System and method for reshaping heart

Information

  • Patent Grant
  • 11660192
  • Patent Number
    11,660,192
  • Date Filed
    Monday, August 24, 2020
    4 years ago
  • Date Issued
    Tuesday, May 30, 2023
    a year ago
Abstract
The present teachings provide systems, devices, and methods for reshaping the heart and reducing valve regurgitation. A device can be positioned proximate the heart and have a delivery profile and an inflated profile. The device can have a primary cavity and a secondary cavity, and an adhesive inside the secondary cavity. An injectable medium can be injected to the primary cavity of the device. As the primary cavity is filled, the adhesive is forced out of the secondary cavity to adhere the device. The inflated device can exert pressure on the heart, change the shape of a valve annulus, and allow a better coaptation of the valve leaflets.
Description
FIELD

The present teachings generally relate to an inflatable device, and its use in reshaping the right heart, reducing tricuspid regurgitations, or/and delaying progression of heart failure due to tricuspid regurgitation.


BACKGROUND

Tricuspid valve diseases relate to conditions in which the valve between the two right heart chambers (i.e., the right ventricle and the right atrium) doesn't function properly and these diseases often occur with other heart valve problems. Examples of the tricuspid valve diseases include tricuspid valve regurgitation, tricuspid valve stenosis, tricuspid valve atresia, and the Ebstein's anomaly. In the tricuspid valve regurgitation, the tricuspid valve doesn't close properly and blood flows back into the right atrium; in the tricuspid valve stenosis, the tricuspid valve is narrowed and reduces the amount of blood flowing into the right ventricle; in the tricuspid atresia, a congenital heart disease, a solid wall of tissues blocks the blood from flowing between the two right heart chambers; and in the Ebstein's anomaly, a malformed tricuspid valve situates at a position lower than the normal position in the right ventricle and causes blood to flow back into the right atrium. There are other tricuspid valve diseases generally known to a person with ordinary skill in the art and these tricuspid valve diseases are also included in the present teachings.


A tricuspid valve disease can be corrected by an annuloplasty ring. In some instances, this device is preferred for surgically repairing a defective tricuspid valve. An annuloplasty ring is an anatomically-correct three-dimensional (3D) ring and can flexibly conform to the heart valve opening. This ring is implanted into a defective tricuspid valve and reduces the valve opening. Properly implanted, an annuloplasty ring allows the valve to open and close properly.


Tricuspid valve repair surgeries can be done in one of the following two ways: a minimally invasive surgery or an open-heart surgery. A minimally invasive method involves making a small incision in the upper or lower chest and inserting a valve repairing system/device percutaneously. After the valve is repaired, the incision is closed with dissolving sutures. Comparing to an open-heart surgery, advantages of a minimally invasive approach include a shorter recovery time, less post-operation pain, and earlier return to work and normal daily activities.


However, there are drawbacks in valve replacement therapies and, as a result, needs exist for repairing a diseased tricuspid valve percutaneously.


SUMMARY

One aspect of the present teachings provides a device configured to be positioned against a right heart. The device has a collapsed delivery profile and an inflated deployment profile. The flexible outer layer is configured to prevent moisture and gas from crossing the flexible outer layer. The device comprises a flexible outer layer encasing a cavity. The cavity is configured to be filled with an injection medium. The device further includes an injection port configured to be used to allow the injection medium enter into the cavity.


In one embodiment, the device has a portion of the flexible outer layer which inflates to a greater extent than the rest of the flexible outer layer.


In another embodiment, the flexible outer layer further comprises a first component and a second component, wherein the first component and the second component are binding together to form a waist. The first component is configured to be positioned against the right atrium. The second component is configured to be positioned against a right ventricle. The waist is configured to be positioned outside of the tricuspid annulus. In its deployed configuration, the waist of the flexible outer layer inflates to a less extent than the first and second components.


Another aspect of the present teachings provides a device configured to be positioned against a right heart, wherein the device has a collapsed delivery profile and an inflated deployment profile. The device comprises a flexible outer layer encasing a primary cavity and a secondary cavity radially outside of the primary cavity. The primary cavity is configured to be filled with an injection medium. The secondary cavity is configured to be filled with tissue binding adhesives. A barrier separates the primary and second cavities, preventing moisture and gas from crossing the barrier. And a portion of the flexible outer layer outside of the secondary cavity has a plurality of pores, allowing the tissue binding adhesive to exit the secondary cavity to the outside of the flexible outer layer.


In one embodiment, when filled with injection medium, the barrier separating the primary and second cavities expands to a greater extent than the portion of the flexible outer layer outside of the secondary cavity.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of the present teachings where an inflatable balloon is positioned against the right heart free wall according to the present teachings.



FIG. 2 is a perspective view of an embodiment of the present teachings where a needle is used to puncture subxiphoid to access the treatment space according to the present teachings.



FIG. 3 is an embodiment of the inflatable balloon in its delivery profile and attached to a delivery system in accordance with the present teachings.



FIG. 4 is an embodiment of the inflatable balloon positioned against the right heart free wall according to the present teachings.



FIG. 5 is an embodiment of the inflatable balloon in its delivery profile according to the present teachings.



