System and method for rendering document in web browser or mobile device regardless of third-party plug-in software

Information

  • Patent Grant
  • 9213684
  • Patent Number
    9,213,684
  • Date Filed
    Friday, September 13, 2013
    11 years ago
  • Date Issued
    Tuesday, December 15, 2015
    8 years ago
Abstract
Techniques are disclosed for render documents that are in proprietary formats in a browser or mobile device. In one embodiment, a method comprises converting a plurality of resources in a document file into a plurality of files that are native to a browser. The method further comprises creating a style sheet based on the document file, wherein an aggregate of the plurality of files together with the style sheet are configured to cause the browser to render an appearance of the document file. The method further comprises generating, based on the document file, an invisible layer to be laid on the appearance, wherein the invisible layer enables actions to be performed on the document file. Among other advantages, embodiments disclosed herein provide the convenience of viewing and accessing documents regardless of whether a software or plug-in therefor is installed.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software and data as described below and in the drawings that form a part of this document:


Copyright 2013, Box, Inc., All Rights Reserved.


BACKGROUND

With the advancements in digital technologies, data proliferation and the ever increasing mobility of user platforms have created enormous amounts of information traffic over mobile and computer networks. This is particularly relevant to the increase of electronic and digital content being used and shared over the network in social settings and working environments as compared to traditional stand-alone personal computers and mobile devices. As a result, content is shared across multiple devices among multiple users.


However, among others, both the wide variety in file types and device types place a barrier to easy access of the shared content. Before accessing a file (e.g., in a proprietary document format) that is foreign to a user's system, the user typically must install a software (e.g., an executable or a plug-in) onto the user's system. Additionally, the user may be required to complete a time-consuming setup process which further impedes the access.





BRIEF DESCRIPTION OF DRAWINGS

The present embodiments are illustrated by way of example and are not intended to be limited by the figures of the accompanying drawings. In the drawings:



FIG. 1 depicts an example diagram of a system having a host server of a cloud service, collaboration and/or cloud storage accounts with capabilities that render documents in a browser or mobile device regardless of whether a plug-in therefor is installed;



FIG. 2 depicts an example diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting for organizing work items and workspaces;



FIG. 3 depicts an example diagram of a workspace in an online or web-based collaboration environment accessible by multiple collaborators through various devices;



FIG. 4 depicts a block diagram illustrating an example of components in a host server with capabilities that render documents in a browser or mobile device regardless of whether a plug-in therefor is installed;



FIG. 5A-5C respectively depict screenshots showing example user interfaces embodying one or more techniques disclosed herein for rendering documents in a browser or mobile device regardless of whether a plug-in therefor is installed;



FIG. 6 depicts a flowchart illustrating an example process for rendering documents in a browser or mobile device regardless of whether a plug-in therefor is installed; and



FIG. 7 depicts a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.





The same reference numbers and any acronyms identify elements or acts with the same or similar structure or functionality throughout the drawings and specification for ease of understanding and convenience.


DETAILED DESCRIPTION

The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and, such references mean at least one of the embodiments.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which can be exhibited by some embodiments and not by others. Similarly, various requirements are described which can be requirements for some embodiments but not other embodiments.


The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms can be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way.


Consequently, alternative language and synonyms can be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.


Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles can be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.


Techniques are disclosed for render documents that are in proprietary formats in a browser or mobile device. In one embodiment, a method comprises converting a plurality of resources in a document file into a plurality of files that are native to a browser. The method further comprises creating a style sheet based on the document file, wherein an aggregate of the plurality of files together with the style sheet are configured to cause the browser to render an appearance of the document file. The method further comprises generating, based on the document file, an invisible layer to be laid on the appearance, wherein the invisible layer enables actions to be performed on the document file.


Among other advantages, embodiments disclosed herein provide the convenience of viewing and accessing documents regardless of whether a software or plug-in therefor is installed, thereby enabling easy access to document files (e.g., that are stored in the cloud-based platform or simply provided from an application for conversion), reducing or eliminating the time for additional download, installation and setup time of third-party software/plug-ins, which in turn enhances user experience and productivity.



FIG. 1 illustrates an example diagram of a system 100 having a host server 110 of a cloud service/platform, collaboration and/or cloud storage service with capabilities that render documents in a browser or mobile device regardless of whether a plug-in therefor is installed.


The client devices 102 can be any system and/or device, and/or any combination of devices/systems that is able to establish a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 110 and/or a third-party application 120. Client devices 102 typically include a display and/or other output functionalities to present information and data exchanged between among the devices 102, the third-party application 120, and/or the host server 110.


For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a PDA, a smart phone (e.g., a BlackBerry device such as BlackBerry Z10/Q10, an iPhone, Nexus 4, etc.), a Treo, a handheld tablet (e.g. an iPad, iPad Mini, a Galaxy Note, Galaxy Note II, Xoom Tablet, Microsoft Surface, Blackberry PlayBook, Nexus 7, 10 etc.), a phablet (e.g., HTC Droid DNA, etc.), a tablet PC, a thin-client, a hand held console, a hand held gaming device or console (e.g., XBOX live, Nintendo DS, Sony PlayStation Portable, etc.), iOS powered watch, Google Glass, a Chromebook and/or any other portable, mobile, hand held devices, etc. running on any platform or any operating system (e.g., Mac-based OS (OS X, iOS, etc.), Windows-based OS (Windows Mobile, Windows 7, Windows 8, etc.), Android, Blackberry OS, Embedded Linux platforms, Palm OS, Symbian platform, Google Chrome OS, and the like. In one embodiment, the client devices 102, and host server 110 are coupled via a network 106. In some embodiments, the devices 102 and host server 110 can be directly connected to one another.


The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.


Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used by various users or collaborators (e.g., collaborators 108) for accessing, through network 106, a web-based collaboration environment or online collaboration platform (e.g., hosted by the host server 110). The collaboration environment or platform can have one or more collective settings 105 for an enterprise or an organization that the users belong, and can provide an user interface 104 (e.g., via a webpage application accessible by the web browsers of devices 102) for the users to access such platform under the settings 105. Additionally, a client software that is native to the cloud collaboration platform can be provided (e.g., through downloading from the host server 110 via the network 106) to run on the client devices 102 to provide cloud-based platform access functionalities. The users and/or collaborators can access the collaboration platform via a client software user interface 107, which can be provided by the execution of the client software on the devices 102.


The collaboration platform or environment hosts workspaces with work items that one or more users can access (e.g., view, edit, update, revise, comment, download, preview, tag, or otherwise manipulate, etc.). A work item can generally include any type of digital or electronic content that can be viewed or accessed via an electronic device (e.g., device 102). The digital content can include .pdf files, .doc, slides (e.g., Powerpoint slides), images, audio files, multimedia content, web pages, blogs, etc. A workspace can generally refer to any grouping of a set of digital content in the collaboration platform. The grouping can be created, identified, or specified by a user or through other means. This user can be a creator user or administrative user, for example.


In general, a workspace can be associated with a set of users or collaborators (e.g., collaborators 108) which have access to the content included therein. The levels of access (e.g., based on permissions or rules) of each user or collaborator to access the content in a given workspace can be the same or can vary among the users. Each user can have their own set of access rights to every piece of content in the workspace, or each user can be different access rights to different pieces of content. Access rights can be specified by a user associated with a workspace and/or a user who created/uploaded a particular piece of content to the workspace, or any other designated user or collaborator.


In general, the collaboration platform allows multiple users or collaborators to access or collaborate efforts on work items such each user can see, remotely, edits, revisions, comments, or annotations being made to specific work items through their own user devices. For example, a user can upload a document to a workspace for other users to access (e.g., for viewing, editing, commenting, signing-off, or otherwise manipulating). The user can login to the online platform and upload the document (or any other type of work item) to an existing workspace or to a new workspace. The document can be shared with existing users or collaborators in a workspace.


In general, network 106, over which the client devices 102 and the host server 110 communicate can be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination or variation thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but is not limited to the TCP/IP protocol, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.


The network 106 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 110 and can appear as one or more networks to the serviced systems and devices. In one embodiment, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In one embodiment, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).


In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network (WWAN), enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Digital Advanced Mobile Phone Service (D-Amps), Bluetooth, Wi-Fi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, 3G LTE, 3GPP LTE, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks or messaging protocols.


Third-party applications 120 may be provided by third-party software application vendors and may be accessible to the users via the network 106 (e.g., from servers hosted by the third-party software application vendors) or via, after download and installation, software codes (e.g., applications) running on the user devices 102. In either configuration, the third-party applications 120 may communicate with the host server 110 for accessing cloud-based collaboration platform, storage and/or services in performing their functions, such as the document rendition techniques further discussed herein.


The embodiments disclosed herein recognize that the requirement of installing and executing a software (e.g., a plug-in) that is foreign to a user's system places a barrier to easy access documents that are in proprietary format (e.g., Adobe PDF, Microsoft Document DOC, Microsoft PowerPoint PPT, etc.). As such, it would be desirable to provide an intuitive way to view and interact with documents, thereby creating a seamless experience for sharing and collaborating on any or almost any browser or device.


