System and method for reorienting a display of clusters

Information

  • Patent Grant
  • 8610719
  • Patent Number
    8,610,719
  • Date Filed
    Friday, May 20, 2011
    13 years ago
  • Date Issued
    Tuesday, December 17, 2013
    11 years ago
Abstract
A system and method for reorienting a display of clusters is provided. Clusters are maintained within a display. Each cluster includes a center located at a distance relative to a common origin for the display. A location of each cluster is compared to each other cluster. Two or more clusters that overlap are identified. At least one of the overlapping clusters is reoriented until no overlap occurs.
Description
FIELD

The present invention relates in general to data visualization and, in particular, to a system and method for reorienting a display of clusters.


BACKGROUND

Computer-based data visualization involves the generation and presentation of idealized data on a physical output device, such as a cathode ray tube (CRT), liquid crystal diode (LCD) display, printer and the like. Computer systems visualize data through the use of graphical user interfaces (GUIs) which allow intuitive user interaction and high quality presentation of synthesized information.


The importance of effective data visualization has grown in step with advances in computational resources. Faster processors and larger memory sizes have enabled the application of complex visualization techniques to operate in multi-dimensional concept space. As well, the interconnectivity provided by networks, including intranetworks and internetworks, such as the Internet, enable the communication of large volumes of information to a wide-ranging audience. Effective data visualization techniques are needed to interpret information and model content interpretation.


The use of a visualization language can enhance the effectiveness of data visualization by communicating words, images and shapes as a single, integrated unit. Visualization languages help bridge the gap between the natural perception of a physical environment and the artificial modeling of information within the constraints of a computer system. As raw information cannot always be digested as written words, data visualization attempts to complement and, in some instances, supplant the written word for a more intuitive visual presentation drawing on natural cognitive skills.


Effective data visualization is constrained by the physical limits of computer display systems. Two-dimensional and three-dimensional information can be readily displayed. However, n-dimensional information in excess of three dimensions must be artificially compressed. Careful use of color, shape and temporal attributes can simulate multiple dimensions, but comprehension and usability become difficult as additional layers of modeling are artificially grafted into the finite bounds of display capabilities.


Thus, mapping multi-dimensional information into a two- or three-dimensional space presents a problem. Physical displays are practically limited to three dimensions. Compressing multi-dimensional information into three dimensions can mislead, for instance, the viewer through an erroneous interpretation of spatial relationships between individual display objects. Other factors further complicate the interpretation and perception of visualized data, based on the Gestalt principles of proximity, similarity, closed region, connectedness, good continuation, and closure, such as described in R. E. Horn, “Visual Language: Global Communication for the 21st Century,” Ch. 3, MacroVU Press (1998), the disclosure of which is incorporated by reference.


In particular, the misperception of visualized data can cause a misinterpretation of, for instance, dependent variables as independent and independent variables as dependent. This type of problem occurs, for example, when visualizing clustered data, which presents discrete groupings of data which are misperceived as being overlaid or overlapping due to the spatial limitations of a three-dimensional space.


Consider, for example, a group of clusters, each cluster visualized in the form of a circle defining a center and a fixed radius. Each cluster is located some distance from a common origin along a vector measured at a fixed angle from a common axis through the common origin. The radii and distances are independent variables relative to the other clusters and the radius is an independent variable relative to the common origin. In this example, each cluster represents a grouping of points corresponding to objects sharing a common set of traits. The radius of the cluster reflects the relative number of objects contained in the grouping. Clusters located along the same vector are similar in theme as are those clusters located on vectors having a small cosine rotation from each other. Thus, the angle relative to a common axis' distance from a common origin is an independent variable with a correlation between the distance and angle reflecting relative similarity of theme. Each radius is an independent variable representative of volume. When displayed, the overlaying or overlapping of clusters could mislead the viewer into perceiving data dependencies where there are none.


Therefore, there is a need for an approach to presenting arbitrarily dimensioned data in a finite-dimensioned display space while preserving independent data relationships. Preferably, such an approach would maintain size and placement relationships relative to a common identified reference point.


There is a further need for an approach to reorienting data clusters to properly visualize independent and dependent variables while preserving cluster radii and relative angles from a common axis drawn through a common origin.


SUMMARY

The present invention provides a system and method for reorienting a data representation containing clusters while preserving independent variable geometric relationships. Each cluster is located along a vector defined at an angle θ from a common axis x. Each cluster has a radius r. The distance (magnitude) of the center ci of each cluster from a common origin and the radius r are independent variables relative to other clusters and the radius r of each cluster is an independent variable relative to the common origin. The clusters are selected in order of relative distance from the common origin and optionally checked for an overlap of bounding regions. Clusters having no overlapping regions are skipped. If the pair-wise span sij between the centers ci and cj of the clusters is less than the sum of the radii ri and rj, and a new distance di for the cluster is determined by setting the pair-wise span sij equal to the sum of the radii ri and rj and solving the resulting quadratic equation for distance di. The operations are repeated for each pairing of clusters.


An embodiment provides a system and method for reorienting a display of clusters. Clusters are maintained within a display. Each cluster includes a center located at a distance relative to a common origin for the display. A location of each cluster is compared to each other cluster. Two or more clusters that overlap are identified. At least one of the overlapping clusters is reoriented until no overlap occurs.


Still other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein is described embodiments of the invention by way of illustrating the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modifications in various obvious respects, all without departing from the spirit and the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram showing a system for generating a visualized data representation preserving independent variable geometric relationships, in accordance with the present invention.



FIG. 2 is a data representation diagram showing, by way of example, a view of overlapping clusters generated by the cluster display system of FIG. 1.



