particulate matter from a particulate filter. The particulate filter includes at least one particulate filter unit to filter the particulate matter from engine exhaust gas received from an internal combustion engine. The system includes an engine controller coupled to the engine, where the engine controller includes a memory configured to store at least one loading rate of the diesel particulate filter over a distance or time increment of the locomotive traveling along a route. Once the engine controller determines that a level of trapped particulate matter within the diesel particulate filter exceeds a predetermined threshold, the engine controller is configured to increase the temperature of the exhaust gas entering the particulate filter. The engine controller is configured to calculate the level of trapped particulate matter based upon an initial level of trapped particulate matter and at least one loading rate at each distance or time increment.
Another embodiment of the present invention provides computer readable media containing program instructions for removing particulate matter from a diesel particulate filter. The diesel particulate filter includes at least one diesel particulate filter unit to filter the particulate matter from diesel engine exhaust gas received from a diesel engine. The computer readable media includes a computer program code to configure the engine controller to increase the temperature of the diesel exhaust gas entering the diesel particulate filter upon receiving the first alert signal.
A more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference will now be made in detail to the embodiments consistent with the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals used throughout the drawings refer to the same or like parts.
As further illustrated in the exemplary embodiment of
As further illustrated in
As further illustrated in
During operation of the system 210, upon a respective cross-sectional region of the diesel exhaust gas 212 entering a second channel 262 of a diesel particular filter unit 216, the diesel exhaust gas is configured to pass through one of the walls 232 separating the plurality of first channels 256 and plurality of second channels 262. The diesel exhaust gas 212 subsequently passes into a first channel 256 and exits through the open outlet 260 of the first channel 256 to the atmosphere. However, various other paths may be taken by the diesel exhaust gas 212 through the diesel particulate filter 216. Upon the diesel exhaust gas 212 passing from the second channel 262, through the wall 232 and into the first channel 256, particulate matter of the diesel exhaust gas 212 is trapped within the pores 240 of the wall.
In designing each diesel particulate filter unit 216,218, the selective cross-sectional area density of the plurality of channels, the respective wall thickness and the ratio of pores within the walls is selectively determined based upon a flow rate of the respective cross-sectional region of the diesel exhaust gas 212 which is expected to pass over the respective diesel particulate filter unit 216,218. The plurality of diesel particulate filter units 216,218 may be comprised of silicon carbide, cordierite material, or any other material, or combination of materials appreciated by one of skill in the art.
As illustrated in
Although the embodiment of the system 210 to reduce particulate matter emission in diesel engine exhaust gas 212 involves the use of a diesel particulate filter 214, various other aftertreatment systems may be utilized to control the distribution of exhaust flow over the cross section of the flow path by using aftertreatment substrates with different flow characteristics at the various locations across the channel. The embodiments of the present invention all include aftertreatment systems which may be used to alter the flow characteristic over the cross-section using a number of techniques. As described in the system 210 above, varying the cross-sectional area density and/or wall thickness of a wall-flow particulate filter (i.e., a particulate filter with alternating blocked inlet-open outlet channels, and open inlet-blocked outlet channels) is one example of such an aftertreatment system. However, another exemplary embodiment of the present invention involves an aftertreatment system to combine a wall-flow particulate filter 214, as illustrated in
The diesel particulate filter 414 includes a plurality of diesel particulate filter units to filter the particulate matter from diesel engine exhaust gas received from a diesel engine 411. The diesel particulate filter 414 includes the plurality of diesel particulate filter units is described above in the previous embodiments. As illustrated in
The system 410 further includes an engine controller 429 coupled to the sensors 420,422 and the diesel engine 411. The sensors 420,422 are configured to output a first alert signal 432 to the engine controller 429 upon determining that the trapped particulate matter within the diesel particulate filter 414 exceeds a predetermined threshold. The predetermined threshold may be preset by the user prior to operation of the system 410. In an exemplary embodiment of the system, the predetermined threshold may be determined by a sensor for an equivalent to trapped particulate matter encompassing 50% of the allowable space within the diesel particulate filter, for example. As discussed below, the predetermined threshold is based upon several factors, including the conditions under which the trapped particulate matter will be removed, including temperature, duration of the removal process, use of assisting components, etc. The engine controller 429 is configured to increase the temperature of the diesel exhaust gas entering the diesel particulate filter 414 upon receiving the first alert signal 432.