Accordingly, the present disclosure enables a user to upload a document file (e.g., a PDF file) (e.g., via web application interface 104 or native client user interface 107 for it to be stored on a shared workspace in the cloud collaboration platform, or via a third-party application 120 using an application programming interface (API) for conversion or other suitable purposes), and receive a version of the same document in the user's browser or the third-party software running on the user's device 102, which the user can then share with collaborators 108. Further, the user can annotate, make notes or comments, highlight, fill text into blanks, as well as perform other actions to the document that can show up to other users (e.g., collaborators 108) in real time.


More specifically, in some embodiments, the host server 110 can render documents to web browsers on devices 102, to user interfaces 104 and 107, and/or to third-party application 120 without requiring plug-ins, downloads, or software that would otherwise be necessary to view or access these documents. The host server 110 can also render the documents without compromising fidelity or performance.


In one or more embodiments, the host server 110 can render a document that is in a proprietary format (e.g., a PDF) by extracting all embedded resources (e.g., fonts, images, etc.) in the document. The host server 110 can convert a plurality of resources in a document file into a plurality of files that are native to a browser. In other words, the host server 110 can selectively convert the embedded resources so that all resources are in web-compatible formats, such as a PNG file for an image, or a TTF file for a font.


It is noted that the present disclosed techniques are not limited to rendering proprietary documents in a web browser; rather, the present techniques utilize the file formats that are native to a web browser so as to minimize the prerequisite of having a third-party plug-in or software installed on devices 102 before becoming able to view or render the proprietary documents.


Further, the host server 110 can create a style sheet based on the document file, so that an aggregate of the plurality of files together with the style sheet can cause the browser on device 102 or the third-party application 120 to render an appearance of the document file. More specifically, the embedded resources such as fonts that are shared between pages can be embedded within a shared web style sheet. The contents of the document file can be interpreted by the host server 110. In some embodiments, as the document file is processed, graphic operations in the document file can be mapped to their equivalent scalable vector graphic (SVG) operations. Additional layout analysis can also be performed by the host server 110 when processing text in the document file to enable compact representation of text using SVG content.


In accordance with one or more embodiments, the host server 110 can further process the text to enable generation of an invisible layer, based on the document file, to be laid on the rendered appearance (or rendition) of the document file. The invisible layer can enable actions including, for example, text selecting, text copying, text cutting, text pasting, text searching, text filling, or hyperlinking, to be performed on the document file. In particular examples of the present disclosure, the host server 110 can use HyperText Markup Language (HTML) (e.g., HTML5) pages to render invisible text so as to form the invisible layer, and to enable text selection, hyperlinking, search, and other functionalities.


Among others, the advantages provided by the techniques disclosed herein are particularly beneficial for large scale and demand in consumer and business web and mobile applications. Using the techniques disclosed herein, proprietary documents (e.g., PDFs, PowerPoint or Word documents) can be embedded into almost any web or mobile application using a simple library that is native to most modern web browsers (e.g., iFrame or JavaScript), thus no plug-ins, downloads, or desktop software is required. The techniques can produce fast and high fidelity rendering, and in some embodiments, provide advanced security features including, for example, 256-bit document encryption, on-premise storage options, and multiple deployment options, including Software as a Service (SaaS) and private cloud.


More implementation details on the document rendering techniques which can be implemented on the host server 110 to render proprietary documents on web application interface 107, client software user interface 104, third-party application 120, or a third-party application running on the mobile client devices 102 are discussed in fuller detail below, and particularly with regard to FIG. 4.



FIG. 2 depicts an example diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting 250 for organizing work items 215, 235, 255 and workspaces 205, 225, 245.


The web-based platform for collaborating on projects or jointly working on documents can be used by individual users and shared among collaborators. In addition, the collaboration platform can be deployed in an organized setting including but not limited to, a company (e.g., an enterprise setting), a department in a company, an academic institution, a department in an academic institution, a class or course setting, or any other types of organizations or organized setting.


When deployed in an organizational setting, multiple workspaces (e.g., workspace A, B C) can be created to support different projects or a variety of work flows. Each workspace can have its own associate work items. For example, workspace A 205 can be associated with work items 215, workspace B 225 can be associated with work items 235, and workspace N can be associated with work items 255. The work items 215, 235, and 255 can be unique to each workspace but need not be. For example, a particular word document can be associated with only one workspace (e.g., workspace A 205) or it can be associated with multiple workspaces (e.g., Workspace A 205 and workspace B 225, etc.).


In general, each workspace has a set of users or collaborators associated with it. For example, workspace A 205 is associated with multiple users or collaborators 206. In some instances, workspaces deployed in an enterprise can be department specific. For example, workspace B can be associated with department 210 and some users shown as example user A 208 and workspace N 245 can be associated with departments 212 and 216 and users shown as example user B 214.


Each user associated with a workspace can generally access the work items associated with the workspace. The level of access will depend on permissions associated with the specific workspace, and/or with a specific work item. Permissions can be set for the workspace or set individually on a per work item basis. For example, the creator of a workspace (e.g., one of user A 208 who creates workspace B) can set one permission setting applicable to all work items 235 for other associated users and/or users associated with the affiliate department 210, for example. Creator user A 208 can also set different permission settings for each work item, which can be the same for different users, or varying for different users.


In each workspace A, B . . . N, when an action is performed on a work item by a given user or any other activity is detected in the workspace, other users in the same workspace can be notified (e.g., in real time or in near real time, or not in real time). Activities which trigger real time notifications can include, by way of example but not limitation, adding, deleting, or modifying collaborators in the workspace, uploading, downloading, adding, deleting a work item in the workspace, creating a discussion topic in the workspace.


In some embodiments, items or content downloaded or edited can cause notifications to be generated. Such notifications can be sent to relevant users to notify them of actions surrounding a download, an edit, a change, a modification, a new file, a conflicting version, an upload of an edited or modified file.


In one embodiment, in a user interface to the web-based collaboration platform where notifications are presented, users can, via the same interface, create action items (e.g., tasks) and delegate the action items to other users including collaborators pertaining to a work item 215, for example. The collaborators 206 can be in the same workspace A 205 or the user can include a newly invited collaborator. Similarly, in the same user interface where discussion topics can be created in a workspace (e.g., workspace A, B or N, etc.), actionable events on work items can be created and/or delegated/assigned to other users such as collaborators of a given workspace 206 or other users. Through the same user interface, task status and updates from multiple users or collaborators can be indicated and reflected. In some instances, the users can perform the tasks (e.g., review or approve or reject, etc.) via the same user interface.



FIG. 3 depicts an example diagram of a workspace 302 in an online or web-based collaboration environment accessible by multiple collaborators 322 through various devices.


Each of users 316, 318, and 320 can individually use multiple different devices to access and/or manipulate work items 324 in the workspace 302 with which they are associated with. For example users 316, 318, 320 can be collaborators on a project to which work items 324 are relevant. Since the work items 324 are hosted by the collaboration environment (e.g., a cloud-based environment), each user can access the work items 324 anytime, and from any physical location using any device (e.g., including devices they own or any shared/public/loaner device).


Work items to be edited or viewed can be accessed from the workspace 302. Users can also be notified of access, edit, modification, and/or upload related-actions performed on work items 324 by other users or any other types of activities detected in the workspace 302. For example, if user 316 modifies a document, one or both of the other collaborators 318 and 320 can be notified of the modification in real time, or near real-time, or not in real time. The notifications can be sent through any of all of the devices associated with a given user, in various formats including, one or more of, email, SMS, or via a pop-up window in a user interface in which the user uses to access the collaboration platform. In the event of multiple notifications, each notification can be depicted preferentially (e.g., ordering in the user interface) based on user preferences and/or relevance to the user (e.g., implicit or explicit).


For example, a notification of a download, access, read, write, edit, or uploaded related activities can be presented in a feed stream among other notifications through a user interface on the user device according to relevancy to the user determined based on current or recent activity of the user in the web-based collaboration environment.


In one embodiment, the notification feed stream further enables users to create or generate actionable events (e.g., as task) which are or can be performed by other users 316 or collaborators 322 (e.g., including admin users or other users not in the same workspace), either in the same workspace 302 or in some other workspace. The actionable events such as tasks can also be assigned or delegated to other users via the same user interface.


For example, a given notification regarding a work item 324 can be associated with user interface features allowing a user 316 to assign a task related to the work item 324 (e.g., to another user 316, admin user 318, creator user 320 or another user). In one embodiment, a commenting user interface or a comment action associated with a notification can be used in conjunction with user interface features to enable task assignment, delegation, and/or management of the relevant work item or work items in the relevant workspaces, in the same user interface.



FIG. 4 depicts a block diagram illustrating an example of components in a host server (e.g., server 110, FIG. 1) with capabilities that render documents in a browser (e.g., running on devices 102), in a mobile device (e.g., through an application), or for a third-party application 120 regardless of whether a plug-in therefor is installed. With additional reference to FIGS. 1-3, the document rendition techniques which the host server 110 can employ are described.