FIG. 3 is a graph showing, by way of example, the polar coordinates of the overlapping clusters of FIG. 2.



FIG. 4 is a data representation diagram showing, by way of example, the pair-wise spans between the centers of the clusters of FIG. 2.



FIG. 5 is a data representation diagram showing, by way of example, an exploded view of the clusters of FIG. 2.



FIG. 6 is a data representation diagram showing, by way of example, a minimized view of the clusters of FIG. 2.



FIG. 7 is a graph, showing, by way of example, the polar coordinates of the minimized clusters of FIG. 5.



FIG. 8 is a data representation diagram showing, by way of example, the pair-wise spans between the centers of the clusters of FIG. 2.



FIG. 9 is a flow diagram showing a method for generating a visualized data representation preserving independent variable geometric relationships, in accordance with the present invention.



FIG. 10 is a routine for reorienting clusters for use in the method of FIG. 9.



FIG. 11 is a flow diagram showing a routine for calculating a new distance for use in the routine of FIG. 10.



FIG. 12 is a graph showing, by way of example, a pair of clusters with overlapping bounding regions generated by the cluster display system of FIG. 1.



FIG. 13 is a graph showing, by way of example, a pair of clusters with non-overlapping bounding regions generated by the cluster display system of FIG. 1.



FIG. 14 is a routine for checking for overlapping clusters for use in the routine of FIG. 10.



FIG. 15 is a data representation diagram showing, by way of example, a view of overlapping, non-circular clusters generated by the clustered display system of FIG. 1.





DETAILED DESCRIPTION


FIG. 1 is a block diagram 10 showing a system for generating a visualized data representation preserving independent variable geometric relationships, in accordance with the present invention. The system consists of a cluster display system 11, such as implemented on a general-purpose programmed digital computer. The cluster display system 11 is coupled to input devices, including a keyboard 12 and a pointing device 13, such as a mouse, and display 14, including a CRT, LCD display, and the like. As well, a printer (not shown) could function as an alternate display device. The cluster display system 11 includes a processor, memory and persistent storage, such as provided by a storage device 16, within which are stored clusters 17 representing visualized multi-dimensional data. The cluster display system 11 can be interconnected to other computer systems, including clients and servers, over a network 15, such as an intranetwork or internetwork, including the Internet, or various combinations and topologies thereof.


Each cluster 17 represents a grouping of one or more points in a virtualized concept space, as further described below beginning with reference to FIG. 2. Preferably, the clusters 17 are stored as structured data sorted into an ordered list in ascending (preferred) or descending order. In the described embodiment, each cluster represents individual concepts and themes categorized based on, for example, Euclidean distances calculated between each pair of concepts and themes and defined within a pre-specified range of variance, such as described in common-assigned U.S. Pat. No. 6,778,995, issued Aug. 17, 2004, to Gallivan, the disclosure of which is incorporated by reference.


The cluster display system 11 includes four modules: sort 18, reorient 19, display and visualize 20, and, optionally, overlap check 21. The sort module 18 sorts a raw list of clusters 17 into either ascending (preferred) or descending order based on the relative distance of the center of each cluster from a common origin. The reorient module 19, as further described below with reference to FIG. 10, reorients the data representation display of the clusters 17 to preserve the orientation of independent variable relationships. The reorient module 19 logically includes a comparison submodule for measuring and comparing pair-wise spans between the radii of clusters 17, a distance determining submodule for calculating a perspective-corrected distance from a common origin for select clusters 17, and a coefficient submodule taking a ratio of perspective-corrected distances to original distances. The display and visualize module 20 performs the actual display of the clusters 17 via the display 14 responsive to commands from the input devices, including keyboard 12 and pointing device 13. Finally, the overlap check module 21, as further described below with reference to FIG. 12, is optional and, as a further embodiment, provides an optimization whereby clusters 17 having overlapping bounding regions are skipped and not reoriented.


The individual computer systems, including cluster display system 11, are general purpose, programmed digital computing devices consisting of a central processing unit (CPU), random access memory (RAM), non-volatile secondary storage, such as a hard drive or CD ROM drive, network interfaces, and peripheral devices, including user interfacing means, such as a keyboard and display. Program code, including software programs, and data are loaded into the RAM for execution and processing by the CPU and results are generated for display, output, transmittal, or storage.


Each module is a computer program, procedure or module written as source code in a conventional programming language, such as the C++ programming language, and is presented for execution by the CPU as object or byte code, as is known in the art. The various implementations of the source code and object and byte codes can be held on a computer-readable storage medium or embodied on a transmission medium in a carrier wave. The cluster display system 11 operates in accordance with a sequence of process steps, as further described below with reference to FIG. 9.



FIG. 2 is a data representation diagram 30 showing, by way of example, a view 31 of overlapping clusters 33-36 generated by the cluster display system 11 of FIG. 1. Each cluster 33-36 has a center c 37-40 and radius r 41-44, respectively, and is oriented around a common origin 32. The center c of each cluster 33-36 is located at a fixed distance (magnitude) d 45-48 from the common origin 32. Cluster 34 overlays cluster 33 and clusters 33, 35 and 36 overlap.


Each cluster 33-36 represents multi-dimensional data modeled in a three-dimensional display space. The data could be visualized data for a virtual semantic concept space, including semantic content extracted from a collection of documents represented by weighted clusters of concepts, such as described in commonly-assigned U.S. Pat. No. 6,978,274, issued Dec. 20, 2005, to Gallivan, the disclosure of which is incorporated by reference.