FIG. 6 is an embodiment of the inflatable balloon in its delivery profile according to the present teachings.



FIG. 7 is an embodiment of the inflatable balloon in its delivery profile according to the present teachings.



FIG. 8 is an embodiment of the inflatable balloon attached to a delivery system in accordance with the present teachings.



FIG. 9 is an embodiment of the inflatable balloon disengaging from a delivery system in accordance with the present teachings.



FIG. 10 is a perspective view of an embodiment of the present teachings where an inflatable balloon is delivered to the treatment location via a delivery system.



FIG. 11 is a perspective view of an embodiment of the present teachings where an inflatable balloon is deployed at the treatment location via a delivery system.



FIG. 12 is a perspective view of an embodiment of the present teachings where an inflatable balloon is deployed at the treatment location via a delivery system.





DETAILED DESCRIPTION

Certain specific details are set forth in the following description and figures to provide an understanding of various embodiments of the present teachings. Those of ordinary skill in the relevant art would understand that they can practice other embodiments of the present teachings without one or more of the details described herein. Thus, it is not the intention of the Applicant(s) to restrict or in any way limit the scope of the appended claims to such details. While various processes are described with reference to steps and sequences in the following disclosure, the steps and sequences of steps should not be taken as required to practice all embodiments of the present teachings.


As used herein, the term “lumen” means a canal, a duct, or a generally tubular space or cavity in the body of a subject, including a vein, an artery, a blood vessel, a capillary, an intestine, and the like. The term “lumen” can also refer to a tubular space in a catheter, a sheath, a hollow needle, a tube, or the like.


As used herein, the term “proximal” shall mean close to the operator (less into the body) and “distal” shall mean away from the operator (further into the body). In positioning a medical device inside a patient, “distal” refers to the direction away from a catheter insertion location and “proximal” refers to the direction close to the insertion location.


As used herein, the term “wire” can be a strand, a cord, a fiber, a yarn, a filament, a cable, a thread, or the like, and these terms may be used interchangeably.


As used herein, the term “sheath” may also be described as a “catheter” and, thus, these terms can be used interchangeably.


Unless otherwise specified, all numbers expressing quantities, measurements, and other properties or parameters used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, it should be understood that the numerical parameters set forth in the following specification and attached claims are approximations. At the very least and not as an attempt to limit the application of the doctrine of equivalents to the scope of the attached claims, numerical parameters should be read in light of the number of reported significant digits and the application of ordinary rounding techniques.


The present teachings relate to devices and methods for treating a tricuspid valve regurgitation percutaneously. A person with ordinary skill in the art would recognize that the figures and description thereto refer to various embodiments of the present teachings and, unless indicated otherwise by their contexts, do not limit the scope of the attached claims.


An aspect of the present teachings relates to methods of reducing the size of the right heart, and subsequently reducing the tricuspid regurgitation. In various embodiments, the method includes deploying a balloon (10) through a percutaneous subxiphoid approach to the outside of the pericardium (2) as illustrated in FIG. 1. The balloon (10) squeezes the right side of the heart, both the right atrium (RA) and the right ventricle (RV). As a consequence, the tricuspid annulus changes it shape, which leads to more coaptation among the leaflets of the tricuspid valve (5).


In various embodiments, the balloon is positioned inside or outside of the pericardium. In various embodiments, the balloon is positioned approximately to the anterior and posterior commissure with a small portion, such as 30%, against the right atrium and a relatively larger portion against the right ventricle. In various embodiments, the balloon is anchored to the sternum. In various embodiments, the balloon is shaped to be self-anchoring, self-aligning, or self-stabilizing. In some embodiments, the balloon in its deployed configuration includes an indentation. In certain embodiments, the indentation is in a shape of wedge. In certain embodiments, the indentation is configured to fit the heart into the wedge when the balloon is in its deployed configuration. In particular embodiments, the wedge pushes posteriorly on the anterior portion of the right heart. In particular embodiments, the balloon is stabilized between the heart and the sternum by the wedge cupping with the right heart.



FIG. 2 illustrates insertion of a needle (8) to the space between the heart and the sternum. According to some embodiments of the present teachings, the access to the space is done through a subxiphoid approach. The procedure starts with a small vertical incision to the left of the subxiphoid. A puncture through the skin and subcutaneous tissue is made straight or at a 45-degree angle pointing toward the right shoulder. One skilled in the art should understand that the puncture is done by using a Tuohy needle, with appropriate endocardial and/or fluoroscopy guidance. Additionally contrasts should be used to ascertain the puncture location.


In various embodiments, access for an insertion catheter is created through a needle and wire exchange. In some embodiments, a needle is used to puncture the chest cavity starting from below the xiphoid process and angling the needle superior and left. In some embodiments, a needle is used to puncture the chest cavity through the 5th or 6th intercostal space on the left side of the sternum. In some embodiments, once a needle is passed through the sternum, a wire is advanced through the needle into the space between the sternum and the pericardial sac. In various embodiments, the wire is specially designed to help remove any adhesions between the pericardium and the sternum. In some embodiments, the wire is left behind and the needle is removed. In various embodiments, an insertion catheter is advanced over the wire and into the target region of the anatomy. In some embodiments, the insertion catheter includes a dilating sheath or dilating tip designed to increase the diameter of the needle hole. In some embodiments, a separate dilating member is used prior to insertion of the catheter. In some embodiments, a fluid is injected into the target space of the anatomy in order to facilitate the subsequent inflation of the bladder. In some embodiments, the fluid is saline or nitrogen gas. In some embodiments, the fluid includes a biocompatible, bio-resorbable lubricant.