The host server 110 of the web-based or online collaboration environment can generally be a cloud-based service. The host server 110 can include, for example, a network interface 410, a document conversion engine 420 having a resource converter module 430, a style sheet creator module 440, an invisible layer (e.g., using an HTML page) generator module 450, and a scalable vector graphic (SVG) output module 460. In some embodiments of the host server 110, the resource converter module 430 further includes a resource extractor/document analysis module 432. One or more embodiments of the resource converter module 430 can also include, for example, a font processing module 434a, an image processing module 434b, a graphics processing module 434c, and a text processing module 434d.


The network interface 410 can be a networking module that enables the host server 110 to mediate data in a network with an entity that is external to the host server 110, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface 410 can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.), Bluetooth, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


As used herein, a “module,” “a manager,” an “interface,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, interface, or engine can be centralized or its functionality distributed. The module, manager, interface, or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all media that are statutory (e.g., in the United States, under 35 U.S.C. §101), and to specifically exclude all media that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.


As previously described, overall, the host server 400 can render documents in web browsers and mobile devices using open standards that are native to a browser (e.g., such as HyperText Markup Language (HTML), Scalable Vector Graphic (SVG), and Cascading Style Sheet (CSS)) without requiring third-party plugins such as “Adobe Flash.” In accordance with some of the disclosed embodiments, documents can be rendered without compromising fidelity or performance via delivering to the browser or to an application (e.g., via an application programming interface (API) such as API 415) a mix of SVG and HTML. In addition, some embodiments of the host server 110 can stream pages to the browser or the requesting application as they are generated or processed to enable instantaneous viewing of converted documents. Further, the host server 110 can generate additional HTML content to enable end-users to interact with documents in a variety of modes including, for example, collaborative annotation, form filling, electronic signing, document editing, searching, hyperlinking, and text selection (e.g., copying, etc.).


More specifically, a user of the host server 110 can submit a document in a proprietary format for rendering by one of several example ways, such as uploading the document (e.g., via a web interface 104, or via a software client interface 107) to be stored in the cloud workspace (e.g., in repository 130). In some embodiments, a third-party application 120 (which can be running as a service on a third-party application server, or can be running as an application on devices 102) can submit the document for rendering by “calling” or utilizing the API 415.


The API 415 can include client-side APIs (e.g., for third-party applications running on devices 102) and server-side APIs (e.g., for third-party applications running on third-party servers) that allow application developers to integrate the functionalities of the present embodiments into their own web applications and/or to customize for their uses. The API 415 can include functionality such as allowing users to upload documents, manage sharing settings, respond to document navigation events, and access annotation data. As such, it is noted that the present disclosed techniques are not limited to rendering proprietary documents in a web browser; rather, the present techniques utilize the file formats that are native to a web browser so as to minimize the prerequisite of having a third-party plug-in or software installed on devices 102 before becoming able to view or render the proprietary documents.


When the host server 110 receives a request to render the document (e.g., when a collaborator tries to view the document stored in the shared workspace on the collaborator's computer in a web browser), the host server 110 can employ the document conversion engine 420 for the document rendition.


First, the host server 110 can utilize the resource converter module 430 to convert a plurality of resources in a document file into a plurality of files that are native to a browser. In other words, the host server 110 can selectively convert the embedded resources so that all resources are in web-compatible formats, such as a PNG file for an image, or a TTF file for a font. The resource extractor/document analysis module 432 can extract all embedded resources (e.g., fonts, images, etc.) in the document.


Further, the style sheet creator module 440 can create a style sheet based on the document file, so that an aggregate of the plurality of files together with the style sheet can cause the browser on device 102 or the third-party application 120 to render an appearance of the document file. More specifically, the embedded resources such as fonts that are shared between pages can be embedded within a shared web style sheet. The contents of the document file can be interpreted by the resource extractor/document analysis module 432. In some embodiments, as the document file is processed, graphic operations in the document file can be mapped by the resource extractor/document analysis module 432, together with the SVG output module 460, to their equivalent scalable vector graphic (SVG) operations. Additional layout analysis can also be performed by the resource extractor/document analysis module 432 and the SVG output module 460 when processing text in the document file to enable compact representation of text using SVG content.


In accordance with one or more embodiments, the resource converter module 430 and the invisible layer generator module 450 can further process the text to enable generation of an invisible layer, based on the document file, to be laid on the rendered appearance (or rendition) of the document file. The invisible layer can enable actions including, for example, text selecting, text copying, text cutting, text pasting, text searching, text filling, or hyperlinking, to be performed on the document file. In particular examples of the present disclosure, the invisible layer generator module 450 can use HyperText Markup Language (HTML) (e.g., HTML5) pages to render invisible text so as to form the invisible layer, and to enable text selection, hyperlinking, search, and other functionalities.


Even more specifically, in some embodiments of the document conversion engine 420, for font processing in the document, the embedded font can first be extracted by the resource extractor/layout analysis module 432. Then, each glyph within the embedded font can be assigned a unique unicode value by the resource converter module 430 so that each glyph may easily be referenced within SVG text (e.g., as discussed below). In one embodiment, metadata for enabling crisper rendering on certain operating system (e.g., a Windows Operating System) can be calculated and added to the font file by the font processing module 434a. The font can be saved using a format that is native to a web browser (e.g., a TTF font format) to enable use within web environments.


Moreover, a “blank” variation of each font can created by the font processing module 434a to enable use of invisible text within the HTML content (e.g., as generated by the invisible layer generator module 450). It is noted that, in some implementations, the original fonts and the “blank” fonts may share identical font metrics; however, the glyphs within the “blank” fonts may contain no outline information.


In accordance with some embodiments of the document conversion engine 420, for image processing in the document, embedded images are saved by the image processing module 434b within their original formats to enable high-fidelity conversions when appropriate (e.g., when the original format is a web browser native format and/or when the original size/resolution is not too high as to severely impedes the performance of document rendering, which may be a design choice by a person having ordinary skill in the art).


In some embodiments, the embedded images can be decoded and saved by the image processing module 434b using a web-optimized image format (e.g., a PNG image format). Moreover, in some occasional instances where large images are embedded in the original document, the image processing module 434b can down sample the original images to enable faster loading of content within the browser or the third-party application.


In accordance with some embodiments of the document conversion engine 420, for graphics processing in the document, all graphics operations in the original document are mapped by the graphics processing module 434c to their equivalent SVG operations as the document is processed by the document conversion engine 420. According to one embodiment, the graphics processing module 434c can employ nested objects to simulate layers, masks, patterns, and transparency groups within the SVG content. Depending on the document and the implementation, the graphics processing module 434c can communicate with the style sheet creator module 440 so as to employ CSS properties to simulate the use of certain operations such as fill, strokes, and transparencies in the original document. All SVG contents are communicated to the SVG output module 460 which, together with the CSS contents created by the module 440, cause the browser or the third-party application to render the appearance of the document file regardless of whether a plug-in software that supports the document file is installed for the browser.


In accordance with some embodiments of the document conversion engine 420, for text processing in the document, the resource extractor/document analysis module 432 can perform a layout analysis on the original document to enable the compact representation of text within the files as the pages of the original document are converted to, for example, HTML and SVG contents. The result of the text analysis can be used to, for example, group unstructured text within the original document (e.g., PDF) into words, lines, and text boxes. Afterwards, the text processing module 434d can use the result of the text analysis, together with the SVG output module 460, to render SVG text content. It is noted that, in one or more embodiments, text is rendered using SVG content instead of HTML content to enable higher-precision sub-pixel position of characters.


Moreover, the text processing module 434d can use the result of the text analysis, together with the invisible layer generator module 450, to create invisible text (e.g., on an invisible HTML layer). According to embodiments, the invisible HTML text can overlaid on top of the SVG content to enable actions to be performed on the document, such as text selection, hyperlinking, and search.


In some embodiments, to enable instantaneous loading of converted documents, pages are streamed to the browser as they are converted. In some of these embodiments, before any page is shown, a web style sheet containing shared fonts can be first loaded. Then, for each subsequent page, an SVG image can be used to display the contents of the page. Additionally, an invisible HTML layer can be overlaid on top of the SVG image to enable document interactivity. Besides those discussed above, further examples of document interactivity can include:


(a) collaborative annotation—which can allow users to add comments and other annotations to documents. In some examples, comments and annotations can be rendered using HTML in various layers over a document while being stored as separate metadata to facilitate being selectively shown/hidden as desired.


(b) form filling and electronic signatures—which can allow users to create fillable forms as well as fill out existing forms.


(c) document editing—which can allow the contents of document (e.g., PDF, DOC (or DOCX), and PPT (or PPTX) to be edited directly through an edit interface. In some embodiments, the interface provides the so-called “What You See Is What You Get” (WYSIWYG) functionality.


It is noted that some documents (e.g., a PDF document) can sometimes contain a large quantity of embedded fonts and images. In some embodiments, to reduce the number of web requests that must be made before loading a page of a document, all or most unshared resources can be base64-embeded within the pages that contain them. Further, all shared fonts can be embedded within a single shared web style sheet, and in one or more embodiments, shared images are loaded as shared external resources.