FIG. 3 is a graph 50 showing, by way of example, the polar coordinates of the overlapping clusters 33-36 of FIG. 2. Each cluster 33-36 is oriented at a fixed angle θ 52-55 along a common axis x 51 drawn through the common origin 32. The angles θ 52-55 and radii r 41-44 (shown in FIG. 2) of each cluster 33-36, respectively, are independent variables. The distances d 56-59 represent dependent variables.


Referring back to FIG. 2, the radius r 41-44 (shown in FIG. 2) of each cluster 33-36 signifies the number of documents attracted to the cluster. The distance d 56-59 increases as the similarity of concepts represented by each cluster 33-36 decreases. However, based on appearance alone, a viewer can be misled into interpreting cluster 34 as being dependent on cluster 33 due to the overlay of data representations. Similarly, a viewer could be misled to interpret dependent relationships between clusters 33, 35 and 36 due to the overlap between these clusters.



FIG. 4 is a data representation diagram 60 showing, by way of example, the pair-wise spans between the centers of the clusters of FIG. 2. Centers c 37-40 of the clusters 33-36 (shown in FIG. 2) are separated respectively by pair-wise spans s 61-66. Each span s 61-66 is also dependent on the independent variables radii r 41-44 (shown in FIG. 2) and angles θ 52-55.


For each cluster 33-36 (shown in FIG. 2), the radii r is an independent variable. The distances d 56-59 (shown in FIG. 3) and angles θ 52-55 (shown in FIG. 3) are also independent variables. However, the distances d 56-59 and angles θ 52-55 are correlated, but there is no correlation between different distances d 56-59. As well, the relative angles θ 52-55 are correlated relative to the common axis x, but are not correlated relative to other angles θ 52-55. However, the distances d 56-59 cause the clusters 33-36 to appear to either overlay or overlap and these visual artifacts erroneously imply dependencies between the neighboring clusters based on distances d 56-59.



FIG. 5 is a data representation diagram 70 showing, by way of example, an exploded view 71 of the clusters 33-36 of FIG. 2. To preserve the relationships between the dependent variables distance d and span s, the individual distances d 56-59 (shown in FIG. 3) are multiplied by a fixed coefficient to provide a proportionate extension e 71-75, respectively, to each of the distances d 56-59. The resulting data visualization view 71 “explodes” clusters 33-36 while preserving the independent relationships of the radii r 41-44 (shown in FIG. 2) and angles θ 52-55 (shown in FIG. 3).


Although the “exploded” data visualization view 71 preserves the relative pair-wise spans s 61-66 between each of the clusters 33-36, multiplying each distance d 56-59 by the same coefficient can result in a potentially distributed data representation requiring a large display space.



FIG. 6 is a data representation diagram 80 showing, by way of example, a minimized view 81 of the clusters 33-36 of FIG. 2. As in the exploded view 71 (shown in FIG. 5), the radii r 41-44 (shown in FIG. 2) and angles θ 52-55 (shown in FIG. 3) of each cluster 33-36 are preserved as independent variables. The distances d 56-59 are independent variables, but are adjusted to correct to visualization. The “minimized” data representation view 81 multiplies distances d 45 and 48 (shown in FIG. 2) by a variable coefficient k. Distances d 46 and 47 remain unchanged, as the clusters 34 and 35, respectively, need not be reoriented. Accordingly, the distances d 45 and 48 are increased by extensions e′ 82 and 83, respectively, to new distances d′.



FIG. 7 is a graph 90 showing, by way of example, the polar coordinates of the minimized clusters 33-36 of FIG. 5. Although the clusters 33-36 have been shifted to distances d′ 106-109 from the common origin 32, the radii r 41-44 (shown in FIG. 2) and angles θ 102-105 relative to the shared axis x 101 are preserved. The new distances d′ 106-109 also approximate the proportionate pair-wise spans s′ 110-115 between the centers c 37-40.



FIG. 8 is a data representation diagram 110 showing, by way of example, the pair-wise spans between the centers of the clusters of FIG. 2. Centers c 37-40 (shown in FIG. 2) of the clusters 33-36 are separated respectively by pair-wise spans s 111-116. Each span s 111-116 is dependent on the independent variables radii r 41-44 and the angles θ 52-55 (shown in FIG. 3). The length of each pair-wise span s 111-116 is proportionately increased relative to the increase in distance d 56-69 of the centers c 37-40 of the clusters 33-36 from the origin 32.



FIG. 9 is a flow diagram showing a method 120 for generating a visualized data representation preserving independent variable geometric relationships, in accordance with the present invention. As a preliminary step, the origin 32 (shown in FIG. 2) and x-axis 51 (shown in FIG. 3) are selected (block 121). Although described herein with reference to polar coordinates, any other coordinate system could also be used, including Cartesian, Logarithmic, and others, as would be recognized by one skilled in the art.


Next, the clusters 17 (shown in FIG. 1) are sorted in order of relative distance d from the origin 32 (block 122). Preferably, the clusters 17 are ordered in ascending order, although descending order could also be used. The clusters 17 are reoriented (block 123), as further described below with reference to FIG. 10. Finally, the reoriented clusters 17 are displayed (block 124), after which the routine terminates.



FIG. 10 is a flow diagram showing a routine 130 for reorienting clusters 17 for use in the method 120 of FIG. 9. The purpose of this routine is to generate a minimized data representation, such as described above with reference to FIG. 5, preserving the orientation of the independent variables for radii r and angles θ relative to a common x-axis.