In various embodiments, access for an insertion catheter is accomplished through a novel modification of a pericardiocentesis kit. In some embodiments, a needle is advanced through the sternum and through the pericardium as is commonly done to aspirate effusions from the pericardium. In some embodiments, a wire is advanced through the needle and into the pericardial space and the needle is retracted out of the body. In some embodiments, an access catheter is advanced over the wire. In various embodiments, the access catheter is designed with a blunted tip such that it passes through the sternum but does not dilate the hole in the pericardium created by the needle. In some embodiments, the access catheter is advanced through the sternum and up to but not through the pericardium. In some embodiments, the wire is withdrawn and the catheter is repositioned in order to deliver the balloon.


In various embodiments, the delivery of the access catheter is aided by fluoroscopy, transesophageal echocardiography, or transthoracic echocardiography. In some embodiments, the delivery catheter or delivery system includes piezo electric elements designed to function as a specially designed echo probe. In some embodiments, the access catheter delivery system is designed to engage a separate and commercially available TTE probe for imaging assistance during the procedure.


In various embodiments, the access to the space between the pericardium and the heart chambers is facilitated by an indwelling catheter in the right heart. In some embodiments, the right heart catheter is designed to create a small puncture in the right atrial appendage. In some embodiments, the right heart catheter is used to inject a predetermined amount of saline or other fluid into the pericardial space. In some embodiments, the fluid is echogenic. In some embodiments, the fluid is used to create separation between the right heart and the pericardium. In some embodiments, the fluid is injected into the pericardium and then aspirated back through the access catheter or through the right heart catheter. In some embodiments, a space is created between the pericardium and the right heart by a right heart catheter. In certain embodiments, the right heart catheter is designed to grasp a portion of the right heart, for example, the right atrial appendage, or the anterior wall of the right atrium. In some embodiments, the right heart catheter is designed to grasp the anterior wall of the right heart above the plane of the right coronary artery. In certain embodiments, the right heart catheter is retracted by 2-3 cm in order to create some space between the pericardium and the right heart.


In various embodiments, the distal end of the insertion needle (8) is positioned outside of the pericardium. In other embodiments, the distal end of the insertion needle (8) is further advanced slightly to puncture the pericardium and reach inside the pericardial space.


Another aspect of the present teachings provides an inflatable balloon (10) that can be deployed at a treatment location, as shown in FIG. 4. In various embodiments, the inflatable balloon (10) has a cavity (37) (FIG. 5) encased by at least one layer of a flexible material. In some embodiments, the inflatable balloon (10) has a delivery state where it is housed and delivered through a delivery system (20) as shown in FIG. 3. In one embodiment, the delivery system (20) includes an access sheath (22), a delivery catheter (24), and an injection catheter (26). In some embodiments, the inflatable balloon (10) has a deployed state, where it is filled with an injectable medium, such as a liquid, a gel, a gas, foam, or another medium. In some embodiments, the delivery state of the inflate balloon (10) is referred to as a state where the device is completely free of injectable medium. Alternatively, in some embodiments, the balloon (10) is partially filled with some injectable medium. In some embodiments, any state that is greater in size than the delivery state is considered to be a deployed state.


In various embodiments, as shown in FIG. 4, at its deployed state, the balloon (10) is positioned against the right heart anterior free wall approximate to the outside of the tricuspid valve (5) annulus location. As shown in FIG. 4, a portion of the balloon (10) is placed and compresses against the right atrium, and another portion of the balloon (10) is placed and compresses against the right ventricle. In some embodiments, the balloon (10) at its deployed state is configured to compress the right side of the heart, changes the profile of the tricuspid annulus, and, as a result, improves the coaptation of the tricuspid leaflets and reduces tricuspid regurgitation. One skilled in the art should understand that the deployed state of the balloon (10) could vary from a patient to another patient due to the individual anatomy and the amount of compression needed to achieve a reduction in tricuspid regurgitation. Thus, the amount of the medium injected inside the cavity (37) of the inflatable balloon (10) is determined based on each patient's needs and controlled by a clinician.


According to some embodiments, the medium filled inside the cavity (37) of the balloon (10) could be an injectable medium, such as a liquid, a hydrogel, a gas, or foam. In an embodiment, other materials or structures, that is capable of maintaining its volume as well as changing its shape to conform to the anatomic space at the implanting location while under compression, could also be used. In another embodiment, the injectable medium is capable of reducing its volume while under compression, and increasing its volume after the compression is removed, for example, a material capable of undergoing a phase change from a first volume to a second volume at the temperature and/or pressure ranges inside a body cavity (37) may also be used.