In this way, the disclosed embodiments enable the users to view documents in their web browsers and mobile devices without having to download large files or use plug-ins or other software (e.g., a desktop software such as Adobe Acrobat). The embodiments can also enable a user to upload documents in proprietary formats (e.g., Word and PDF formats), and the user's collaborators (including the user himself) can view, annotate, highlight, comment, as well as perform other suitable actions on the document without the need to download the document files and open them using desktop software. Documents can also be loaded faster because, among other reasons, the payload that the browser or the third-party application has to load is reduced.



FIGS. 5A-5C respectively depict screenshots showing example user interfaces embodying one or more techniques disclosed herein for rendering documents in a browser or mobile device (e.g., device 102, FIG. 1) regardless of whether a plug-in therefor is installed. In FIG. 5A, a view interface 500 which can be used to render documents in, for example, a web browser, is shown.


In some embodiments, the view interface 500 can have a browsing bar 510 to allow the use to browse and select the documents stored in the shared workspace. An example of the browsing bar 510 is shown in FIG. 5B. The browsing bar 510 can be activated by, for example, a swipe down gesture performed by the user on a touchscreen of the mobile device 102. The browsing bar 510 can include miniature thumbnails, each thumbnail displaying an actual content of the document using the document rendering techniques disclosed herein, so that the browsing bar 510 of the interface 500 enables the user to take a quick glance at the actual content of the files without the need for the user to access the file. This can reduce time and effort for the user in reading and responding to the updates when collaborating with his or her collaborators on items shared on the workspace (e.g., workspace 302, FIG. 3).


The interface 500 can also include a collaboration bar 520 to allow the user to perform interactivity or collaboration functions on the document rendered (e.g., using the techniques disclosed herein). An example of the collaboration bar 520 is shown in FIG. 5C. The collaboration bar 520 can be activated by, for example, a swipe left gesture performed by the user on a touchscreen of the mobile device 102. The collaboration bar 510 can include actions that the user can perform on the viewed document, such as share, comment, download, or assign a task to another collaborator(s).



FIG. 6 depicts a flowchart illustrating an example process 600 for a host server (e.g., host server 110, FIGS. 1 and 4) in implementing the techniques disclosed herein for rendering documents (e.g., items 324 stored in workspace 302, FIG. 3; or received from a third-party application 120 via an application programing interface (API) 415, FIGS. 1 and 4) in a browser or mobile device (e.g., device 102, FIG. 1) regardless of whether a plug-in therefor is installed.


First, the host server 110 can convert (610) a plurality of resources in a document file into a plurality of files that are native to a browser. In other words, the host server 110 can selectively convert the embedded resources so that all resources are in web-compatible formats, such as a PNG file for an image, or a TTF file for a font. In some embodiments, the host server 110 can extract all embedded resources (e.g., fonts, images, etc.) in the document.


Further, the host server 110 can create (620) a style sheet based on the document file, so that an aggregate of the plurality of files together with the style sheet can cause (620) the browser on device 102 or the third-party application 120 to render an appearance of the document file. More specifically, the embedded resources such as fonts that are shared between pages can be embedded within a shared web style sheet. The contents of the document file can be interpreted by the host server 110. In some embodiments, as the document file is processed, graphic operations in the document file can be mapped by the host server 110 to their equivalent scalable vector graphic (SVG) operations. Additional layout analysis can also be performed by the host server 110 when processing text in the document file to enable compact representation of text using SVG content.


In accordance with one or more embodiments, the host server 110 can further process the text to generate (630) an invisible layer, based on the document file, to be laid on the rendered appearance (or rendition) of the document file. The invisible layer can enable (630) actions including, for example, text selecting, text copying, text cutting, text pasting, text searching, text filling, or hyperlinking, to be performed on the document file. In particular examples of the present disclosure, the host server 110 can use HyperText Markup Language (HTML) (e.g., HTML5) pages to render invisible text so as to form the invisible layer, and to enable text selection, hyperlinking, search, and other functionalities.


In addition, some embodiments of the host server 110 can stream (640) pages to the browser or the requesting application as they are generated or processed to enable instantaneous viewing of converted documents.



FIG. 7 shows a diagrammatic representation 700 of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.


In alternative embodiments, the machine operates as a standalone device or can be connected (e.g., networked) to other machines. In a networked deployment, the machine can operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine can be a server computer, a client computer, a personal computer (PC), a user device, a tablet, a phablet, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a thin-client device, a cellular telephone, an iPhone, an iPad, aBlackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure, can be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


The network interface device enables the machine 2800 to mediate data in a network with an entity that is external to the host server, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface device can include one or more of a network adaptor card, a wireless network interface card, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


The network interface device can include a firewall which can, in some embodiments, govern and/or manage permission to access/proxy data in a computer network, and track varying levels of trust between different machines and/or applications. The firewall can be any number of modules having any combination of hardware and/or software components able to enforce a predetermined set of access rights between a particular set of machines and applications, machines and machines, and/or applications and applications, for example, to regulate the flow of traffic and resource sharing between these varying entities. The firewall can additionally manage and/or have access to an access control list which details permissions including for example, the access and operation rights of an object by an individual, a machine, and/or an application, and the circumstances under which the permission rights stand.