Initially, a coefficient k is set to equal 1 (block 131). During cluster reorientation, the relative distances d of the centers c of each cluster 17 from the origin 32 is multiplied by the coefficient k. The clusters 17 are then processed in a pair of iterative loops as follows. During each iteration of an outer processing loop (blocks 132-146), beginning with the innermost cluster, each cluster 17, except for the first cluster, is selected and processed. During each iteration of the inner processing loop (blocks 135-145), each remaining cluster 17 is selected and reoriented, if necessary.


Thus, during the outer iterative loop (blocks 132-146), an initial Clusteri is selected (block 133) and the radius ri, center ci, angle θi, and distance di for the selected Clusteri are obtained (block 134). Next, during the inner iterative loop (blocks 135-145), another Clusterj (block 136) is selected and the radius rj, center cj, angle θj, and distance dj are obtained (block 137).


In a further embodiment, bounding regions are determined for Clusteri and Clusterj and the bounding regions are checked for overlap (block 138), as further described below with reference to FIG. 14.


Next, the distance di of the cluster being compared, Clusteri, is multiplied by the coefficient k (block 139) to establish an initial new distance d′i for Clusteri. A new center ci is determined (block 140). The span sij between the two clusters, Clusteri and Clusterj, is set to equal the absolute distance between center ci plus center cj. If the pair-wise span sij is less than the sum of radius ri and radius rj for Clusteri and Clusterj, respectively (block 143), a new distance di for Clusteri is calculated (block 144), as further described below with reference to FIG. 11. Processing of each additional Clusteri continues (block 145) until all additional clusters have been processed (blocks 135-145). Similarly, processing of each Clusterj (block 146) continues until all clusters have been processed (blocks 132-146), after which the routine returns.



FIG. 11 is a flow diagram showing a routine 170 for calculating a new distance for use in the routine 130 of FIG. 10. The purpose of this routine is to determine a new distance d′i for the center ci of a selected clusteri from a common origin. In the described embodiment, the new distance is determined by solving the quadratic equation formed by the distances di and dj and adjacent angle.


Thus, the sum of the radii (ri+rj)2 is set to equal the square of the distance dj plus the square of the distance di minus the product of the 2 times the distanced dj times the distancedi times cos θ (block 171), as expressed by equation (1):

(ri+rj)2=d12+dj2−2·didj cos θ  (1)

The distance di can be calculated by solving a quadratic equation (5) (block 172), derived from equation (1) as follows:











1
·

d
i
2


+


(


2
·

d
j



cos





θ

)

·

d
i



=

(


d
j
2

-


[


r
i

+

r
j


]

2


)





(
2
)








1
·

d
i
2


+


(


2
·

d
j



cos





θ

)

·

d
i


-

(


d
j
2

-


[


r
i

+

r
j


]

2


)


=
0




(
3
)







d
i

=



(


2
·

d
j



cos





θ

)

±




(


2
·

d
j



cos





θ

)

2

-

4
·
1
·

(


d
j
2

-


[


r
i

+

r
j


]

2


)






2
·
1






(
4
)







d
i

=



(


2
·

d
j



cos





θ

)

±




(


2
·

d
j



cos





θ

)

2

-

4
·

(


d
j
2

-


[


r
i

+

r
j


]

2


)





2





(
5
)








In the described embodiment, the ‘±’ operation is simplified to a ‘+’ operation, as the distance di is always increased.


Finally, the coefficient k, used for determining the relative distances d from the centers c of each cluster 17 (block 139 in FIG. 10), is determined by taking the product of the new distance di divided by the old distance di (block 173), as expressed by equation (6):









k
=


d

i
new



d

i
old







(
6
)








The routine then returns.


In a further embodiment, the coefficient k is set to equal 1 if there is no overlap between any clusters, as expressed by equation (7):











if








d

i
-
1


+

r

i
-
1





d
i

-

r
i




>
1

,


then





k

=
1





(
7
)








where di and di-1 are the distances from the common origin and ri and ri-1 are the radii of clusters i and i−1, respectively. If the ratio of the sum of the distance plus the radius of the further cluster i−1 over the difference of the distance less the radius of the closer cluster i is greater than 1, the two clusters do not overlap and the distance di of the further cluster need not be adjusted.



FIG. 12 is a graph showing, by way of example, a pair of clusters 181-182 with overlapping bounding regions generated by the cluster display system 11 of FIG. 1. The pair of clusters 181-182 are respectively located at distances d 183-184 from a common origin 180. A bounding region 187 for cluster 181 is formed by taking a pair of tangent vectors 185a-b from the common origin 180. Similarly, a bounding region 188 for cluster 182 is formed by taking a pair of tangent vectors 186a-b from the common origin 180. The intersection 189 of the bounding regions 187-188 indicates that the clusters 181-182 might either overlap or overlay and reorientation may be required.



FIG. 13 is a graph showing, by way of example, a pair of clusters 191-192 with non-overlapping bounding regions generated by the cluster display system 11 of FIG. 1. The pair of clusters 191-192 are respectively located at distances d 193-194 from a common origin 190. A bounding region 197 for cluster 191 is formed by taking a pair of tangent vectors 195a-b from the common origin 190. Similarly, a bounding region 198 for cluster 192 is formed by taking a pair of tangent vectors 196a-b from the common origin 190. As the bounding regions 197-198 do not intersect, the clusters 191-192 are non-overlapping and non-overlaid and therefore need not be reoriented.



FIG. 14 is a flow diagram showing a routine 200 for checking for overlap of bounding regions for use in the routine 130 of FIG. 10. As described herein, the terms overlap and overlay are simply referred to as “overlapping.” The purpose of this routine is to identify clusters 17 (shown in FIG. 1) that need not be reoriented due to the non-overlap of their respective bounding regions. The routine 200 is implemented as an overlap submodule in the reorient module 19 (shown in FIG. 1).


