The present invention relates in general to data visualization and, in particular, to a system and method for reorienting a display of clusters.
Computer-based data visualization involves the generation and presentation of idealized data on a physical output device, such as a cathode ray tube (CRT), liquid crystal diode (LCD) display, printer and the like. Computer systems visualize data through the use of graphical user interfaces (GUIs) which allow intuitive user interaction and high quality presentation of synthesized information.
The importance of effective data visualization has grown in step with advances in computational resources. Faster processors and larger memory sizes have enabled the application of complex visualization techniques to operate in multi-dimensional concept space. As well, the interconnectivity provided by networks, including intranetworks and internetworks, such as the Internet, enable the communication of large volumes of information to a wide-ranging audience. Effective data visualization techniques are needed to interpret information and model content interpretation.
The use of a visualization language can enhance the effectiveness of data visualization by communicating words, images and shapes as a single, integrated unit. Visualization languages help bridge the gap between the natural perception of a physical environment and the artificial modeling of information within the constraints of a computer system. As raw information cannot always be digested as written words, data visualization attempts to complement and, in some instances, supplant the written word for a more intuitive visual presentation drawing on natural cognitive skills.
Effective data visualization is constrained by the physical limits of computer display systems. Two-dimensional and three-dimensional information can be readily displayed. However, n-dimensional information in excess of three dimensions must be artificially compressed. Careful use of color, shape and temporal attributes can simulate multiple dimensions, but comprehension and usability become difficult as additional layers of modeling are artificially grafted into the finite bounds of display capabilities.
Thus, mapping multi-dimensional information into a two- or three-dimensional space presents a problem. Physical displays are practically limited to three dimensions. Compressing multi-dimensional information into three dimensions can mislead, for instance, the viewer through an erroneous interpretation of spatial relationships between individual display objects. Other factors further complicate the interpretation and perception of visualized data, based on the Gestalt principles of proximity, similarity, closed region, connectedness, good continuation, and closure, such as described in R. E. Horn, “Visual Language: Global Communication for the 21st Century,” Ch. 3, MacroVU Press (1998), the disclosure of which is incorporated by reference.
In particular, the misperception of visualized data can cause a misinterpretation of, for instance, dependent variables as independent and independent variables as dependent. This type of problem occurs, for example, when visualizing clustered data, which presents discrete groupings of data which are misperceived as being overlaid or overlapping due to the spatial limitations of a three-dimensional space.
Consider, for example, a group of clusters, each cluster visualized in the form of a circle defining a center and a fixed radius. Each cluster is located some distance from a common origin along a vector measured at a fixed angle from a common axis through the common origin. The radii and distances are independent variables relative to the other clusters and the radius is an independent variable relative to the common origin. In this example, each cluster represents a grouping of points corresponding to objects sharing a common set of traits. The radius of the cluster reflects the relative number of objects contained in the grouping. Clusters located along the same vector are similar in theme as are those clusters located on vectors having a small cosine rotation from each other. Thus, the angle relative to a common axis' distance from a common origin is an independent variable with a correlation between the distance and angle reflecting relative similarity of theme. Each radius is an independent variable representative of volume. When displayed, the overlaying or overlapping of clusters could mislead the viewer into perceiving data dependencies where there are none.
Therefore, there is a need for an approach to presenting arbitrarily dimensioned data in a finite-dimensioned display space while preserving independent data relationships. Preferably, such an approach would maintain size and placement relationships relative to a common identified reference point.
There is a further need for an approach to reorienting data clusters to properly visualize independent and dependent variables while preserving cluster radii and relative angles from a common axis drawn through a common origin.
The present invention provides a system and method for reorienting a data representation containing clusters while preserving independent variable geometric relationships. Each cluster is located along a vector defined at an angle θ from a common axis x. Each cluster has a radius r. The distance (magnitude) of the center ci of each cluster from a common origin and the radius r are independent variables relative to other clusters and the radius r of each cluster is an independent variable relative to the common origin. The clusters are selected in order of relative distance from the common origin and optionally checked for an overlap of bounding regions. Clusters having no overlapping regions are skipped. If the pair-wise span sij between the centers ci and cj of the clusters is less than the sum of the radii ri and rj, and a new distance di for the cluster is determined by setting the pair-wise span sij equal to the sum of the radii ri and rj and solving the resulting quadratic equation for distance di. The operations are repeated for each pairing of clusters.
