The field of the present invention is systems and procedures for transplanting corneas.
A variety of techniques presently exist for performing corneal transplants. The tools used for the different techniques range from the traditional trephine to the more advanced laser surgical systems. Regardless of the technique or tool used for the transplant procedure, the overarching goal remains to provide the recipient with new corneal tissue while minimizing post-surgical complications such as induced astigmatism. Other desirable aspects of recent improvements include reducing the overall healing time and the likelihood of additional complications from wound ruptures.
One technique which attempts to use advanced laser surgical systems to help reduce post-surgical complications is disclosed in U.S. Pat. No. 6,805,694. This technique relies on the theory that the inner and outer diameters of the undercut region should be chosen to have a specific ratio. Further, the theory postulates that the internal pressure of the eye will provide enhanced wound stability and reduce post-surgical complications by selection of an appropriate ratio. Unfortunately, when applied in actual transplant procedures, this theory does not rise up to meet expectations.
The present invention is directed toward a system and method for resecting corneal tissue as part of a transplant procedure. In the system, a surgical laser emits a pulsed laser beam which is directed into the cornea by a focusing assembly. An interface provides a plurality of incision patterns for selection of a sidecut pattern which includes an annular region. The selected sidecut pattern is received by a controller which employs the focusing assembly to move the focal point of the pulsed laser beam and incise a donor cornea according to the sidecut pattern, placing the incision corresponding to the annular region at a predetermined depth from the anterior corneal surface. The controller also employs the focusing assembly to move the focal point and incise a recipient cornea according to the sidecut pattern, again placing the incision corresponding to the annular region at the same predetermined depth from the anterior corneal surface.
In the method, the depth of an incision from the anterior corneal surface is initially determined. This incision depth is used for both the recipient cornea and the donor cornea, and in each cornea, an annular incision is made at the incision depth. A first sidecut incision is made running from the outer periphery of the annular incision toward one of the anterior corneal surface or the posterior corneal surface. A second sidecut incision is made running from the inner periphery of the annular incision toward the other of the anterior corneal surface or the posterior corneal surface. The angle of each sidecut incision to the annular incision may be acute, perpendicular, or obtuse. The combination of the incisions in each cornea resects corneal tissue from the recipient cornea and donor tissue from the donor cornea, respectively. The donor tissue is thereafter grafted into the recipient cornea. Following the graft, the donor tissue may be secured using a plurality of sutures, each preferably passing through the sidecut incision which is nearest the posterior surface of the recipient cornea.
The extend of the sidecut incisions depends upon whether the transplant is a full thickness corneal transplant or a partial thickness corneal transplant. In a full thickness transplant, each sidecut incision runs from the annular incision to one of the anterior corneal surface or the posterior corneal surface. A partial thickness transplant may be an anterior lamellar keratoplasty (ALK) or a posterior lamellar keratoplasty (PLK). In both procedures, a resection incision is made within the stromal tissue of each cornea. For the ALK procedure, the depth of the annular incision is between the anterior surface and the resection incision, whereas for the PLK procedure, the depth of the annular incision is between the posterior surface and the resection incision. Thus, in the ALK procedure, one of the sidecut incisions runs from the annular incision to the anterior surface and the other runs from the annular incision to the resection incision. Similarly, in the PLK procedure, one of the sidecut incisions runs from the annular incision to the posterior surface and the other runs from the annular incision to the resection incision.
Accordingly, an improved system and method for resecting corneal tissue as part of a transplant procedure are disclosed. Advantages of the improvements will appear from the drawings and the description of the preferred embodiment.
In the drawings, wherein like reference numerals refer to similar components:
Turning in detail to the drawings,
Further, deformation of the cornea reduces the amount of physical data which needs to be collected for both the recipient cornea and the donor cornea prior to the transplant procedure. The physical data collected includes thickness measurements of both the recipient and donor corneas. These thickness measurements are used to develop a thickness profile of each cornea. Additional physical data may also be collected for each cornea. This thickness profile, along with any other data needed for the procedure, may be obtained by any one of the many known methods for measuring the physical structure of the eye, with the preferred method being through optical coherence tomography (OCT). Many commercially available OCT scanners are capable of performing such measurements. One example is the Visante™ OCT scanning system, manufactured by Carl Zeiss Meditec, which has an office in Dublin, Calif. One advantage of the Visante™ OCT system is that it does not make contact with the cornea when performing the OCT scan.
Three incisions, an annular incision 19 and two sidecut incisions 21, 23, are made in the cornea 11 to resect the corneal tissue 17. These incisions may be made separately, one at a time, or they may be made concurrently. The combined incisions result in corneal tissue being resected from the recipient cornea, and donor tissue being resected from the donor cornea. All incisions are preferably made using a pulsed laser beam having ultra-short pulses, preferably in the femtosecond range. The laser may be of the type described in U.S. Pat. No. 4,764,930, producing an ultra-short pulsed beam as described in one or both of U.S. Pat. No. 5,984,916 and U.S. Pat. No. RE37,585. The disclosures of the aforementioned patents are incorporated herein by reference in their entirety. Commercial lasers capable of performing the incisions are available from IntraLase Corp. of Irvine, Calif.
The annular incision 19 is located at a predetermined depth from the anterior corneal surface 15. To facilitate the resection and grafting process, the entire annular incision 19 is at a uniform distance from the anterior corneal surface 15, although such uniformity of depth is not required. Further, for simplicity the annular incision 19 is described as being defined by an inner radius and an outer radius, although such is not necessary. It is sufficient for this incision to be formed by an inner perimeter and an outer perimeter, both perimeters being of any desired shape. More complex shapes, however, can add significantly to the complexity of the procedure. Various techniques are known for making the annular incision 19 at a uniform distance from the anterior corneal surface 15. For example, the techniques disclosed in U.S. Pat. No. 5,993,438, U.S. Pat. No. 6,730,074, and U.S. Patent Publication No. 20050245915 may be readily adapted to make the desired annular incision 19. Other techniques known to skilled artisans may also be employed.
The first sidecut incision 21 runs from the outer periphery of the annular incision 19 to the anterior corneal surface 15. An acute angle is formed at the juncture 25 of the first sidecut incision 21 and the annular incision 19. The second sidecut incision 23 runs from the inner periphery of the annular incision 19 to the posterior corneal surface 27. An acute angle is also formed at the juncture 29 of the second sidecut incision 23 and the annular incision 19. Alternatively, the angle between each of the sidecut incisions and the annular incision may be perpendicular or obtuse.
The donor tissue 31 is shown grafted into the recipient cornea 33 in
Referring to
Thus, a method of transplanting corneal tissue is disclosed. While embodiments of this invention have been shown and described, it will be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the following claims.
Accordingly, it is to be understood that the foregoing embodiments are merely illustrative of the invention and that no limitations are intended to either the details of the construction or design other than as defined in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/469,899, filed Sep. 5, 2006, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11469899 | Sep 2006 | US |
Child | 14791093 | US |