Other network security functions can be performed or included in the functions of the firewall, can be, for example, but are not limited to, intrusion-prevention, intrusion detection, next-generation firewall, personal firewall, etc. without deviating from the novel art of this disclosure.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number can also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments can perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks can be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks can be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks can instead be performed in parallel, or can be performed at different times. Further, any specific numbers noted herein are only examples: alternative implementations can employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that can be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system can vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. §112, ¶6, other aspects can likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claim intended to be treated under 35 U.S.C. §112, ¶6 begins with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims
  • 1. A method for rendering a document, the method comprising: converting a plurality of resources in a document file into a plurality of files that are native to a browser;creating a style sheet based on the document file, wherein an aggregate of the plurality of files together with the style sheet are configured to cause the browser to render an appearance of the document file; andgenerating, based on the document file, an invisible layer to be laid on the appearance, wherein the invisible layer enables actions to be performed on the document file.
  • 2. The method of claim 1, further comprising: streaming pages of the document file to the browser individually as each page is processed.
  • 3. The method of claim 1, wherein the plurality of resources comprise a font, the method further comprising: extracting the font from the document file; andcreating a blank variation of the font so as to enable the generation of the invisible layer, wherein glyphs within the blank variation of the font contain no outline information.
  • 4. The method of claim 1, wherein the plurality of resources comprise an image, the method further comprising: extracting the image from the document file; anddown-sampling the image if a size of the image is larger than a predetermined number.
  • 5. The method of claim 1, wherein the plurality of resources comprise a graphic, the method further comprising: mapping the graphic to an equivalent scalable vector graphic operation.
  • 6. The method of claim 1, wherein the plurality of resources comprise text, the method further comprising: mapping the text using to a plurality of equivalent scalable vector graphic operations; andproviding the text for the generation of the invisible layer.
  • 7. The method of claim 1, wherein the document file is received from a third-party software application via an application programming interface (API).
  • 8. The method of claim 1, wherein the browser is to render the appearance of the document file regardless of whether a plug-in software that supports the document file is installed for the browser.
  • 9. The method of claim 1, wherein the invisible layer comprises a HyperText Markup Language (HTML) page.
  • 10. The method of claim 1, wherein the actions to be performed on the document file includes one or more of text selecting, text copying, text cutting, text pasting, text searching, text filling, and hyperlinking.
  • 11. The method of claim 1, wherein a file type of the document file includes one or more of Portable Document Format file (PDF), Word Document file (DOC), PowerPoint Presentation file (PPT), Excel worksheet file (XLS).
  • 12. The method of claim 1, wherein the rendering is performed by a server which hosts a cloud-based environment shared among a user and collaborators of the user.
  • 13. The method of claim 12, wherein the cloud-based environment includes a cloud-based collaboration environment, a cloud-based storage service or file sharing service.
  • 14. A computer server which hosts a cloud-based environment shared among a user and collaborators of the user, the server comprising: a processor; anda memory unit having instructions stored thereon which when executed by the processor, causes the processor to: convert a plurality of resources in a document file into a plurality of files that are native to a browser;create a style sheet based on the document file, wherein an aggregate of the plurality of files together with the style sheet are configured to cause the browser to render an appearance of the document file; andgenerate, based on the document file, an invisible layer to be laid on the appearance, wherein the invisible layer enables actions to be performed on the document file.
  • 15. The server of claim 14, wherein the processor is further caused to: stream pages of the document file to the browser individually as each page is processed.
  • 16. The server of claim 14, wherein the plurality of resources comprise a font, and wherein the processor is further caused to: extract the font from the document file; andcreate a blank variation of the font so as to enable the generation of the invisible layer, wherein glyphs within the blank variation of the font contain no outline information.
  • 17. The server of claim 14, wherein the plurality of resources comprise an image, and wherein the processor is further caused to: extract the image from the document file; anddown-sample the image if a size of the image is larger than a predetermined number.
  • 18. The server of claim 14, wherein the plurality of resources comprise a graphic, and wherein the processor is further caused to: map the graphic to an equivalent scalable vector graphic operation.
  • 19. The server of claim 14, wherein the plurality of resources comprise text, and wherein the processor is further caused to: map the text using to a plurality of equivalent scalable vector graphic operations; andprovide the text for the generation of the invisible layer.
  • 20. The server of claim 14, wherein the document file is received from a third-party software application via an application programming interface (API).
  • 21. The server of claim 14, wherein the browser is to render the appearance of the document file regardless of whether a plug-in software that supports the document file is installed for the browser.
  • 22. The server of claim 14, wherein the invisible layer comprises a HyperText Markup Language (HTML) page.
  • 23. A machine-readable storage medium having stored thereon instructions which, when executed by a processor on a server, cause the processor to: convert a plurality of resources in a document file into a plurality of files that are native to a browser;create a style sheet based on the document file, wherein an aggregate of the plurality of files together with the style sheet are configured to cause the browser to render an appearance of the document file; andgenerate, based on the document file, an invisible layer to be laid on the appearance, wherein the invisible layer enables actions to be performed on the document file.
  • 24. The medium of claim 23, wherein the processor is further caused to: stream pages of the document file to the browser individually as each page is processed.
  • 25. The medium of claim 23, wherein the plurality of resources comprise a font, and wherein the processor is further caused to: extract the font from the document file; andcreate a blank variation of the font so as to enable the generation of the invisible layer, wherein glyphs within the blank variation of the font contain no outline information.
  • 26. The medium of claim 23, wherein the plurality of resources comprise an image, and wherein the processor is further caused to: extract the image from the document file; anddown-sample the image if a size of the image is larger than a predetermined number.
  • 27. The medium of claim 23, wherein the plurality of resources comprise a graphic, and wherein the processor is further caused to: map the graphic to an equivalent scalable vector graphic operation.
  • 28. The medium of claim 23, wherein the plurality of resources comprise text, and wherein the processor is further caused to: map the text using to a plurality of equivalent scalable vector graphic operations; andprovide the text for the generation of the invisible layer.
  • 29. The medium of claim 23, wherein the document file is received from a third-party software application via an application programming interface (API); wherein the browser is to render the appearance of the document file regardless of whether a plug-in software that supports the document file is installed for the browser.