An embodiment provides a system and method for reorienting a display of clusters. Clusters are maintained within a display. Each cluster includes a center located at a distance relative to a common origin for the display. A location of each cluster is compared to each other cluster. Two or more clusters that overlap are identified. At least one of the overlapping clusters is reoriented until no overlap occurs.
Still other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein is described embodiments of the invention by way of illustrating the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modifications in various obvious respects, all without departing from the spirit and the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Each cluster 17 represents a grouping of one or more points in a virtualized concept space, as further described below beginning with reference to
The cluster display system 11 includes four modules: sort 18, reorient 19, display and visualize 20, and, optionally, overlap check 21. The sort module 18 sorts a raw list of clusters 17 into either ascending (preferred) or descending order based on the relative distance of the center of each cluster from a common origin. The reorient module 19, as further described below with reference to
The individual computer systems, including cluster display system 11, are general purpose, programmed digital computing devices consisting of a central processing unit (CPU), random access memory (RAM), non-volatile secondary storage, such as a hard drive or CD ROM drive, network interfaces, and peripheral devices, including user interfacing means, such as a keyboard and display. Program code, including software programs, and data are loaded into the RAM for execution and processing by the CPU and results are generated for display, output, transmittal, or storage.
Each module is a computer program, procedure or module written as source code in a conventional programming language, such as the C++ programming language, and is presented for execution by the CPU as object or byte code, as is known in the art. The various implementations of the source code and object and byte codes can be held on a computer-readable storage medium or embodied on a transmission medium in a carrier wave. The cluster display system 11 operates in accordance with a sequence of process steps, as further described below with reference to
Each cluster 33-36 represents multi-dimensional data modeled in a three-dimensional display space. The data could be visualized data for a virtual semantic concept space, including semantic content extracted from a collection of documents represented by weighted clusters of concepts, such as described in commonly-assigned U.S. Pat. No. 6,978,274, issued Dec. 20, 2005, to Gallivan, the disclosure of which is incorporated by reference.
Referring back to
For each cluster 33-36 (shown in
Although the “exploded” data visualization view 71 preserves the relative pair-wise spans s 61-66 between each of the clusters 33-36, multiplying each distance d 56-59 by the same coefficient can result in a potentially distributed data representation requiring a large display space.
Next, the clusters 17 (shown in
Initially, a coefficient k is set to equal 1 (block 131). During cluster reorientation, the relative distances d of the centers c of each cluster 17 from the origin 32 is multiplied by the coefficient k. The clusters 17 are then processed in a pair of iterative loops as follows. During each iteration of an outer processing loop (blocks 132-146), beginning with the innermost cluster, each cluster 17, except for the first cluster, is selected and processed. During each iteration of the inner processing loop (blocks 135-145), each remaining cluster 17 is selected and reoriented, if necessary.
Thus, during the outer iterative loop (blocks 132-146), an initial Clusteri is selected (block 133) and the radius ri, center ci, angle θi, and distance di for the selected Clusteri are obtained (block 134). Next, during the inner iterative loop (blocks 135-145), another Clusterj (block 136) is selected and the radius rj, center cj, angle θj, and distance dj are obtained (block 137).
In a further embodiment, bounding regions are determined for Clusteri and Clusterj and the bounding regions are checked for overlap (block 138), as further described below with reference to
Next, the distance di of the cluster being compared, Clusteri, is multiplied by the coefficient k (block 139) to establish an initial new distance d′i for Clusteri. A new center ci is determined (block 140). The span sij between the two clusters, Clusteri and Clusterj, is set to equal the absolute distance between center ci plus center cj. If the pair-wise span sij is less than the sum of radius ri and radius rj for Clusteri and Clusterj, respectively (block 143), a new distance di for Clusteri is calculated (block 144), as further described below with reference to
Thus, the sum of the radii (ri+rj)2 is set to equal the square of the distance dj plus the square of the distance di minus the product of the 2 times the distanced dj times the distancedi times cos θ (block 171), as expressed by equation (1):
(ri+rj)2=d12+dj2−2·didj cos θ (1)
The distance di can be calculated by solving a quadratic equation (5) (block 172), derived from equation (1) as follows:
In the described embodiment, the ‘±’ operation is simplified to a ‘+’ operation, as the distance di is always increased.