Thus, the bounding region of a first Clusteri is determined (block 201) and the bounding region of a second Clusterj is determined (block 202). If the respective bounding regions do not overlap (block 203), the second Clusterj is skipped (block 204) and not reoriented. The routine then returns.



FIG. 15 is a data representation diagram 210 showing, by way of example, a view 211 of overlapping non-circular cluster 213-216 generated by the clustered display system 11 of FIG. 1. Each cluster 213-216 has a center of mass cm 217-220 and is oriented around a common origin 212. The center of mass as cm of each cluster 213-216 is located at a fixed distance d 221-224 from the common origin 212. Cluster 218 overlays cluster 213 and clusters 213, 215 and 216 overlap.


As described above, with reference to FIG. 2, each cluster 213-216 represents multi-dimensional data modeled in a three-dimension display space. Furthermore, each of the clusters 213-216 is non-circular and defines a convex volume representing a data grouping located within the multi-dimensional concept space. The center of mass cm at 217-220 for each cluster 213-216, is logically located within the convex volume. The segment measured between the point closest to each other cluster along a span drawn between each pair of clusters is calculable by dimensional geometric equations, as would be recognized by one skilled in the art. By way of example, the clusters 213-216 represent non-circular shapes that are convex and respectively comprise a square, triangle, octagon, and oval, although any other form of convex shape could also be used either singly or in combination therewith, as would be recognized by one skilled in the art.


Where each cluster 213-216 is not in the shape of a circle, a segment is measured in lieu of the radius. Each segment is measured from the center of mass 217-220 to a point along a span drawn between the centers of mass for each pair of clusters 213-216. The point is the point closest to each other cluster along the edge of each cluster. Each cluster 213-216 is reoriented along the vector such that the edges of each cluster 213-216 do not overlap.


While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A system for reorienting a display of clusters, comprising: a display of clusters, each cluster having a center located at a distance relative to a common origin for the display;an overlap check module to compare a bounding region of each cluster to a bounding region of each other cluster and to determine that two or more of the clusters overlap;a reorient module to reorient at least one of the overlapping clusters until no overlap occurs; anda processor to execute the modules.
  • 2. A system according to claim 1, further comprising: a coefficient determination module to determine a fixed coefficient, wherein the distance of each cluster in the display is extended based on the fixed coefficient during the reorientation.
  • 3. A system according to claim 1, further comprising: a coefficient determination module to determine a variable coefficient, wherein the distance of the at least one overlapping cluster is multiplied by the variable coefficient during the reorientation.
  • 4. A system according to claim 3, wherein the distances of the remaining overlapping clusters remain unchanged.
  • 5. A system according to claim 3, wherein the multiplied distance is calculated by a quadratic equation based on the distances of the centers of the overlapping clusters relative to the common origin.
  • 6. A system according to claim 3, further comprising: a comparison submodule to measure a span separating the centers of the overlapping clusters, wherein the span is proportionately increased relative to the increase in distance of the at least one overlapping cluster from the origin.
  • 7. A system according to claim 1, wherein the distances of the clusters increase as the similarity of concepts represented by each cluster decreases.
  • 8. A system according to claim 1, wherein a shape of each cluster comprises one of a circle and a non-circle.
  • 9. A system according to claim 1, further comprising: a sort module to order the clusters relative to the distance from the common origin for each cluster.
  • 10. A system according to claim 9, wherein the ordering is in one of ascending and descending order.
  • 11. A system according to claim 1, wherein each cluster represents multi-dimensional data modeled in a three-dimensional display space.
  • 12. A method for reorienting a display of clusters, comprising: providing a display of clusters, each cluster having a center located at a distance relative to a common origin for the display;comparing a bounding region of each cluster to a bounding region of each other cluster and determining that two or more of the clusters overlap; andreorienting at least one of the overlapping clusters until no overlap occurs,wherein the steps are performed by a suitably-programmed computer.
  • 13. A method according to claim 12, further comprising: determining a fixed coefficient; andextending the distance of each cluster in the display based on the fixed coefficient during the reorientation.
  • 14. A method according to claim 12, further comprising: determining a variable coefficient; andmultiplying the distance of the at least one overlapping cluster by the variable coefficient during the reorientation.
  • 15. A method according to claim 14, further comprising: allowing the distances of the remaining overlapping clusters to remain unchanged.
  • 16. A method according to claim 14, wherein the multiplied distance is calculated by a quadratic equation based on the distances of the centers of the overlapping clusters relative to the common origin.
  • 17. A method according to claim 14, further comprising: measuring a span separating the centers of the overlapping clusters; andproportionately increasing the span relative to the increase in distance of the at least one overlapping cluster from the origin.
  • 18. A method according to claim 12, wherein the distances of the clusters increase as the similarity of concepts represented by each cluster decreases.
  • 19. A method according to claim 12, wherein a shape of each cluster comprises one of a circle and a non-circle.
  • 20. A method according to claim 12, further comprising: ordering the clusters relative to the distance from the common origin for each cluster.
  • 21. A method according to claim 20, wherein the ordering is in one of ascending and descending order.
  • 22. A method according to claim 12, wherein each cluster represents multi-dimensional data modeled in a three-dimensional display space.
CROSS-REFERENCE TO RELATED APPLICATION

This patent application is a continuation of commonly-assigned U.S. Pat. No. 7,948,491, issued May 24, 2011; which is a continuation of U.S. Pat. No. 7,352,371, issued Apr. 1, 2008; which is a continuation of U.S. Pat. No. 7,196,705, issued Mar. 27, 2007; which is a continuation of U.S. Pat. No. 6,888,548, issued May 3, 2005, the priority dates of which are claimed and the disclosures of which are incorporated by reference.