  • 30. A system which hosts a cloud-based environment shared among a user and collaborators of the user, comprising: means for converting a plurality of resources in a document file into a plurality of files that are native to a browser;means for creating a style sheet based on the document file, wherein an aggregate of the plurality of files together with the style sheet are configured to cause the browser to render an appearance of the document file;means for generating, based on the document file, an invisible layer to be laid on the appearance, wherein the invisible layer enables actions to be performed on the document file; andmeans for streaming pages of the document file to the browser individually as each page is processed.
US Referenced Citations (428)
Number Name Date Kind
5799320 Klug Aug 1998 A
5848415 Guck Dec 1998 A
5864870 Guck Jan 1999 A
5999908 Abelow Dec 1999 A
6034621 Kaufman Mar 2000 A
6055543 Christensen et al. Apr 2000 A
6073161 DeBoskey et al. Jun 2000 A
6098078 Gehani et al. Aug 2000 A
6233600 Salas et al. May 2001 B1
6289345 Yasue Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6336124 Alam et al. Jan 2002 B1
6342906 Kumar et al. Jan 2002 B1
6345386 Delo et al. Feb 2002 B1
6370543 Hoffert et al. Apr 2002 B2
6374260 Hoffert et al. Apr 2002 B1
6396593 Laverty et al. May 2002 B1
6515681 Knight Feb 2003 B1
6539381 Prasad et al. Mar 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6636872 Heath et al. Oct 2003 B1
6654737 Nunez Nov 2003 B1
6662186 Esquibel et al. Dec 2003 B1
6687878 Eintracht et al. Feb 2004 B1
6714968 Prust Mar 2004 B1
6735623 Prust May 2004 B1
6742181 Koike et al. May 2004 B1
6760721 Chasen et al. Jul 2004 B1
6947162 Rosenberg et al. Sep 2005 B2
6952724 Prust Oct 2005 B2
6996768 Elo et al. Feb 2006 B1
7020697 Goodman et al. Mar 2006 B1
7039806 Friedman et al. May 2006 B1
7069393 Miyata et al. Jun 2006 B2
7130831 Howard et al. Oct 2006 B2
7133834 Abelow Nov 2006 B1
7149787 Mutalik et al. Dec 2006 B1
7152182 Ji et al. Dec 2006 B2
7155483 Friend et al. Dec 2006 B1
7165107 Pouyoul et al. Jan 2007 B2
7222078 Abelow May 2007 B2
7275244 Charles Bell et al. Sep 2007 B1
7296025 Kung et al. Nov 2007 B2
7346778 Guiter et al. Mar 2008 B1
7353252 Yang et al. Apr 2008 B1
7370269 Prabhu et al. May 2008 B1
7401117 Dan et al. Jul 2008 B2
7543000 Castro et al. Jun 2009 B2
7581221 Lai et al. Aug 2009 B2
7620565 Abelow Nov 2009 B2
7647559 Yozell-Epstein et al. Jan 2010 B2
7650367 Arruza Jan 2010 B2
7661088 Burke Feb 2010 B2
7665093 Maybee et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7698363 Dan et al. Apr 2010 B2
7734600 Wise et al. Jun 2010 B1
7756843 Palmer Jul 2010 B1
7774412 Schnepel Aug 2010 B1
7814426 Huesken et al. Oct 2010 B2
7886287 Davda Feb 2011 B1
7890964 Vogler-Ivashchanka et al. Feb 2011 B2
7937663 Parker et al. May 2011 B2
7958353 Matsuzaki et al. Jun 2011 B2
7958453 Taing Jun 2011 B1
7979296 Kruse et al. Jul 2011 B2
7996374 Jones et al. Aug 2011 B1
8027976 Ding et al. Sep 2011 B1
RE42904 Stephens, Jr. Nov 2011 E
8065739 Bruening et al. Nov 2011 B1
8090361 Hagan Jan 2012 B2
8103662 Eagan et al. Jan 2012 B2
8117261 Briere et al. Feb 2012 B2
8140513 Ghods et al. Mar 2012 B2
8151183 Chen et al. Apr 2012 B2
8185830 Saha et al. May 2012 B2
8200582 Zhu Jun 2012 B1
8214747 Yankovich et al. Jul 2012 B1
8230348 Peters et al. Jul 2012 B2
8239918 Cohen Aug 2012 B1
8347276 Schadow Jan 2013 B2
8358701 Chou et al. Jan 2013 B2
8429540 Yankovich et al. Apr 2013 B1
8464161 Giles et al. Jun 2013 B2
8527549 Cidon Sep 2013 B2
8549066 Donahue et al. Oct 2013 B1
8549511 Seki et al. Oct 2013 B2
8607306 Bridge et al. Dec 2013 B1
8849955 Prahlad et al. Sep 2014 B2
8959579 Barton et al. Feb 2015 B2
20010027492 Gupta Oct 2001 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020099772 Deshpande et al. Jul 2002 A1
20020133509 Johnston et al. Sep 2002 A1
20020147770 Tang Oct 2002 A1
20030041095 Konda et al. Feb 2003 A1
20030084306 Abburi et al. May 2003 A1
20030093404 Bader et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110264 Whidby et al. Jun 2003 A1
20030135536 Lyons Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030154306 Perry Aug 2003 A1
20030204490 Kasriel Oct 2003 A1
20030217171 Von Stuermer et al. Nov 2003 A1
20040021686 Barberis Feb 2004 A1
20040088647 Miller et al. May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040111415 Scardino et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040122949 Zmudzinski et al. Jun 2004 A1
20040128359 Horvitz et al. Jul 2004 A1
20040177138 Salle et al. Sep 2004 A1
20040181579 Huck et al. Sep 2004 A1
20040230624 Frolund et al. Nov 2004 A1
20040246532 Inada Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050005276 Morgan Jan 2005 A1
20050010860 Weiss et al. Jan 2005 A1
20050022229 Gabriel et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050050228 Perham et al. Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050097225 Glatt et al. May 2005 A1
20050108406 Lee et al. May 2005 A1
20050114305 Haynes et al. May 2005 A1
20050114378 Elien et al. May 2005 A1
20050182966 Pham et al. Aug 2005 A1
20050198299 Beck et al. Sep 2005 A1
20050198452 Watanabe Sep 2005 A1
20050234864 Shapiro Oct 2005 A1
20050234943 Clarke Oct 2005 A1
20050261933 Magnuson Nov 2005 A1
20060005163 Huesken et al. Jan 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060047804 Fredricksen et al. Mar 2006 A1
20060053088 Ali et al. Mar 2006 A1
20060053380 Spataro et al. Mar 2006 A1
20060070083 Brunswig et al. Mar 2006 A1
20060075071 Gillette Apr 2006 A1
20060123062 Bobbitt et al. Jun 2006 A1
20060133340 Rybak et al. Jun 2006 A1
20060168550 Muller et al. Jul 2006 A1
20060174051 Lordi et al. Aug 2006 A1
20060174054 Matsuki Aug 2006 A1
20060179070 George et al. Aug 2006 A1
20060242204 Karas et al. Oct 2006 A1
20060259524 Horton Nov 2006 A1
20060265719 Astl et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20070016680 Burd et al. Jan 2007 A1
20070038934 Fellman Feb 2007 A1
20070100830 Beedubail et al. May 2007 A1
20070115845 Hochwarth et al. May 2007 A1
20070118598 Bedi et al. May 2007 A1
20070124460 McMullen et al. May 2007 A1
20070124737 Wensley et al. May 2007 A1
20070124781 Casey et al. May 2007 A1
20070126635 Houri Jun 2007 A1
20070130143 Zhang et al. Jun 2007 A1
20070130163 Perez et al. Jun 2007 A1
20070198609 Black et al. Aug 2007 A1
20070208878 Barnes-Leon et al. Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070220016 Estrada et al. Sep 2007 A1
20070220590 Rasmussen et al. Sep 2007 A1
20070240057 Satterfield et al. Oct 2007 A1
20070256065 Heishi et al. Nov 2007 A1
20070266304 Fletcher et al. Nov 2007 A1
20070282848 Kiilerich et al. Dec 2007 A1
20070283443 McPherson et al. Dec 2007 A1
20070288290 Motoyama et al. Dec 2007 A1
20080005135 Muthukrishnan et al. Jan 2008 A1
20080005195 Li Jan 2008 A1
20080016146 Gan et al. Jan 2008 A1
20080028323 Rosen et al. Jan 2008 A1
20080040173 Aleong et al. Feb 2008 A1
20080046828 Bibliowicz et al. Feb 2008 A1
20080059656 Saliba et al. Mar 2008 A1
20080063210 Goodman et al. Mar 2008 A1
20080065881 Dawson et al. Mar 2008 A1
20080077631 Petri Mar 2008 A1
20080091763 Devonshire et al. Apr 2008 A1
20080091790 Beck Apr 2008 A1
20080104277 Tian May 2008 A1
20080114720 Smith et al. May 2008 A1
20080133674 Knauerhase et al. Jun 2008 A1
20080140732 Wilson et al. Jun 2008 A1
20080147790 Malaney et al. Jun 2008 A1
20080151817 Fitchett et al. Jun 2008 A1
20080154873 Redlich et al. Jun 2008 A1
20080182628 Lee et al. Jul 2008 A1
20080183467 Yuan et al. Jul 2008 A1
20080184130 Tien et al. Jul 2008 A1
20080194239 Hagan Aug 2008 A1
20080215883 Fok et al. Sep 2008 A1
20080222654 Xu et al. Sep 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080250333 Reeves et al. Oct 2008 A1
20080250348 Alimpich et al. Oct 2008 A1
20080263099 Brady-Kalnay et al. Oct 2008 A1
20080271095 Shafton Oct 2008 A1
20080276158 Lim et al. Nov 2008 A1
20090015864 Hasegawa Jan 2009 A1
20090019093 Brodersen et al. Jan 2009 A1
20090019426 Baeumer et al. Jan 2009 A1
20090030710 Levine Jan 2009 A1
20090044128 Baumgarten et al. Feb 2009 A1
20090049131 Lyle et al. Feb 2009 A1
20090125469 McDonald et al. May 2009 A1
20090132651 Roger et al. May 2009 A1
20090138808 Moromisato et al. May 2009 A1
20090150417 Ghods et al. Jun 2009 A1
20090150627 Benhase et al. Jun 2009 A1
20090158142 Arthursson et al. Jun 2009 A1
20090164438 Delacruz Jun 2009 A1
20090171983 Samji et al. Jul 2009 A1
20090193107 Srinivasan et al. Jul 2009 A1
20090193345 Wensley et al. Jul 2009 A1
20090198772 Kim et al. Aug 2009 A1
20090210459 Nair et al. Aug 2009 A1
20090214115 Kimura et al. Aug 2009 A1
20090235167 Boyer et al. Sep 2009 A1
20090235181 Saliba et al. Sep 2009 A1
20090235189 Aybes et al. Sep 2009 A1
20090249224 Davis et al. Oct 2009 A1
20090254589 Nair et al. Oct 2009 A1
20090260060 Smith et al. Oct 2009 A1
20090271708 Peters et al. Oct 2009 A1
20090282212 Peterson Nov 2009 A1
20090300356 Crandell Dec 2009 A1
20090300527 Malcolm et al. Dec 2009 A1
20090327358 Lukiyanov et al. Dec 2009 A1
20090327961 De Vorchik et al. Dec 2009 A1
20100011292 Marinkovich et al. Jan 2010 A1
20100011447 Jothimani Jan 2010 A1
20100017262 Iyer et al. Jan 2010 A1