Finally, the coefficient k, used for determining the relative distances d from the centers c of each cluster 17 (block 139 in
The routine then returns.
In a further embodiment, the coefficient k is set to equal 1 if there is no overlap between any clusters, as expressed by equation (7):
where di and di-1 are the distances from the common origin and ri and ri-1 are the radii of clusters i and i−1, respectively. If the ratio of the sum of the distance plus the radius of the further cluster i−1 over the difference of the distance less the radius of the closer cluster i is greater than 1, the two clusters do not overlap and the distance di of the further cluster need not be adjusted.
Thus, the bounding region of a first Clusteri is determined (block 201) and the bounding region of a second Clusterj is determined (block 202). If the respective bounding regions do not overlap (block 203), the second Clusterj is skipped (block 204) and not reoriented. The routine then returns.
As described above, with reference to
Where each cluster 213-216 is not in the shape of a circle, a segment is measured in lieu of the radius. Each segment is measured from the center of mass 217-220 to a point along a span drawn between the centers of mass for each pair of clusters 213-216. The point is the point closest to each other cluster along the edge of each cluster. Each cluster 213-216 is reoriented along the vector such that the edges of each cluster 213-216 do not overlap.
While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.
This patent application is a continuation of commonly-assigned U.S. Pat. No. 7,948,491, issued May 24, 2011; which is a continuation of U.S. Pat. No. 7,352,371, issued Apr. 1, 2008; which is a continuation of U.S. Pat. No. 7,196,705, issued Mar. 27, 2007; which is a continuation of U.S. Pat. No. 6,888,548, issued May 3, 2005, the priority dates of which are claimed and the disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3416150 | Lindberg | Dec 1968 | A |
3426210 | Agin | Feb 1969 | A |
3668658 | Flores et al. | Jun 1972 | A |
4893253 | Lodder | Jan 1990 | A |
5056021 | Ausborn | Oct 1991 | A |
5121338 | Lodder | Jun 1992 | A |
5133067 | Hara et al. | Jul 1992 | A |
5278980 | Pedersen et al. | Jan 1994 | A |
5371673 | Fan | Dec 1994 | A |
5442778 | Pedersen et al. | Aug 1995 | A |
5477451 | Brown et al. | Dec 1995 | A |
5488725 | Turtle et al. | Jan 1996 | A |
5524177 | Suzuoka | Jun 1996 | A |
5528735 | Strasnick et al. | Jun 1996 | A |
5619632 | Lamping et al. | Apr 1997 | A |
5619709 | Caid et al. | Apr 1997 | A |
5635929 | Rabowsky et al. | Jun 1997 | A |
5649193 | Sumita et al. | Jul 1997 | A |
5675819 | Schuetze | Oct 1997 | A |
5696962 | Kupiec | Dec 1997 | A |
5737734 | Schultz | Apr 1998 | A |
5754938 | Herz et al. | May 1998 | A |
5794236 | Mehrle | Aug 1998 | A |
5799276 | Komissarchik et al. | Aug 1998 | A |
5819258 | Vaithyanathan et al. | Oct 1998 | A |
5842203 | D'Elena et al. | Nov 1998 | A |
5844991 | Hochberg et al. | Dec 1998 | A |
5857179 | Vaithyanathan et al. | Jan 1999 | A |
5860136 | Fenner | Jan 1999 | A |
5862325 | Reed et al. | Jan 1999 | A |
5864846 | Voorhees et al. | Jan 1999 | A |