Now referring to FIG. 5, where an exemplary embodiment of an inflatable balloon (30) is illustrated in its deployed profile. In various embodiments, the inflatable balloon (30) comprises a flexible wall (32) and an injection port (34). In various embodiments, the flexible wall (32) is configured to transfer the pressure from the inside to the outside of the balloon (10). As a result, in some embodiments, the inflatable balloon (10) exerts a force to the heart. In various embodiments, the flexible wall (32) is flexible. In some embodiments, the flexible wall (32) allows shape change of the balloon (30) while the balloon (30) is exposed to an external pressure from the anatomy. In various embodiments, the flexible wall (32) is stiff enough to hold the pressure exerted by the medium inside the balloon (30).


Continue referring to FIG. 5, according to some embodiments, the injection port (34) joins, releasably, a medium injection catheter (26) (See, FIG. 3). As later described, in some embodiments, once joined, the injection catheter (26) is configured to push, pull, or otherwise manipulate the inflatable balloon (30). In some embodiments, the injection catheter (26) is configured to deliver a medium into the cavity (37) of the balloon (30).


According to some embodiments, the flexible wall (32) of the device comprises at least one gas barrier layer. According to some embodiments, the flexible wall (32) comprises at least one moisture barrier layer. According to some embodiments, the gas barrier layer and moisture barrier layer are laminated together. In some embodiments, the gas barrier is constructed as an external layer of the flexible wall (32). In some embodiments, the moisture barrier is constructed as an internal layer of the flexible wall (32). In other embodiments, the moisture barrier is constructed as an external layer of the flexible wall (32). In other embodiments, the gas barrier is constructed as an internal layer of the flexible wall (32). In other embodiments, the gas barrier material and moisture barrier material are blended together to form a single barrier layer. Yet in other embodiments, more than one layer of the gas barrier and/or more than one layer of the moisture barrier layer are incorporated. In some embodiments, the more than one layer of the gas barrier and the more than one layer of the moisture barrier layer are arranged in an alternating manner. In yet other embodiments, any other arrangements are equally applicable as long as they are suitable for the purpose of the present teachings and their manufacturing capability.


A variety of gas barrier materials, including polyvinylidene chloride, ethyl vinyl alcohol, fluoropolymers, or etc., can be used for constructing a device of the present teachings. Gas barrier materials are generally relatively stiff, have high moisture vapor permeability, and low impact strength. Consequently, a layer of flexible material with high moisture barrier and high impact strength should also be incorporated into the flexible wall (32) of the device.


A variety of moisture barrier materials, including polyamide, polyethylene, polypropylene, polyurethane, polyamide/polyester copolymer, polystyrene/polybutadiene copolymer, and etc., can be used for constructing a device of the present teachings. The moisture barrier materials are generally flexible and have high impact strength.


In some embodiments, an additional reinforcement layer is incorporated into the flexible wall (32) in order to enhance the structural integrity of the device. In some embodiments, the reinforcement layer has high impact strength. In certain embodiments, the reinforcement layer is made of a polymer, including polyurethane, EVA, PE, polypropylene, or silicone. In various embodiments, the reinforcement layer is an external layer of the flexible wall (32). In various embodiments, the reinforcement layer is an internal layer of the flexible wall (32). In various embodiments, the reinforcement layer is a middle layer of the flexible wall (32). In some embodiments, the flexible wall (32) includes more than one reinforcement layer. In certain embodiments, at least one of the more than one reinforcement layers is between a gas barrier layer and a moisture barrier layer.


In some embodiments, the device have three, four, five, or more layers including a gas barrier layer, a moisture barrier layer, and one or more reinforcement layers. In some embodiments, the device has multiple gas barrier layers and/or multiple moisture barrier layers, arranged in a sequential or non-sequential arrangement.


In various embodiments, the overall thickness of the flexible wall (32) is preferably minimized. In some embodiments, the overall thickness of the flexible wall (32) ranges between 0.003 to 0.03 inches. In some embodiments, each layer of the flexible wall (32) has a same thickness. In some embodiments, at least two layers have different thickness. In certain embodiments, each layer of the flexible wall (32) has a different thickness from the other layers.


The layers of the flexible wall (32) can be made in any number of ways known to those skilled in the art, including, but not limited to, lamination, co-extrusion, dip molding, spray molding, or the like. In various embodiments, the flexible wall (32) is made by laminating two or more layers together. Lamination can be achieved through many techniques known to those skilled in art. In some embodiments, the lamination is achieved by using heating, solvents, adhesives, tie layers, or other like methods.


One skill in the art would understand that the material used to construct the flexible wall (32) of the device is sufficiently flexible in the thickness ranges selected for the present teachings. Since the device is subject to external pressures, the device's material in various embodiments is able to transmit the pressure from the sternum to the right heart. In various embodiments, the material used to construct the flexible wall (32) is selected to produce an appropriate compression to the right heart. In various embodiments, the pressure and volume of the inflation medium (injection medium) is selected to produce an appropriate compression to the right heart. For example, in its deployed profile, the device is sufficiently stiff to compress the right heart. In some embodiments, the compression leads to a change of the profile of the tricuspid annulus. In some embodiments, the device is flexible enough to accommodate the right heart expansion during the diastolic cycles.