US Referenced Citations (189)
Number Name Date Kind
3416150 Lindberg Dec 1968 A
3426210 Agin Feb 1969 A
3668658 Flores et al. Jun 1972 A
4893253 Lodder Jan 1990 A
5056021 Ausborn Oct 1991 A
5121338 Lodder Jun 1992 A
5133067 Hara et al. Jul 1992 A
5278980 Pedersen et al. Jan 1994 A
5371673 Fan Dec 1994 A
5442778 Pedersen et al. Aug 1995 A
5477451 Brown et al. Dec 1995 A
5488725 Turtle et al. Jan 1996 A
5524177 Suzuoka Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5619632 Lamping et al. Apr 1997 A
5619709 Caid et al. Apr 1997 A
5635929 Rabowsky et al. Jun 1997 A
5649193 Sumita et al. Jul 1997 A
5675819 Schuetze Oct 1997 A
5696962 Kupiec Dec 1997 A
5737734 Schultz Apr 1998 A
5754938 Herz et al. May 1998 A
5794236 Mehrle Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5819258 Vaithyanathan et al. Oct 1998 A
5842203 D'Elena et al. Nov 1998 A
5844991 Hochberg et al. Dec 1998 A
5857179 Vaithyanathan et al. Jan 1999 A
5860136 Fenner Jan 1999 A
5862325 Reed et al. Jan 1999 A
5864846 Voorhees et al. Jan 1999 A
5864871 Kitain et al. Jan 1999 A
5867799 Lang et al. Feb 1999 A
5870740 Rose et al. Feb 1999 A
5909677 Broder et al. Jun 1999 A
5915024 Kitaori et al. Jun 1999 A
5920854 Kirsch et al. Jul 1999 A
5940821 Wical Aug 1999 A
5950146 Vapnik Sep 1999 A
5950189 Cohen et al. Sep 1999 A
5966126 Szabo Oct 1999 A
5987446 Corey et al. Nov 1999 A
6006221 Liddy et al. Dec 1999 A
6012053 Pant et al. Jan 2000 A
6026397 Sheppard Feb 2000 A
6038574 Pitkow et al. Mar 2000 A
6070133 Brewster et al. May 2000 A
6089742 Warmerdam et al. Jul 2000 A
6094649 Bowen et al. Jul 2000 A
6100901 Mohda et al. Aug 2000 A
6119124 Broder et al. Sep 2000 A
6122628 Castelli et al. Sep 2000 A
6137499 Tesler Oct 2000 A
6137545 Patel et al. Oct 2000 A
6137911 Zhilyaev Oct 2000 A
6148102 Stolin Nov 2000 A
6154219 Wiley et al. Nov 2000 A
6167368 Wacholder Dec 2000 A
6173275 Caid et al. Jan 2001 B1
6202064 Julliard Mar 2001 B1
6216123 Robertson et al. Apr 2001 B1
6243713 Nelson et al. Jun 2001 B1
6243724 Mander et al. Jun 2001 B1
6260038 Martin et al. Jul 2001 B1
6326962 Szabo Dec 2001 B1
6338062 Liu Jan 2002 B1
6345243 Clark Feb 2002 B1
6349296 Broder et al. Feb 2002 B1
6349307 Chen Feb 2002 B1
6360227 Aggarwal et al. Mar 2002 B1
6363374 Corston-Oliver et al. Mar 2002 B1
6377287 Hao et al. Apr 2002 B1
6381601 Fujiwara et al. Apr 2002 B1
6389433 Bolonsky et al. May 2002 B1
6389436 Chakrabarti et al. May 2002 B1
6408294 Getchius et al. Jun 2002 B1
6414677 Robertson et al. Jul 2002 B1
6415283 Conklin Jul 2002 B1
6418431 Mahajan et al. Jul 2002 B1
6421709 McCormick et al. Jul 2002 B1
6438537 Netz et al. Aug 2002 B1
6438564 Morton et al. Aug 2002 B1
6442592 Alumbaugh et al. Aug 2002 B1
6446061 Doerre et al. Sep 2002 B1
6449612 Bradley et al. Sep 2002 B1
6453327 Nielsen Sep 2002 B1
6460034 Wical Oct 2002 B1
6470307 Turney Oct 2002 B1
6480843 Li Nov 2002 B2
6480885 Olivier Nov 2002 B1
6484168 Pennock et al. Nov 2002 B1
6484196 Maurille Nov 2002 B1
6493703 Knight et al. Dec 2002 B1
6496822 Rosenfelt et al. Dec 2002 B2
6502081 Wiltshire, Jr. et al. Dec 2002 B1
6507847 Fleischman Jan 2003 B1
6510406 Marchisio Jan 2003 B1
6519580 Johnson et al. Feb 2003 B1
6523026 Gillis Feb 2003 B1
6523063 Miller et al. Feb 2003 B1
6542889 Aggarwal et al. Apr 2003 B1
6544123 Tanaka et al. Apr 2003 B1
6549957 Hanson et al. Apr 2003 B1
6560597 Dhillon et al. May 2003 B1
6571225 Oles et al. May 2003 B1
6584564 Olkin et al. Jun 2003 B2
6594658 Woods Jul 2003 B2
6598054 Schuetze et al. Jul 2003 B2
6606625 Muslea et al. Aug 2003 B1
6611825 Billheimer et al. Aug 2003 B1
6628304 Mitchell et al. Sep 2003 B2
6629097 Keith Sep 2003 B1
6651057 Jin et al. Nov 2003 B1
6654739 Apte et al. Nov 2003 B1
6658423 Pugh et al. Dec 2003 B1
6675159 Lin et al. Jan 2004 B1
6675164 Kamath et al. Jan 2004 B2
6678705 Berchtold et al. Jan 2004 B1
6684205 Modha et al. Jan 2004 B1
6697998 Damerau et al. Feb 2004 B1
6701305 Holt et al. Mar 2004 B1
6711585 Copperman et al. Mar 2004 B1
6714929 Micaelian et al. Mar 2004 B1
6735578 Shetty et al. May 2004 B2
6738759 Wheeler et al. May 2004 B1
6747646 Gueziec et al. Jun 2004 B2
6751628 Coady Jun 2004 B2
6757646 Marchisio Jun 2004 B2