5864871 | Kitain et al. | Jan 1999 | A |
5867799 | Lang et al. | Feb 1999 | A |
5870740 | Rose et al. | Feb 1999 | A |
5909677 | Broder et al. | Jun 1999 | A |
5915024 | Kitaori et al. | Jun 1999 | A |
5920854 | Kirsch et al. | Jul 1999 | A |
5940821 | Wical | Aug 1999 | A |
5950146 | Vapnik | Sep 1999 | A |
5950189 | Cohen et al. | Sep 1999 | A |
5966126 | Szabo | Oct 1999 | A |
5987446 | Corey et al. | Nov 1999 | A |
6006221 | Liddy et al. | Dec 1999 | A |
6012053 | Pant et al. | Jan 2000 | A |
6026397 | Sheppard | Feb 2000 | A |
6038574 | Pitkow et al. | Mar 2000 | A |
6070133 | Brewster et al. | May 2000 | A |
6089742 | Warmerdam et al. | Jul 2000 | A |
6094649 | Bowen et al. | Jul 2000 | A |
6100901 | Mohda et al. | Aug 2000 | A |
6119124 | Broder et al. | Sep 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6137499 | Tesler | Oct 2000 | A |
6137545 | Patel et al. | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6148102 | Stolin | Nov 2000 | A |
6154219 | Wiley et al. | Nov 2000 | A |
6167368 | Wacholder | Dec 2000 | A |
6173275 | Caid et al. | Jan 2001 | B1 |
6202064 | Julliard | Mar 2001 | B1 |
6216123 | Robertson et al. | Apr 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6243724 | Mander et al. | Jun 2001 | B1 |
6260038 | Martin et al. | Jul 2001 | B1 |
6326962 | Szabo | Dec 2001 | B1 |
6338062 | Liu | Jan 2002 | B1 |
6345243 | Clark | Feb 2002 | B1 |
6349296 | Broder et al. | Feb 2002 | B1 |
6349307 | Chen | Feb 2002 | B1 |
6360227 | Aggarwal et al. | Mar 2002 | B1 |
6363374 | Corston-Oliver et al. | Mar 2002 | B1 |
6377287 | Hao et al. | Apr 2002 | B1 |
6381601 | Fujiwara et al. | Apr 2002 | B1 |
6389433 | Bolonsky et al. | May 2002 | B1 |
6389436 | Chakrabarti et al. | May 2002 | B1 |
6408294 | Getchius et al. | Jun 2002 | B1 |
6414677 | Robertson et al. | Jul 2002 | B1 |
6415283 | Conklin | Jul 2002 | B1 |
6418431 | Mahajan et al. | Jul 2002 | B1 |
6421709 | McCormick et al. | Jul 2002 | B1 |
6438537 | Netz et al. | Aug 2002 | B1 |
6438564 | Morton et al. | Aug 2002 | B1 |
6442592 | Alumbaugh et al. | Aug 2002 | B1 |
6446061 | Doerre et al. | Sep 2002 | B1 |
6449612 | Bradley et al. | Sep 2002 | B1 |
6453327 | Nielsen | Sep 2002 | B1 |
6460034 | Wical | Oct 2002 | B1 |
6470307 | Turney | Oct 2002 | B1 |
6480843 | Li | Nov 2002 | B2 |
6480885 | Olivier | Nov 2002 | B1 |
6484168 | Pennock et al. | Nov 2002 | B1 |
6484196 | Maurille | Nov 2002 | B1 |
6493703 | Knight et al. | Dec 2002 | B1 |
6496822 | Rosenfelt et al. | Dec 2002 | B2 |
6502081 | Wiltshire, Jr. et al. | Dec 2002 | B1 |
6507847 | Fleischman | Jan 2003 | B1 |
6510406 | Marchisio | Jan 2003 | B1 |
6519580 | Johnson et al. | Feb 2003 | B1 |
6523026 | Gillis | Feb 2003 | B1 |
6523063 | Miller et al. | Feb 2003 | B1 |
6542889 | Aggarwal et al. | Apr 2003 | B1 |
6544123 | Tanaka et al. | Apr 2003 | B1 |
6549957 | Hanson et al. | Apr 2003 | B1 |
6560597 | Dhillon et al. | May 2003 | B1 |
6571225 | Oles et al. | May 2003 | B1 |
6584564 | Olkin et al. | Jun 2003 | B2 |
6594658 | Woods | Jul 2003 | B2 |
6598054 | Schuetze et al. | Jul 2003 | B2 |
6606625 | Muslea et al. | Aug 2003 | B1 |
6611825 | Billheimer et al. | Aug 2003 | B1 |
6628304 | Mitchell et al. | Sep 2003 | B2 |