In one embodiment of the system 410, the system further includes a turbocharger 450 including an exhaust manifold to receive the diesel engine exhaust gas from the diesel engine 411 and further including an outlet to output the diesel exhaust gas to the diesel particulate filter 414. The system 410 further includes an injector device 433 positioned between the turbocharger 450 and the diesel particulate filter 414, where the injector device is configured to selectively inject an adjustable amount of diesel fuel into the diesel engine exhaust gas exiting the outlet. Additionally, the system 410 further includes a reactive device 438 positioned between the injector device 434 and the diesel particulate filter 414. The reactive device 438 is configured to selectively ignite the adjustable amount of injected diesel fuel within the diesel engine exhaust gas upon entering an inlet of the reactive device 438 to increase the temperature of the diesel exhaust gas entering the diesel particulate filter 414. Various reactive devices may be used, such as catalyst devices, fuel burners, and any other devices appreciated by one of skill in the art.
As further illustrated in
The engine controller 429 is configured to increase the temperature of the diesel exhaust gas entering the reactive device 438 to greater than the first minimum threshold after the engine controller 429 has received the first alert signal 432 and the second alert signal 445. Thus, the engine controller 429 provides an initial increase in the temperature of the diesel exhaust gas, to the first minimum threshold, to enable a subsequent increase in the temperature of the diesel exhaust gas via ignition of the injected diesel fuel by the reactive device 438.
To initially increase the temperature of the diesel exhaust gas, the engine controller 429 may increase the temperature through a number of methods. For example, the engine controller 429 is configured to transmit an increase signal 449 to the diesel engine 411 to increase an artificial load on the diesel engine, and thereby cause an increase in the temperature of the diesel engine exhaust gas entering the reactive device 438. Alternatively, the increase signal 449 may change the speed of the engine 411, to cause an increase in the temperature of the diesel engine exhaust gas entering the reactive device 438. Thus, upon the artificial load being placed on the diesel engine 411, an increased temperature diesel exhaust gas would be expelled from the diesel engine 411, and passed through the turbocharger 450 and injector 434 to the reactive device 438. Alternatively, the engine controller 429 may be configured to electrically couple an alternator 456 of the diesel engine 411 to the turbocharger outlet 440 to cause an increase in the temperature of the diesel engine exhaust gas entering the reactive device 438. Alternatively, in an exemplary embodiment of the system 410, the alternator 456 may be coupled to the diesel particulate filter 414, and electrically heat the diesel particulate filter, for example. The engine controller 429 may be also configured to transmit a signal to the engine 411 to change a fuel injection schedule, so to cause an increase in the temperature of said engine exhaust gas entering the reactive device 438.
In an embodiment of the system 410, the engine controller 429 transmits an increase signal to the engine 411, and the temperature sensor 442 is configured to transmit an overheat signal to the engine controller 429 upon measuring the temperature of the engine exhaust gas exiting the particulate filter 414 exceeding an overheat threshold. In this embodiment, the engine controller 429 is configured to cause the engine 411 to increase the airflow through the particulate filter 414 upon receiving the overheat signal. By increasing the airflow through the particulate filter 414 when the temperature of exiting engine exhaust gas is above an overheat threshold, the temperature will decrease below this overheat threshold, and minimize the probability of damage to the particulate filter 414.