6785679 Dane et al. Aug 2004 B1
6804665 Kreulen et al. Oct 2004 B2
6816175 Hamp et al. Nov 2004 B1
6819344 Robbins Nov 2004 B2
6823333 McGreevy Nov 2004 B2
6841321 Matsumoto et al. Jan 2005 B2
6862710 Marchisio Mar 2005 B1
6879332 Decombe Apr 2005 B2
6883001 Abe Apr 2005 B2
6888584 Suzuki et al. May 2005 B2
6915308 Evans et al. Jul 2005 B1
6922699 Schuetze et al. Jul 2005 B2
6941325 Benitez et al. Sep 2005 B1
6970881 Mohan et al. Nov 2005 B1
6978419 Kantrowitz Dec 2005 B1
6990238 Saffer et al. Jan 2006 B1
6996575 Cox et al. Feb 2006 B2
7003551 Malik Feb 2006 B2
7020645 Bisbee et al. Mar 2006 B2
7051017 Marchisio May 2006 B2
7054870 Holbrook May 2006 B2
7080320 Ono Jul 2006 B2
7096431 Tambata et al. Aug 2006 B2
7099819 Sakai et al. Aug 2006 B2
7117246 Christenson et al. Oct 2006 B2
7130807 Mikurak Oct 2006 B1
7137075 Hoshito et al. Nov 2006 B2
7155668 Holland et al. Dec 2006 B2
7188107 Moon et al. Mar 2007 B2
7188117 Farahat et al. Mar 2007 B2
7194458 Micaelian et al. Mar 2007 B1
7194483 Mohan et al. Mar 2007 B1
7209949 Mousseau et al. Apr 2007 B2
7233940 Bamberger et al. Jun 2007 B2
7240199 Tomkow Jul 2007 B2
7246113 Cheetham et al. Jul 2007 B2
7251637 Caid et al. Jul 2007 B1
7266365 Ferguson et al. Sep 2007 B2
7266545 Bergman et al. Sep 2007 B2
7269598 Marchisio Sep 2007 B2
7277919 Donoho et al. Oct 2007 B1
7325127 Olkin et al. Jan 2008 B2
7353204 Liu Apr 2008 B2
7363243 Arnett et al. Apr 2008 B2
7366759 Trevithick et al. Apr 2008 B2
7379913 Steele et al. May 2008 B2
7383282 Whitehead et al. Jun 2008 B2
7401087 Copperman et al. Jul 2008 B2
7412462 Margolus et al. Aug 2008 B2
7418397 Kojima et al. Aug 2008 B2
7444356 Calistri-Yeh et al. Oct 2008 B2
7457948 Bilicksa et al. Nov 2008 B1
7490092 Morton et al. Feb 2009 B2
7571177 Damle Aug 2009 B2
7698167 Batham et al. Apr 2010 B2
20020032735 Burnstein et al. Mar 2002 A1
20020065912 Catchpole et al. May 2002 A1
20020078090 Hwang et al. Jun 2002 A1
20020122543 Rowen Sep 2002 A1
20020184193 Cohen Dec 2002 A1
20030130991 Reijerse et al. Jul 2003 A1
Foreign Referenced Citations (4)
Number Date Country
0886227 Dec 1998 EP
1024437 Aug 2000 EP
1049030 Nov 2000 EP
0067162 Nov 2000 WO
Non-Patent Literature Citations (32)
Entry
Kathy Ryall, Joe Marks, and Stuart Shieber; An Interactive Constraint-Based System for Drawing Graphs; 1997; UIST '97 Proceedings of the 10th annual ACM symposium on User interface software and technology, pp. 97-104.
Anna Sachinopoulou, “Multidimensional Visualization,” Technical Research Centre of Finland, ESPOO 2001, VTT Research Notes 2114, pp. 1-37 (2001).
B.B. Hubbard, “The World According the Wavelet: The Story of a Mathematical Technique in the Making,” AK Peters (2nd ed.), pp. 227-229, Massachusetts, USA (1998).
Baeza-Yates et al., “Modern Information Retrieval,” Ch. 2 “Modeling,” Modern Information Retrieval, Harlow: Addison-Wesley, Great Britain 1999, pp. 18-71 (1999).
Kanungo et al., “The Analysis of a Simple K-Means Clustering Algorithm,” pp. 100-109, PROC 16th annual symposium of computational geometry (May 2000).
Bier et al. “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics Proceedings, Proceedings of Siggraph Annual International Conference on Computer Graphics and Interactive Techniques, pp. 73-80, XP000879378 (Aug. 1993).
Jiang Linhui, “K-Mean Algorithm: Iterative Partitioning Clustering Algorithm,” http://www.cs.regina.ca/-linhui/K.sub.--mean.sub.--algorithm.html, (2001) Computer Science Department, University of Regina, Saskatchewan, Canada (2001).
James Osborn et al., “Justice: A Judicial Search Tool Using Intelligent Cencept Extraction,” Department of Computer Science and Software Engineering, University of Melbourne, Australia, ICAIL-99, 1999, pp. 173-181, ACM (1999).
Chen An et al., “Fuzzy Concept Graph and Application in Web Document Clustering,” IEEE, pp. 101-106 (2001).
Davison et al., “Brute Force Estimation of the Number of Human Genes Using EST Clustering as a Measure,” IBM Journal of Research & Development, vol. 45, pp. 439-447 (May 2001).
Eades et al. “Multilevel Visualization of Clustered Graphs,” Department of Computer Science and Software Engineering, University of Newcastle, Australia, Proceedings of Graph Drawing '96, Lecture Notes in Computer Science, NR. 1190 (Sep. 18, 1996).