According to some embodiments, the right heart pressure, such as the right ventricle pressure, is closely monitored during the balloon expansion in order to prevent from over-pressuring the right heart. For example, during the balloon expansion, the pulmonary capillary wedge pressure (PCWP) can be monitored and the PCWP can sometimes serve as a good indicator for the right ventricle pressure. When it shows that the right ventricle is over pressured, for example, beyond 40 mmHg, a clinician can deflate the balloon.


According to some other embodiments of the present teachings, the balloon is designed in such way that after deployed, it can still be reattached to a catheter in order to further inflate or deflate the balloon to achieve the optimum treatment result. For example, a balloon can include an injection port which can be reattached by an injection catheter after the procedure. In another example, a balloon can also include a lead which can be left behind and used to be re-attached for pressure adjustment after the procedure.


According to other embodiments of the present teachings, a pumping mechanism between the components of the balloons is also incorporated in the design in order to allow fluid transfer between the components. In some embodiments, such pumping mechanism allows pressure adjustment in each component of the balloon and can be used to avoid over pressuring certain part of the heart, or create a messaging effect to the heart.


In some embodiments, the flexible wall (32) comprises a continuous layer of material. In some embodiments, such as FIG. 6, the flexible wall (42) comprises a first component and a second component, where the first and second components are bonded together. Once injected with the medium, the first component and second component of the balloon (40) expands, while the bonding seam between the first component and second component, remains unchanged, or only slightly stretched, forming a waist in its deployed profiled, such as shown in FIG. 6. In some embodiments, the bonding seam is configured to be positioned outside of the tricuspid valve (5) annulus.


One skilled in the art should understand that the two components can be identical or different in sizes. In some embodiments, the components to be deployed against the right ventricle are larger than the component to be deployed against right atrium. According to some embodiments, the seams are accomplished in any of a variety of manners known to those skilled in the art. In certain embodiments, the bonding of the two components are achieved by using heat bonding, chemical bonding, mechanism bonding, and the like. One skilled the art should understand that more than two components can be included in forming the device. Thus, the embodiments disclosed herein should not be viewed as limiting.


According to some embodiments, once injected with a medium of the present teachings, the balloon (10) device as illustrated in FIGS. 5-6 expand evenly in all directions. In other embodiments, the expansion of the balloon (10) is controlled with the most expansion inwardly toward the heart, and less or no expansion in other directions so that once deployed, the portion of the balloon (10) facing the heart wall expands and compresses the right heart.


According to some embodiments of the present teachings, the balloon is expanded in a sequential motion with one component expanding after another. In other embodiments of the present teachings, the balloon expansion is controlled by a dynamic pulse control, such that one component is expanded with a long pulse, and another component is expanded with a high pulse. One skilled in the art should understand that balloon expansion can be achieved by many other ways, and the exemplary approaches described herein should not be viewed as limiting to the scope of the present teachings.


In some embodiments, once inflated, the balloon (10) has an overall width of 2 mm-4 cm and an overall height of 4 mm-6 cm. In some embodiments, the portion of the balloon (10) against the right ventricle is greater than the portion of the balloon (10) against the right atrium.


In various embodiments, the balloon is designed to be compliant only up to a predetermined size and shape. After the balloon is inflated to this shape by the injectable fluid, the balloon resists further inflation. In some embodiments, the resistance to additional inflation is accomplished by the composite construction of the balloon. In some embodiments, the wall of the balloon includes fibrous members such as suture material, braided polyester fibers, nylon strands, or other materials. In some embodiments, the bladder is loosely defined as a non-compliant balloon. In some embodiments, the bladder is designed to inflate in a stepwise manner. In various embodiments, in the first step, the bladder is designed to expand in a manner that is largely flat, expanding along the contact surface of the right heart and the sternum. In some embodiments, as the inflation pressure increases and the largely flat expansion of the balloon nears its final size, the balloon expands largely by increasing in thickness. In some embodiments, the balloon includes two fluid sealed cavities/chambers. In some embodiments, the first cavity/chamber includes a large flat shape which contours to the wall of the sternum and to the shape of the heart. In some embodiments, the second cavity/chamber is designed to expand largely in the thickness dimension, thereby pushing against the sternum and the heart but not expanding in other directions.


According to various embodiments (e.g., FIG. 5), the injection port (34) of the device includes an injection tube (36) and a valve (38). The injection tube (36) creates a fluid communication path between the interior cavity (37) and the injection catheter (26). The valve (38) is configured to permit one way flow through the injection tube (36). Upon removal of the injection catheter (26), the valve (38) closes automatically and prevents the escape of the injection medium from the interior cavity (37) through the injection tube (36).


According to some embodiments, the injection tube (36) has a connected end joining to the flexible wall (32) and a free end (35) extending into the cavity (37) of the balloon (10). In certain embodiments, the tube includes a tubular lumen (33) extending from the connected end to its free end (35). The tubular lumen (33) forms a flow path for the injection medium to be delivered inside the cavity (37) of the balloon (10). In other embodiments, the valve (38) is positioned inside the tubular lumen (33) of the Tube. Although FIG. 5 illustrates a valve (38) in the middle portion of the tubular lumen (33), one skilled in the art would understand that the valve (38) can be at or near the connected end of the injection tube (36), at or near the free end (35) of the injection tube (36), or anywhere inside the lumen between the connected and free end (35) of the injection tube (36).