As discussed in the previous embodiments of the present invention and illustrated in
After the engine controller 429 increases the temperature of the diesel exhaust gas entering the reactive device 438 above the first minimum threshold, the temperature sensor 442 measures this increase in temperature and transmits a third alert signal to the engine controller 429. Upon receiving the first alert signal 432 from the pressures sensors 420,422 and the third alert signal from temperature sensor 442, the engine controller 429 transmits an ignite signal to the reactive device 438 to ignite the injected fuel within the diesel engine exhaust to increase the temperature of diesel engine exhaust passing through an outlet of the reactive device 438 and into an inlet of the diesel particulate filter 414. Although the system 410 involves the engine controller 429 increasing the temperature of the diesel exhaust gas entering the reactive device 438 by increasing the load on the engine 411 and injecting fuel within the diesel exhaust gas, the system may feature the engine controller 429 increasing the temperature of the diesel exhaust gas without injecting fuel within the diesel exhaust gas. For example, with advanced fuel systems, such as common rail, it may be possible to change the injection strategy to introduce fuel into the exhaust or late burning. This may be done by injecting fuel late in the power stroke, which is known as post injection.
The reactive device 438 may be a catalyst device 438 and include an internal catalyst component which facilitates igniting the injected fuel of the diesel exhaust gas and increases the temperature of the diesel exhaust gas at a temperature lower than in an absence of the catalyst device 438. During the ignition of the injected fuel within the diesel exhaust gas, the temperature of the diesel exhaust gas entering the catalyst device 438 increases to a first high temperature threshold to facilitate oxidization of the trapped particulate matter within the diesel particulate filter 414. This oxidization of the trapped particulate matter within the diesel particulate filter 414 at the first high temperature threshold is known to one of skill in the art as active regeneration. The trapped particulate matter may include a carbon material which oxidizes at the first high temperature threshold. The temperature of the diesel exhaust gas may be initially increased to the first minimum threshold for ignition of the injected fuel within the diesel exhaust gas using methods other than those discussed above. Additionally, the temperature of the diesel exhaust gas may be increased to the first high temperature threshold using various methods other than the catalyst component, such as using a fuel burner device, for example. In an exemplary embodiment of the present invention, the first high temperature threshold may be approximately 550 degrees Celsius, the oxidization may occur within an approximate temperature range of 550-600 degrees Celsius and the catalyst may be formed from catalytic coating on ceramic, silicon carbide, mullite, metallic material, or any other relevant material or combination of materials. However, other first high temperature threshold values and oxidization temperature ranges are possible, based on various factors including the material used, the amount of particulate matter to be oxidized, and the time duration of the regeneration, for example. Those elements not discussed herein, are similar to those elements discussed in the previous embodiments, with four-hundred scale number reference notation, and require no further discussion herein.
The system 410′ illustrated in
As further illustrated in the exemplary embodiment of
To increase the temperature of the diesel exhaust gas entering the diesel particulate filter 414′, the engine controller 429′ is configured to transmit an increase signal 449′ to the diesel engine 411′ to increase an artificial load on the diesel engine to cause an increase in the temperature of the diesel engine exhaust gas entering the diesel particulate filter 414′. Alternatively, the engine controller 429′ is configured to electrically couple an alternator 456′ of the diesel engine 411′ to the turbocharger output to cause an increase in the temperature of the diesel engine exhaust gas entering the diesel particulate filter 414′. Although
In an additional embodiment, a system 410″″ illustrated in
Based on the foregoing specification, the above-discussed embodiments of the invention may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect is to remove particulate matter from a diesel particulate filter. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the discussed embodiments of the invention. The computer readable media may be, for instance, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
One skilled in the art of computer science will easily be able to combine the software created as described with appropriate general purpose or special purpose computer hardware, such as a microprocessor, to create a computer system or computer sub-system of the method embodiment of the invention. An apparatus for making, using or selling embodiments of the invention may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, I/O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody those discussed embodiments the invention.
While the invention has been described in what is presently considered to be a preferred embodiment, many variations and modifications will become apparent to those skilled in the art. Accordingly, it is intended that the invention not be limited to the specific illustrative embodiment but be interpreted within the full spirit and scope of the appended claims.
This application is related to U.S. patent application Ser. Nos. ______ (Attorney Docket No. 226403-1 (592) and ______ (Attorney Docket No. 226266-1 (593), filed concurrently herewith. Each of the foregoing applications is incorporated by reference herein in their entirety.