6629097 | Keith | Sep 2003 | B1 |
6651057 | Jin et al. | Nov 2003 | B1 |
6654739 | Apte et al. | Nov 2003 | B1 |
6658423 | Pugh et al. | Dec 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6675164 | Kamath et al. | Jan 2004 | B2 |
6678705 | Berchtold et al. | Jan 2004 | B1 |
6684205 | Modha et al. | Jan 2004 | B1 |
6697998 | Damerau et al. | Feb 2004 | B1 |
6701305 | Holt et al. | Mar 2004 | B1 |
6711585 | Copperman et al. | Mar 2004 | B1 |
6714929 | Micaelian et al. | Mar 2004 | B1 |
6735578 | Shetty et al. | May 2004 | B2 |
6738759 | Wheeler et al. | May 2004 | B1 |
6747646 | Gueziec et al. | Jun 2004 | B2 |
6751628 | Coady | Jun 2004 | B2 |
6757646 | Marchisio | Jun 2004 | B2 |
6785679 | Dane et al. | Aug 2004 | B1 |
6804665 | Kreulen et al. | Oct 2004 | B2 |
6816175 | Hamp et al. | Nov 2004 | B1 |
6819344 | Robbins | Nov 2004 | B2 |
6823333 | McGreevy | Nov 2004 | B2 |
6841321 | Matsumoto et al. | Jan 2005 | B2 |
6862710 | Marchisio | Mar 2005 | B1 |
6879332 | Decombe | Apr 2005 | B2 |
6883001 | Abe | Apr 2005 | B2 |
6888584 | Suzuki et al. | May 2005 | B2 |
6915308 | Evans et al. | Jul 2005 | B1 |
6922699 | Schuetze et al. | Jul 2005 | B2 |
6941325 | Benitez et al. | Sep 2005 | B1 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6978419 | Kantrowitz | Dec 2005 | B1 |
6990238 | Saffer et al. | Jan 2006 | B1 |
6996575 | Cox et al. | Feb 2006 | B2 |
7003551 | Malik | Feb 2006 | B2 |
7020645 | Bisbee et al. | Mar 2006 | B2 |
7051017 | Marchisio | May 2006 | B2 |
7054870 | Holbrook | May 2006 | B2 |
7080320 | Ono | Jul 2006 | B2 |
7096431 | Tambata et al. | Aug 2006 | B2 |
7099819 | Sakai et al. | Aug 2006 | B2 |
7117246 | Christenson et al. | Oct 2006 | B2 |
7130807 | Mikurak | Oct 2006 | B1 |
7137075 | Hoshito et al. | Nov 2006 | B2 |
7155668 | Holland et al. | Dec 2006 | B2 |
7188107 | Moon et al. | Mar 2007 | B2 |
7188117 | Farahat et al. | Mar 2007 | B2 |
7194458 | Micaelian et al. | Mar 2007 | B1 |
7194483 | Mohan et al. | Mar 2007 | B1 |
7209949 | Mousseau et al. | Apr 2007 | B2 |
7233940 | Bamberger et al. | Jun 2007 | B2 |
7240199 | Tomkow | Jul 2007 | B2 |
7246113 | Cheetham et al. | Jul 2007 | B2 |
7251637 | Caid et al. | Jul 2007 | B1 |
7266365 | Ferguson et al. | Sep 2007 | B2 |
7266545 | Bergman et al. | Sep 2007 | B2 |
7269598 | Marchisio | Sep 2007 | B2 |
7277919 | Donoho et al. | Oct 2007 | B1 |
7325127 | Olkin et al. | Jan 2008 | B2 |
7353204 | Liu | Apr 2008 | B2 |
7363243 | Arnett et al. | Apr 2008 | B2 |
7366759 | Trevithick et al. | Apr 2008 | B2 |
7379913 | Steele et al. | May 2008 | B2 |
7383282 | Whitehead et al. | Jun 2008 | B2 |
7401087 | Copperman et al. | Jul 2008 | B2 |
7412462 | Margolus et al. | Aug 2008 | B2 |
7418397 | Kojima et al. | Aug 2008 | B2 |
7444356 | Calistri-Yeh et al. | Oct 2008 | B2 |
7457948 | Bilicksa et al. | Nov 2008 | B1 |
7490092 | Morton et al. | Feb 2009 | B2 |
7571177 | Damle | Aug 2009 | B2 |
7698167 | Batham et al. | Apr 2010 | B2 |
20020032735 | Burnstein et al. | Mar 2002 | A1 |
20020065912 | Catchpole et al. | May 2002 | A1 |
20020078090 | Hwang et al. | Jun 2002 | A1 |
20020122543 | Rowen | Sep 2002 | A1 |
20020184193 | Cohen | Dec 2002 | A1 |