According to various embodiments, the injection tube (36) is made of polyethylene, Pebax, polyurethane, etc. In various embodiments, the injection tube (36) is made by a known technique in the field. In some embodiments, the injection tube (36) is made by extrusion. According to various embodiments, the valve (38) and flap are made from a flexible material such as polyurethane, silicone, or polyethylene. According to some embodiments, the bonding between the valve (38) and tube, the tube and the flexible wall (32) of the balloon (30), and the flap and the tube is achieved by a known technique in the field. In certain embodiments, the bonding is achieved through a mechanical means. In particular embodiments, the bonding is through a screw, a bolt, a clamp, or the like. In certain embodiments, the bonding is achieved through a chemical means. In particular embodiments, the bonding is achieved through an adhesive or the like. In some embodiments, the bonding is achieved through a thermal means. In particular embodiments, the bonding is achieved by ultrasonic welding, laser welding, overmolding, or the like. Other attachment methods known to the skilled artisan can also be used.


According to various embodiments of the present teachings, upon the device being filled with the medium content, the device resumes a predesigned deployed profile. In some embodiments, upon inflation, the device assumes a general spherical profile, a pillow profile, or a snow man profile with a waist. One skilled in the art should understand that an inflated device can assume any profile that is suitable for its intended function.


According to various embodiments, the valve (38) inside the injection tube (36) has a duckbill configuration. In some embodiments, the valve (38) includes a first and a second duck bill valve (38) leaflets which are attached to the tubular wall. In some embodiments, the leaflets extend in the direction toward the free end (35) of the injection tube (36) and form a pair of coaptive edges. This configuration allows a distal-direction flow to separate the coaptive edges, thereby enabling inflation of the device. Upon removal of the injection medium source, the inflation medium within the device in combination with the natural bias of the leaflets cause the leaflets to coapt, thereby preventing any proximal flow of medium through the flow path. One skilled in the art should understand that other suitable valve (38) design, such as tricuspid, flap, biased valve (38), known in the field could also be used here. Thus, the embodiments disclosed herein should not be viewed as limiting to the overall scope of the present teachings.



FIG. 7 illustrates another embodiment of the present teachings, where the balloon (50) further includes a binding mechanism that is configured to secure a deployed balloon (50) at a treatment location. As shown in the figure, the inflatable balloon (50) has two cavities. The primary cavity (54) is configured to be filled with an inject medium which causes the balloon (50) to expand. The secondary cavity (52) is configured to contain a bio-adhesive. And the secondary cavity (52) is located radially outside of the primary cavity (54) as shown. According to one embodiment, the secondary cavity (52) is located radially outside of the primary cavity (54). A barrier (56) exists between the primary and secondary cavities (52), which prevents the injection medium from exiting the primary cavity (54) and entering the secondary cavity (52). According to some embodiments, the secondary cavity (52) is covered with an external stretchable and porous layer (58). Similar to the previous embodiments, the balloon (50) includes an injection port (64), an injection tube (36) and a valve (68) disposed within the injection tube (36).


When the balloon (50) is in its delivery collapsed profile, the adhesive is stored inside the secondary cavity (52). The delivery system carries the collapsed balloon (50) into the treatment location. Once the balloon (50) is filled with injection medium, as the balloon (50) expands, the external porous layer (58) outside of the secondary cavity (52) also stretches, allowing the pores to be opened up. As the balloon (50) further expands, it squeezes the adhesive, letting it exit the pores (62). The adhesive is configured to bond the balloon (50) with the sternum.


In some embodiments, when filled with the injection medium, the barrier (56) separating the primary and second cavities (54, 52) expands more than the portion of the flexible outer wall outside of the secondary cavity (52). As a result, the difference in stretchability would allow the primary cavity (54) to expand at a greater rate than the secondary cavity, thereby pushing the tissue binding adhesive out of the pores (62) in the flexible wall (58).


In some embodiments, the balloon (50) is designed such that under certain inflation pressures, the adhesive remains inside the secondary cavity (52). Once a clinician is satisfied with the deployment and/or apposition, the balloon (50) is inflated to a final pressure and the adhesive is then pushed out to the external surface (58). In some embodiments, the adhesive is activated upon being exposed to the moisture of the anatomy.


According to one embodiment of the present teachings, the secondary cavity is configured to be positioned approximately to the right ventricle, so that after an adhesive is applied to the exterior surface, the balloon is bonded to the right ventricle. In another embodiment, the secondary cavity is configured to be positioned approximately to the right atrium, so that the adhesive is used to bond the balloon to the right atrium of the heart.



FIG. 8 further illustrates a balloon delivery system configured to join the balloon (40) at its injection port (44). In various embodiments, the balloon delivery system controls the movement of the balloon (40) and injects the inflation medium into the cavity (47) of the inflatable balloon (40). According to some embodiments, the balloon delivery system comprises an elongate delivery catheter (24) having a proximal end and a distal end. The delivery catheter (24) is configured to slide through an access sheath (22) (not shown) placed at the treatment location. Thus, the delivery catheter (24) preferably has an outside diameter of no more than about 8 mm. The length of the delivery catheter (24) may vary, depending upon each patient. In general, an axial length of delivery catheter (24) is within the range of from about 1″ to about 10″ for adult patients.