Eades et al., “Orthogonal Grid Drawing of Clustered Graphs,” Department of Computer Science, the University of Newcastle, Australia, Technical Report 96-04, [Online] 1996, Retrieved from the internet: URL:http://citeseer.ist.psu.edu/eades96ort hogonal.ht (1996).
Estivill-Castro et al. “Amoeba: Hierarchical Clustering Based on Spatial Proximity Using Delaunaty Diagram”, Department of Computer Science, The University of Newcastle, Australia, 1999 ACM Sigmod International Conference on Management of Data, vol. 28, No. 2, Jun. 1, 1999, pp. 46-60 (Jun. 1, 1999).
F. Can, Incremental Clustering for Dynamic Information Processing: ACM Transactions on Information Systems, ACM, New York, NY, US, vol. 11, No. 2, pp. 143-164, XP-002308022 (Apr. 1993).
Fekete et al., “Excentric Labeling: Dynamic Neighborhood Labeling for Data Visualization,” CHI 1999 Conference Proceedings Human Factors in Computing Systems, Pittsburgh, PA, pp. 512-519 (May 15-20, 1999).
http://em-ntserver.unl.edu/Math/mathweb/vecors/vectors.html © 1997 (1997).
Jain et al., “Data Clustering: A Review,” ACM Computing Surveys, vol. 31, No. 3, Sep. 1999, pp. 264-323, New York, NY, USA (Sep. 1999).
Whiting et al., “Image Quantization: Statistics and Modeling,” SPIE Conference of Physics of Medical Imaging, San Diego, CA, USA , vol. 3336, pp. 260-271 (Feb. 1998).
Kawano, Hiroyuki., “Overview of Mondou Web Search Engine Using Text Mining and Information Visualizing Technologies,” IEEE, 2001, pp. 234-241 (2001).
Kazumasa Ozawa, “A Stratificational Overlapping Cluster Scheme,” Information Science Center, Osaka Electro-Communication University, Neyagawa-shi, Osaka 572, Japan, Pattern Recognition, vol. 18, pp. 279-286 (1985).
Kohonen, T., “Self-Organizing Maps,” Ch. 1-2, Springer-Verlag (3rd ed.) (2001).
Kurimo M., “Fast Latent Semantic Indexing of Spoken Documents by Using Self-Organizing Maps” IEEE International Conference on Accoustics, Speech, and Signal Processing, vol. 6, pp. 2425-2428 (Jun. 2000).
Lam et al., “A Sliding Window Technique for Word Recognition,” SPIE, vol. 2422, pp. 38-46, Center of Excellence for Document Analysis and Recognition, State University of New Yrok at Baffalo, NY, USA (1995).
Lio et al., “Funding Pathogenicity Islands and Gene Transfer Events in Genome Data,” Bioinformatics, vol. 16, pp. 932-940, Department of Zoology, University of Cambridge, UK (Jan. 25, 2000).
R.E. Horn, “Communication Units, Morphology, and Syntax,” Visual Language: Global Communication for the 21st Century, 1998, Ch. 3, pp. 51-92, MacroVU Press, Bainbridge Island, Washington, USA (1998).
Magarshak, Greg., Theory & Practice. Issue 01. May 17, 2000. http://www.flipcode.com/articles/tp.sub.--issue01-pf.shtml (May 17, 2000).
Pelleg et al., “Accelerating Exact K-Means Algorithms With Geometric Reasoning,” pp. 277-281, CONF on Knowledge Discovery in Data, PROC fifth ACM SIGKDD (1999).
Shuldberg et al., “Distilling Information from Text: The EDS TemplateFiller System,” Journal of the American Society for Information Science, vol. 44, pp. 493-507 (1993).
Miller et al., “Topic Islands: A Wavelet Based Text Visualization System,” Proceedings of the IEEE Visualization Conference. 1998, pp. 189-196.
North et al. “A Taxonomy of Multiple Window Coordinations,” Institute for Systems Research & Department of Computer Science, University of Maryland, Maryland, USA, http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=97-18 (1997).
V. Faber, “Clustering and the Continuous K-Means Algorithm,” Los Alamos Science, The Laboratory, Los Alamos, NM, US, No. 22, Jan. 1, 1994, pp. 138-144 (Jan. 1, 1994).
Sullivan, Dan., “Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing and Sales,” Ch. 1-3, John Wiley & Sons, New York, NY (2001).
Related Publications (1)
Number Date Country
20110221774 A1 Sep 2011 US
Continuations (4)
Number Date Country
Parent 12060005 Mar 2008 US
Child 13112928 US
Parent 11728636 Mar 2007 US
Child 12060005 US
Parent 11110452 Apr 2005 US
Child 11728636 US
Parent 09944475 Aug 2001 US
Child 11110452 US