20030130991 | Reijerse et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
0886227 | Dec 1998 | EP |
1024437 | Aug 2000 | EP |
1049030 | Nov 2000 | EP |
0067162 | Nov 2000 | WO |
Entry |
---|
Kathy Ryall, Joe Marks, and Stuart Shieber; An Interactive Constraint-Based System for Drawing Graphs; 1997; UIST '97 Proceedings of the 10th annual ACM symposium on User interface software and technology, pp. 97-104. |
Anna Sachinopoulou, “Multidimensional Visualization,” Technical Research Centre of Finland, ESPOO 2001, VTT Research Notes 2114, pp. 1-37 (2001). |
B.B. Hubbard, “The World According the Wavelet: The Story of a Mathematical Technique in the Making,” AK Peters (2nd ed.), pp. 227-229, Massachusetts, USA (1998). |
Baeza-Yates et al., “Modern Information Retrieval,” Ch. 2 “Modeling,” Modern Information Retrieval, Harlow: Addison-Wesley, Great Britain 1999, pp. 18-71 (1999). |
Kanungo et al., “The Analysis of a Simple K-Means Clustering Algorithm,” pp. 100-109, PROC 16th annual symposium of computational geometry (May 2000). |
Bier et al. “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics Proceedings, Proceedings of Siggraph Annual International Conference on Computer Graphics and Interactive Techniques, pp. 73-80, XP000879378 (Aug. 1993). |
Jiang Linhui, “K-Mean Algorithm: Iterative Partitioning Clustering Algorithm,” http://www.cs.regina.ca/-linhui/K.sub.--mean.sub.--algorithm.html, (2001) Computer Science Department, University of Regina, Saskatchewan, Canada (2001). |
James Osborn et al., “Justice: A Judicial Search Tool Using Intelligent Cencept Extraction,” Department of Computer Science and Software Engineering, University of Melbourne, Australia, ICAIL-99, 1999, pp. 173-181, ACM (1999). |
Chen An et al., “Fuzzy Concept Graph and Application in Web Document Clustering,” IEEE, pp. 101-106 (2001). |
Davison et al., “Brute Force Estimation of the Number of Human Genes Using EST Clustering as a Measure,” IBM Journal of Research & Development, vol. 45, pp. 439-447 (May 2001). |
Eades et al. “Multilevel Visualization of Clustered Graphs,” Department of Computer Science and Software Engineering, University of Newcastle, Australia, Proceedings of Graph Drawing '96, Lecture Notes in Computer Science, NR. 1190 (Sep. 18, 1996). |
Eades et al., “Orthogonal Grid Drawing of Clustered Graphs,” Department of Computer Science, the University of Newcastle, Australia, Technical Report 96-04, [Online] 1996, Retrieved from the internet: URL:http://citeseer.ist.psu.edu/eades96ort hogonal.ht (1996). |
Estivill-Castro et al. “Amoeba: Hierarchical Clustering Based on Spatial Proximity Using Delaunaty Diagram”, Department of Computer Science, The University of Newcastle, Australia, 1999 ACM Sigmod International Conference on Management of Data, vol. 28, No. 2, Jun. 1, 1999, pp. 46-60 (Jun. 1, 1999). |
F. Can, Incremental Clustering for Dynamic Information Processing: ACM Transactions on Information Systems, ACM, New York, NY, US, vol. 11, No. 2, pp. 143-164, XP-002308022 (Apr. 1993). |
Fekete et al., “Excentric Labeling: Dynamic Neighborhood Labeling for Data Visualization,” CHI 1999 Conference Proceedings Human Factors in Computing Systems, Pittsburgh, PA, pp. 512-519 (May 15-20, 1999). |