According to various embodiments, the delivery catheter (24) has a central lumen extending axially therethrough. The central lumen axially slideably receives an injection catheter (26) for filling the balloon (40). The injection catheter (26) comprises a tubular body having a proximal end, a distal end, and a medium injection lumen extending throughout the length from its distal end to a proximal hub where a connector is typically used for coupling the proximal hub to a source of inflation medium.


According to various embodiments, the injection catheter (26) extends distally, or retracts proximally, independent of the delivery catheter (24). The distal end of the injection catheter (26) has a generally tubular shape and is configured to be positioned within the valve (48) inside the injection port (44) of the balloon (40). The distal end of the delivery catheter (24) is dimensioned such that it fits through the injection port (44) of the balloon (40). In some embodiments, the delivery catheter (24) further includes a distal stop surface configured to stop the proximal movement of the device as shown in FIG. 8.



FIG. 8 illustrates an embodiment of the present teachings where the balloon delivery system is fully engaged with the balloon (40). As illustrated, the distal end portion of the injection catheter (26) is fit inside the injection tube (46) and positioned across the valve (48). In some embodiments, the distal end portion of the injection catheter (26) is capable of opening the valve (48). The distal end of the injection catheter (26) is within the injection tube (46) and distal to the valve (48). The distal end of the delivery catheter (24) contacts the proximal end of the injection tube (46). In some embodiments, the balloon (40) is pushed distally, retracted proximally, torqued radially, and otherwise manipulated by the balloon delivery system.


In various embodiments, the valve (48) inside the injection tube (46) of the balloon (40) has a mechanism that prevents the injection medium from back-flowing to the outside of the balloon (10). According to some embodiments, once the injection catheter (26) is placed inside the injection port (44), a clinician can inject the inflation medium into the cavity (47) of the balloon (40).


After the balloon (40) is inflated to a desired size, a clinician in various embodiments stops the medium injection and removes the injection catheter (26). As shown in FIG. 9, with the delivery catheter (24) remains steady, the injection catheter (26) can be withdrawn proximally and exit the injection port (44) of the balloon (40). The one-way valve (48) inside the injection port (44) closes automatically and seals the injection medium inside the balloon (40).



FIGS. 10-11 illustrate a deployment process of the balloon (10). As shown in FIG. 10, an access sheath (22) is first placed at the treatment location following a subxiphoid puncture described above. According to some embodiments, the access sheath (22) is used to slideably carry the balloon delivery system assembly. In some embodiments, the balloon delivery system assembly slides from a proximal end of the access sheath (22) to its distal portion after proper placement of the access sheath (22). In some embodiments, during delivery, the deflated balloon (10) is rolled around a distal end portion of the injection catheter (26) and carried within the tubular lumen of the access sheath (22) during the placement.


As shown in FIG. 10, once the system is properly positioned, the access sheath (22) is retracted proximally with respect to the balloon delivery system (20) in order to expose the deflated balloon (10). A medium is then introduced distally from the proximal hub of the injection catheter (26) to inflate the balloon (10) to an intended degree.


Following the inflation of the balloon (10), as shown in FIG. 11, the injection catheter (26) is disengaged from the injection port (34) of the balloon (10) by retracting the injection catheter (26) with respect to the delivery catheter (24). A distal stop surface on the delivery catheter (24) prevents the proximal movement of the balloon (10) as the injection catheter (26) is proximally retracted. The balloon delivery system (20) is thereafter removed from the patient, leaving the inflated balloon (10) within the body.


In various embodiments, the balloon device expands in a step-wise fashion. In some embodiments, the balloon device expands to a first length. In some embodiments, the balloon device expands to a first width. In some embodiments, the balloon expands to a first length first and a first width second. In some embodiments, the balloon expands to a first width first and a first length second. In certain embodiments, the first length is predetermined. In certain embodiments, the first length is adjustable according to the patient's need. For example, as shown in FIG. 12, the first length can be approximately the length of the pericardial cavity. In another example, as shown in FIG. 12, the width can be the width of the pericardial cavity. In some embodiments, the first width varies along the length of the balloon. As such, in certain embodiments, the balloon expands inwardly toward the right atrium. In certain embodiments, the balloon expands inwardly toward the right ventricle. Although FIG. 12 shows a particular length and width of a balloon device, one with ordinary skill in the art would understand that the length or/and the width of the balloon device can be greater or less than what are shown in FIG. 12.


One skilled in the art should understand that the devices disclosed above are merely embodiments of the present teachings. For example, the balloons illustrated in the drawings show only one injection port for inflation. One skilled in the art should understand that more than one injection ports can be incorporated in the balloon design without departing from the scope of the present teachings. In another example, the implantation of the balloon at a desired treatment site is done through a subxiphoid puncture procedure. An alternative to such implantation route can be to insert the balloon into the right atrium through a standard right heart catheterization procedure followed by a puncture to the heart wall from inside the right atrium. A further alternative can be to insert the balloon into the right atrium, then to extend through the tricuspid valve into the right ventricle, and finally to puncture through the right ventricular wall. Other alternative implantation route(s) can also be incorporated, and all of which should be considered as part of the present teachings.