20100036929 Scherpa et al. Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100057560 Skudlark et al. Mar 2010 A1
20100057785 Khosravy et al. Mar 2010 A1
20100076946 Barker et al. Mar 2010 A1
20100082634 Leban Apr 2010 A1
20100088150 Mazhar et al. Apr 2010 A1
20100092126 Kaliszek et al. Apr 2010 A1
20100093310 Gbadegesin et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100131868 Chawla et al. May 2010 A1
20100151431 Miller Jun 2010 A1
20100153835 Xiong et al. Jun 2010 A1
20100162365 Del Real Jun 2010 A1
20100162374 Nair Jun 2010 A1
20100179940 Gilder et al. Jul 2010 A1
20100185463 Noland et al. Jul 2010 A1
20100185932 Coffman et al. Jul 2010 A1
20100191689 Cortes et al. Jul 2010 A1
20100198783 Wang et al. Aug 2010 A1
20100198871 Stiegler et al. Aug 2010 A1
20100198944 Ho et al. Aug 2010 A1
20100205537 Knighton et al. Aug 2010 A1
20100223378 Wei Sep 2010 A1
20100229085 Nelson et al. Sep 2010 A1
20100235526 Carter et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100241611 Zuber Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100250120 Waupotitsch et al. Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100257457 De Goes Oct 2010 A1
20100262582 Garcia-Ascanio et al. Oct 2010 A1
20100267588 Nelson et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100274772 Samuels Oct 2010 A1
20100281118 Donahue et al. Nov 2010 A1
20100290623 Banks et al. Nov 2010 A1
20100306379 Ferris Dec 2010 A1
20100318893 Matthews et al. Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100325527 Estrada et al. Dec 2010 A1
20100325559 Westerinen et al. Dec 2010 A1
20100325655 Perez Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20100332962 Hammer et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110001763 Murakami Jan 2011 A1
20110016409 Grosz et al. Jan 2011 A1
20110022559 Andersen et al. Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110029883 Lussier et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110041083 Gabai et al. Feb 2011 A1
20110047413 McGill et al. Feb 2011 A1
20110047484 Mount et al. Feb 2011 A1
20110052155 Desmarais et al. Mar 2011 A1
20110054968 Galaviz Mar 2011 A1
20110055299 Phillips Mar 2011 A1
20110055721 Jain et al. Mar 2011 A1
20110061045 Phillips Mar 2011 A1
20110061046 Phillips Mar 2011 A1
20110065082 Gal et al. Mar 2011 A1
20110066951 Ward-Karet et al. Mar 2011 A1
20110083167 Carpenter et al. Apr 2011 A1
20110093567 Jeon et al. Apr 2011 A1
20110099006 Sundararaman et al. Apr 2011 A1
20110113320 Neff et al. May 2011 A1
20110119313 Sung et al. May 2011 A1
20110137991 Russell Jun 2011 A1
20110142410 Ishii Jun 2011 A1
20110145744 Haynes et al. Jun 2011 A1
20110161289 Pei et al. Jun 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110167353 Grosz et al. Jul 2011 A1
20110167435 Fang Jul 2011 A1
20110185292 Chawla et al. Jul 2011 A1
20110202424 Chun et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110213765 Cui et al. Sep 2011 A1
20110219419 Reisman Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110238458 Purcell et al. Sep 2011 A1
20110238621 Agrawal Sep 2011 A1
20110238759 Spataro et al. Sep 2011 A1
20110239135 Spataro et al. Sep 2011 A1
20110246294 Robb et al. Oct 2011 A1
20110246950 Luna et al. Oct 2011 A1
20110252071 Cidon Oct 2011 A1
20110252320 Arrasvuori et al. Oct 2011 A1
20110258461 Bates Oct 2011 A1
20110258561 Ladouceur et al. Oct 2011 A1
20110282710 Akkiraju et al. Nov 2011 A1
20110289433 Whalin et al. Nov 2011 A1
20110296022 Ferris et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110320197 Conejero et al. Dec 2011 A1
20120036370 Lim et al. Feb 2012 A1
20120064879 Panei Mar 2012 A1
20120072436 Pierre et al. Mar 2012 A1
20120079095 Evans et al. Mar 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120110005 Kuo et al. May 2012 A1
20120110436 Adler, III et al. May 2012 A1
20120117626 Yates et al. May 2012 A1
20120124306 Abercrombie et al. May 2012 A1
20120124547 Halbedel May 2012 A1
20120130900 Tang et al. May 2012 A1
20120134491 Liu May 2012 A1
20120136936 Quintuna May 2012 A1
20120144283 Hill et al. Jun 2012 A1
20120150888 Hyatt et al. Jun 2012 A1
20120151551 Readshaw et al. Jun 2012 A1
20120158908 Luna et al. Jun 2012 A1
20120159178 Lin et al. Jun 2012 A1
20120159310 Chang et al. Jun 2012 A1
20120173625 Berger Jul 2012 A1
20120179981 Whalin et al. Jul 2012 A1
20120185355 Kilroy Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192055 Antebi et al. Jul 2012 A1
20120192086 Ghods et al. Jul 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204032 Wilkins et al. Aug 2012 A1
20120214444 McBride et al. Aug 2012 A1
20120218885 Abel et al. Aug 2012 A1
20120221789 Felter Aug 2012 A1
20120226767 Luna et al. Sep 2012 A1
20120233155 Gallmeier et al. Sep 2012 A1
20120233205 McDermott Sep 2012 A1
20120240061 Hillenius et al. Sep 2012 A1
20120240183 Sinha Sep 2012 A1
20120257249 Natarajan Oct 2012 A1
20120263166 Cho et al. Oct 2012 A1
20120266203 Elhadad et al. Oct 2012 A1
20120284638 Cutler et al. Nov 2012 A1
20120284664 Zhao Nov 2012 A1
20120291011 Quine Nov 2012 A1
20120309540 Holme et al. Dec 2012 A1
20120311157 Erickson et al. Dec 2012 A1
20120317239 Mulder et al. Dec 2012 A1
20120317487 Lieb et al. Dec 2012 A1
20120328259 Seibert, Jr. et al. Dec 2012 A1
20120331177 Jensen Dec 2012 A1
20120331441 Adamson Dec 2012 A1
20130007245 Malik et al. Jan 2013 A1
20130007471 Grab et al. Jan 2013 A1
20130007894 Dang et al. Jan 2013 A1
20130013560 Goldberg et al. Jan 2013 A1
20130014023 Lee et al. Jan 2013 A1
20130042106 Persaud et al. Feb 2013 A1
20130055127 Saito et al. Feb 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130073403 Tuchman et al. Mar 2013 A1
20130080919 Kiang et al. Mar 2013 A1
20130117337 Dunham May 2013 A1
20130124638 Barreto et al. May 2013 A1
20130138608 Smith May 2013 A1
20130138615 Gupta et al. May 2013 A1
20130159411 Bowen Jun 2013 A1
20130163289 Kim et al. Jun 2013 A1
20130167253 Seleznev et al. Jun 2013 A1
20130185558 Seibert et al. Jul 2013 A1
20130191339 Haden et al. Jul 2013 A1
20130198600 Lockhart et al. Aug 2013 A1
20130212486 Joshi et al. Aug 2013 A1
20130239049 Perrodin et al. Sep 2013 A1
20130246932 Zaveri et al. Sep 2013 A1
20130262210 Savage et al. Oct 2013 A1
20130262862 Hartley Oct 2013 A1
20130268480 Dorman Oct 2013 A1
20130268491 Chung et al. Oct 2013 A1
20130275398 Dorman et al. Oct 2013 A1
20130275429 York et al. Oct 2013 A1
20130275509 Micucci et al. Oct 2013 A1
20130305039 Gauda Nov 2013 A1
20140007205 Oikonomou Jan 2014 A1
20140013112 Cidon et al. Jan 2014 A1
20140019497 Cidon et al. Jan 2014 A1
20140019498 Cidon et al. Jan 2014 A1
20140032616 Nack Jan 2014 A1
20140033277 Xiao et al. Jan 2014 A1
20140033291 Liu Jan 2014 A1
20140052939 Tseng et al. Feb 2014 A1
20140068589 Barak Mar 2014 A1
20140156373 Roberts et al. Jun 2014 A1
20140172595 Beddow et al. Jun 2014 A1
Foreign Referenced Citations (41)
Number Date Country
2724521 Nov 2009 CA
101997924 Mar 2011 CN
102264063 Nov 2011 CN
0921661 Jun 1999 EP
1349088 Oct 2003 EP
1528746 May 2005 EP
2372574 Oct 2011 EP
2610776 Jul 2013 EP
2453924 Apr 2009 GB
2471282 Dec 2010 GB
09-101937 Apr 1997 JP
11-025059 Jan 1999 JP
2003273912 Sep 2003 JP
2004310272 Nov 2004 JP
09-269925 Oct 2007 JP
2008250944 Oct 2008 JP
20020017444 Mar 2002 KR
20040028036 Apr 2004 KR
20050017674 Feb 2005 KR
20060070306 Jun 2006 KR
20060114871 Nov 2006 KR
20070043353 Apr 2007 KR
20070100477 Oct 2007 KR
20100118836 Nov 2010 KR
20110074096 Jun 2011 KR
20110076831 Jul 2011 KR
WO-0007104 Feb 2000 WO
WO-0219128 Mar 2002 WO
WO-2004097681 Nov 2004 WO
WO-2006028850 Mar 2006 WO
WO-2007024438 Mar 2007 WO
WO-2007035637 Mar 2007 WO
WO-2007113573 Oct 2007 WO
WO-2008011142 Jan 2008 WO
WO-2008076520 Jun 2008 WO
WO-2011109416 Sep 2011 WO
WO-2012167272 Dec 2012 WO
WO-2013009328 Jan 2013 WO
WO-2013013217 Jan 2013 WO
WO-2013041763 Mar 2013 WO
WO-2013166520 Nov 2013 WO
Non-Patent Literature Citations (104)
Entry
“Conceptboard”, One-Step Solution for Online Collaboration, retrieved from websites http://conceptboard.com and https://www.youtube.com/user/ConceptboardApp?feature=watch, printed on Jun. 13, 2013, 9 pages.
“How-to Geek, How to Sync Specific Folders With Dropbox,” downloaded from the internet http://www.howtogeek.com, Apr. 23, 2013, 5 pages.
“Microsoft Office SharePoint 2007 User Guide,” Feb. 16, 2010, pp. 1-48.
“Understanding Metadata,” National Information Standards Organization, NISO Press, 2004, 20 pages.
Cisco, “FTP Load Balancing on ACE in Routed Mode Configuration Example,” DocWiki, Jun. 2011, 7 pages.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 24 pages.
Exam Report for EP13158415.3, Applicant: Box, Inc. Mailed Jun. 4, 2013, 8 pages.
Exam Report for GB1300188.8, Applicant: Box, Inc. Mailed May 31, 2013, 8 pages.
Exam Report for GB1306011.6, Applicant: Box, Inc. Mailed Apr. 18, 2013, 8 pages.
Exam Report for GB1310666.1, Applicant: Box, Inc. Mailed Aug. 30, 2013, 10 pages.
Exam Report for GB1313559.5, Applicant: Box, Inc., Mailed Aug. 22, 2013, 19 pages.
Google Docs, http://web.Archive.org/web/20100413105758/http://en.wikipedia.org/wiki/Google—docs, Apr. 13, 2010, 6 pages.