http://em-ntserver.unl.edu/Math/mathweb/vecors/vectors.html © 1997 (1997). |
Jain et al., “Data Clustering: A Review,” ACM Computing Surveys, vol. 31, No. 3, Sep. 1999, pp. 264-323, New York, NY, USA (Sep. 1999). |
Whiting et al., “Image Quantization: Statistics and Modeling,” SPIE Conference of Physics of Medical Imaging, San Diego, CA, USA , vol. 3336, pp. 260-271 (Feb. 1998). |
Kawano, Hiroyuki., “Overview of Mondou Web Search Engine Using Text Mining and Information Visualizing Technologies,” IEEE, 2001, pp. 234-241 (2001). |
Kazumasa Ozawa, “A Stratificational Overlapping Cluster Scheme,” Information Science Center, Osaka Electro-Communication University, Neyagawa-shi, Osaka 572, Japan, Pattern Recognition, vol. 18, pp. 279-286 (1985). |
Kohonen, T., “Self-Organizing Maps,” Ch. 1-2, Springer-Verlag (3rd ed.) (2001). |
Kurimo M., “Fast Latent Semantic Indexing of Spoken Documents by Using Self-Organizing Maps” IEEE International Conference on Accoustics, Speech, and Signal Processing, vol. 6, pp. 2425-2428 (Jun. 2000). |
Lam et al., “A Sliding Window Technique for Word Recognition,” SPIE, vol. 2422, pp. 38-46, Center of Excellence for Document Analysis and Recognition, State University of New Yrok at Baffalo, NY, USA (1995). |
Lio et al., “Funding Pathogenicity Islands and Gene Transfer Events in Genome Data,” Bioinformatics, vol. 16, pp. 932-940, Department of Zoology, University of Cambridge, UK (Jan. 25, 2000). |
R.E. Horn, “Communication Units, Morphology, and Syntax,” Visual Language: Global Communication for the 21st Century, 1998, Ch. 3, pp. 51-92, MacroVU Press, Bainbridge Island, Washington, USA (1998). |
Magarshak, Greg., Theory & Practice. Issue 01. May 17, 2000. http://www.flipcode.com/articles/tp.sub.--issue01-pf.shtml (May 17, 2000). |
Pelleg et al., “Accelerating Exact K-Means Algorithms With Geometric Reasoning,” pp. 277-281, CONF on Knowledge Discovery in Data, PROC fifth ACM SIGKDD (1999). |
Shuldberg et al., “Distilling Information from Text: The EDS TemplateFiller System,” Journal of the American Society for Information Science, vol. 44, pp. 493-507 (1993). |
Miller et al., “Topic Islands: A Wavelet Based Text Visualization System,” Proceedings of the IEEE Visualization Conference. 1998, pp. 189-196. |
North et al. “A Taxonomy of Multiple Window Coordinations,” Institute for Systems Research & Department of Computer Science, University of Maryland, Maryland, USA, http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=97-18 (1997). |
V. Faber, “Clustering and the Continuous K-Means Algorithm,” Los Alamos Science, The Laboratory, Los Alamos, NM, US, No. 22, Jan. 1, 1994, pp. 138-144 (Jan. 1, 1994). |
Sullivan, Dan., “Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing and Sales,” Ch. 1-3, John Wiley & Sons, New York, NY (2001). |
Number | Date | Country | |
---|---|---|---|
20110221774 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12060005 | Mar 2008 | US |
Child | 13112928 | US | |
Parent | 11728636 | Mar 2007 | US |
Child | 12060005 | US | |
Parent | 11110452 | Apr 2005 | US |
Child | 11728636 | US | |
Parent | 09944475 | Aug 2001 | US |
Child | 11110452 | US |