International Search Report and Written Opinion for PCT/US2008/012973 dated Apr. 30, 2009, pp. 1-11.
International Search Report and Written Opinion for PCT/US2011/039126 mailed on Oct. 6, 2011, pp. 1-13.
International Search Report and Written Opinion for PCT/US2011/041308 Mailed Jul. 2, 2012, pp. 1-16.
International Search Report and Written Opinion for PCT/US2011/047530, Applicant: Box, Inc., Mailed Mar. 22, 2013, pp. 1-10.
International Search Report and Written Opinion for PCT/US2011/056472 mailed on Jun. 22, 2012, pp. 1-12.
International Search Report and Written Opinion for PCT/US2011/057938, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/060875 Mailed Oct. 30, 2012, pp. 1-10.
International Search Report and Written Opinion for PCT/US2012/056955, Applicant: Box, Inc., Mailed Mar. 27, 2013, pp. 1-11.
International Search Report and Written Opinion for PCT/US2012/063041, Applicant: Box, Inc., Mailed Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/065617, Applicant: Box, Inc., Mailed Mar. 29, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/067126, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/070366, Applicant: Box, Inc., Mailed Apr. 24, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/020267, Applicant: Box, Inc., Mailed May 7, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/023889, Applicant: Box, Inc., Mailed Jun. 24, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/029520, Applicant: Box, Inc., Mailed Jun. 26, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034662, Applicant: Box, Inc., Mailed May 31, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/035404, Applicant: Box, Inc., Mailed Jun. 26, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/039782, Applicant: Box, Inc., Mailed Aug. 28, 2013, 15 pages.
Internet Forums, http://web.archive.org/web/20100528195550/http://en.wikipedia.org/wiki/Internet—forums, Wikipedia, May 30, 2010, pp. 1-20.
Langfeld L. et al., “Microsoft SharePoint 2003 Unleashed,” Chapters 11 and 15, Jun. 2004, pp. 403-404, 557-561, 578-581.
Lars, “35 Very Useful Online Tools for Improving your project Management and Team Collaboration,” Apr. 31, 2010, tripwiremagazine.com, pp. 1-32.
Palmer, “Load Balancing FTP Servers,” BlogNav, Oct. 2008, 2 pages.
Parr, “Google Docs Improves Commenting, Adds E-mail Notifications,” Apr. 16, 2011, mashable.com, pp. 1-6.
Partial International Search Report for PCT/US2011/041308 dated Feb. 27, 2012, pp. 1-2.
Supplementary European Search Report European Application No. EP 08 85 8563 dated Jun. 20, 2011 pp. 1-5.
Wayback, “Wayback machine,” Wayback, Jun. 1, 2011, 1 page.
Wiki, http://web.archive.org/web/20100213004936/http://en.wikipedia.org/wiki/Wiki, Feb. 13, 2010, pp. 1-16.
Yahoo! Groups, http://web.archive.org/web/20090320101529/http://en.wikipedia.org/wiki/Yahoo!—Groups, Wikipedia, Mar. 20, 2009, pp. 1-6.
“PaperPort Professional 14,” PC Mag. Com review, published Feb. 2012, Ziff Davis, Inc., 8 pages.
“PaperPort,” Wikipedia article (old revision), published May 19, 2012, Wikipedia Foundation, 2 pages.
“Quickoffice Enhances Android Mobile office Application for Improved Productivity on latest Smartphone and Table Devices,” QuickOffice Press Release, Nov. 21, 2011, QuickOffice Inc., 2 pages.
“QuickOffice,” Wikipedia Article (old revision), published May 9, 2012, Wikipedia Foundation, 2 pages.
Exam Report for EP13168784.0, Applicant: Box, Inc. Mailed Nov. 21, 2013, 7 pages.
Exam Report for EP13185269.1, Applicant: Box, Inc. Mailed Jan. 28, 7 pages.
Exam Report for GB1309209.3, Applicant: Box, Inc. Mailed Oct. 30, 2013, 11 pages.
Exam Report for GB1311417.8, Applicant: Box, Inc. Mailed Dec. 23, 2013, 5 pages.
Exam Report for GB1312095.1, Applicant: Box, Inc. Mailed Dec. 12, 2013, 7 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. Mailed Dec. 20, 2013, 11 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc. Mailed Oct. 31, 2013, 10 pages.
Exam Report for GB1316533.7, Applicant: Box, Inc. Mailed Oct. 8, 2013, 9 pages.
Exam Report for GB1316971.9, Applicant: Box, Inc. Mailed Nov. 26, 2013, 10 pages.
Exam Report for GB1317600.3, Applicant: Box, Inc. Mailed Nov. 21, 2013, 8 pages.
Exam Report for GB1320902.8, Applicant: Box, Inc. Mailed Dec. 20, 2013, 6 pages.
Gedymin, “Cloud computing with an emphasis on Google App Engine,” Master Final Project, Sep. 2011, 146 pages.
International Search Report and Written Opinion for PCT/US2013/034765, Applicant: Box, Inc., Mailed Jan. 20, 2014, 15 pages.
Patent Court Document of Approved Judgment for GB0602349.3 and GB0623571.7; Mar. 3, 2009, 17 pages.
Exam Report for GB1410569.6 Applicant: Box, Inc. Mailed Jul. 11, 2014, 9 pages.
Extended Search Report for EP131832800, Applicant: Box, Inc. Mailed Aug. 25, 2014, 7 pages.
Extended Search Report for EP141509422, Applicant: Box, Inc. Mailed Aug. 26, 2014, 12pages.
Search Report for EP 13189144.2 Applicant: Box, Inc. Mailed Sep. 1, 2014, 9 pages.
Exam Report for GB1312874.9 Applicant: Box, Inc. Mailed Sep. 26, 2014, 2 pages.
Exam Report for GB1415126.0 Applicant: Box, Inc. Mailed Oct. 2, 2014, 8 pages.
Exam Report for GB1415314.2 Applicant: Box, Inc. Mailed Oct. 7, 2014, 6 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. Mailed Oct. 7, 2014, 3 pages.
Exam Report for GB1315232.7 Applicant: Box, Inc. Mailed Oct. 9, 2014, 5 pages.
Exam Report for GB1318789.3 Applicant: Box, Inc. Mailed Oct. 30, 2014, 6 pages.
Microsoft Windows XP Professional Product Documentation: How Inheritance Affects File and Folder Permissions, Apr. 11, 2014, 2 pages.
Exam Report for GB1317393.5 Applicant: Box, Inc. Mailed Nov. 7, 2014, 6 pages.
Exam Report for GB1311417.8 Applicant: Box, Inc. Mailed Nov. 7, 2014, 2 pages.
Exam Report for GB1311421.0 Applicant: Box, Inc. Mailed Nov. 7, 2014, 4 pages.
Exam Report for GB1316682.2 Applicant: Box, Inc. Mailed Nov. 19, 2014, 6 pages.
Exam Report for GB1312095.1 Applicant: Box, Inc. Mailed Nov. 19, 2014, 5 pages.
Exam Report for GB1313559.5 Applicant: Box, Inc. Mailed Nov. 4, 2014, 2 pages.
User's Guide for SMART Board Software for Windows, published Dec. 2004, 90 pages.
Zambonini et al., “Automated Measuring of Interaction with User Interfaces,” Published as WOWO2007113573 Oct. 2007, 19 pages.
Exam Report for GB1314771.5, Applicant: Box, Inc. Mailed Feb. 17, 2014, 7 pages.
Exam Report for GB1308842.2, Applicant: Box, Inc. Mailed Mar. 10, 2014, 4 pages.
Burns, “Developing Secure Mobile Applications for Android,” Oct. 2008, Version 1.0, 1-28 pages.
Search Report for EP 11729851.3, Applicant: Box, Inc. Mailed Feb. 7, 2014, 9 pages.
Comes, “MediaXchange User's Manual,” Version 1.15.15, Feb. 1, 2009, pp. 1-90.
“Average Conversion Time for a D60 RAW file?” http://www.dpreview.com, Jul. 22, 2002, 4 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
Search Report for EP14153783.7, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync-center.com, Mar. 28, 2011, XP055109680, 2 pages.
Search Report for EP14151588.2, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Search Report for EP13187217.8, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Rao, “Box Acquires Crocodoc To Add HTML5 Document Converter And Sleek Content Viewing Experience To Cloud Storage Platform,” retrieved from the internet, http://techcrunch.com, May 9, 2013, 8 pages.
Walker, “PDF.js project meeting notes,” retrieved from the internet, http://groups.google.com, May 15, 2014, 1 page.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, 8 pages.
“Tulsa TechFest 2012—Agenda,” retrieved from the website, http://web.archive.org, Oct. 2, 2012, 2 pages.
Delendik, “Evolving with Web Standards—The Story of PDF.JS,” retrieved from the internet, http://people.mozilla.org, Oct. 12, 2012, 36 pages.
Delendik, “My PDF.js talk slides from Tulsa TechFest,” retrieved from the internet, http://twitter.com, Oct. 12, 2012, 2 pages.
Cohen, “Debating the Definition of Cloud Computing Platforms,” retrieved from the internet, http://forbes.com, Feb. 3, 2014, 7 pages.
Partial Search Report for EP131832800, Applicant: Box, Inc. Mailed May 8, 2014, 5 pages.
Search Report for EP141509422, Applicant: Box, Inc. Mailed May 8, 2014, 7 pages.
Tulloch et al., “Windows Vista Resource Kit,” Apr. 8, 2007, Microsoft Press, XP055113067, 6 pages.
“Revolving sync conflicts; frequently asked questions,” Microsoft Tech Support, Jul. 16, 2012, retrieved from the Internet: http://web.archive.org/web, 2 pages.
Pyle et al., “How to enable Event logging for Offline Files (Client Side Caching) in Windows Vista,” Feb. 18, 2009, retrieved from the internet: http://blogs.technet.com, 3 pages.
Duffy, “The Best File-Syncing Services,” pcmag.com, retrieved from the internet: http://www.pcmag.com, Sep. 28, 2012, 7 pages.
“Troubleshoot sync problems,” Microsoft Tech Support: May 2, 2012, retrieved from the internet, http://web. Archive.org/web, 3 pages.
Exam Report for GB1318792.7, Applicant: Box, Inc. Mailed May 22, 2014, 2 pages.
Exam Report for EP13177108.1, Applicant: Box, Inc. Mailed May 26, 2014, 6 pages.
Related Publications (1)
Number Date Country
20150082148 A1 Mar 2015 US