The methods and devices disclosed above are useful for treating one or more symptoms of tricuspid regurgitation, by reducing the right heart size. One skilled in the art would further recognize that devices according to the present teachings could be used to treat various symptoms of mitral regurgitation. For example, the devices disclosed herein can be deployed against the left heart.


Various embodiments have been illustrated and described herein by way of examples, and one of ordinary skill in the art would recognize that variations can be made without departing from the spirit and scope of the present teachings. The present teachings are capable of other embodiments or of being practiced or carried out in various other ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this present teachings belong. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present teachings. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Claims
  • 1. A system comprising: an access sheath, configured to be introduced to a treatment location outside a heart of a subject;a delivery catheter;a device configured to be positioned at the treatment location, against a right side of the heart, the device comprising: a tissue-binding adhesive;a flexible outer layer encasing a primary cavity and a secondary cavity outside of the primary cavity, a portion of the flexible outer layer outside of the secondary cavity having a plurality of pores between the secondary cavity and the outside of the flexible outer layer;a barrier separating the primary and secondary cavities, inhibiting moisture from crossing the barrier; andwherein the device has a collapsed delivery profile and an inflated deployment profile, and in the collapsed delivery profile, the device is dimensioned to be advanced, within the access sheath, to the treatment location, while the secondary cavity contains the tissue-binding adhesive;wherein the device is inflatable to the inflated deployment profile by introducing an injection medium into the primary cavity, andwherein introducing the injection medium into the primary cavity forces at least some of the tissue-binding adhesive out of the secondary cavity via the pores.
  • 2. The system according to claim 1, wherein the barrier separating the primary and secondary cavities expands more than the portion of the flexible outer layer outside of the secondary cavity when the injection medium is introduced into the primary cavity, thereby allowing the primary cavity to expand at a greater rate than the secondary cavity, thereby forcing the at least some of the tissue-binding adhesive through the pores.
  • 3. The system according to claim 1, wherein the device further includes a one-way valve disposed within an injection tube used to introduce the injection medium into the primary cavity.
  • 4. The system according to claim 1, wherein the barrier extends longitudinally from a distal end to a proximal end of the device which is in the form of an inflatable balloon.
  • 5. The system according to claim 1, wherein the secondary cavity is disposed alongside the primary cavity.
  • 6. The system according to claim 1, wherein: the portion of the flexible outer layer outside of the secondary cavity is a first portion of the flexible outer layer that delineates at least part of the primary cavity, anda second portion of the flexible outer layer delineates at least part of the secondary cavity.
  • 7. The system according to claim 1, wherein the primary cavity is configured to inflate into a flat shape.
  • 8. The system according to claim 1, wherein the device further comprises an injection port configured to allow the injection medium to be introduced into the primary cavity.
  • 9. The system according to claim 8, wherein the injection port comprises an injection tube that is disposed entirely within the primary cavity and is only in fluid communication with the primary cavity and not the secondary cavity, the injection port being configured for being detachably coupled to an inflation catheter.
  • 10. A system comprising: a device configured to be positioned at a treatment location, against a right side of the heart, the device comprising: a tissue-binding adhesive;a flexible outer layer encasing a primary cavity and a secondary cavity outside of the primary cavity, a portion of the flexible outer layer outside of the secondary cavity having a plurality of pores between the secondary cavity and the outside of the flexible outer layer;a barrier separating the primary and secondary cavities, inhibiting moisture from crossing the barrier; andwherein the device has a collapsed delivery profile and an inflated deployment profile, and in the collapsed delivery profile, the device is dimensioned to be advanced through a catheter to the treatment location, while the secondary cavity contains the tissue-binding adhesive;wherein the device is configured such that injecting an injection medium into the primary cavity both inflates the device to the inflated deployment profile and forces at least some of the tissue-binding adhesive out of the secondary cavity via the pores.
  • 11. The system according to claim 10, wherein the barrier separating the primary and secondary cavities expands more than the portion of the flexible outer layer outside of the secondary cavity when the injection medium is introduced into the primary cavity, thereby allowing the primary cavity to expand at a greater rate than the secondary cavity, thereby forcing the at least some of the tissue-binding adhesive through the pores.
  • 12. The system according to claim 10, wherein the barrier extends longitudinally from a distal end to a proximal end of the device which is in the form of an inflatable balloon.
  • 13. The system according to claim 10, wherein the secondary cavity is disposed alongside the primary cavity.
  • 14. The system according to claim 10, wherein: the portion of the flexible outer layer outside of the secondary cavity is a first portion of the flexible outer layer that delineates at least part of the primary cavity, anda second portion of the flexible outer layer delineates at least part of the secondary cavity.
  • 15. The system according to claim 10, wherein the primary cavity is configured to inflate into a flat shape.
  • 16. The system according to claim 10, wherein the device further comprises an injection port configured to allow the injection medium to be introduced into the primary cavity.
  • 17. The system according to claim 16, wherein the injection port comprises an injection tube that is disposed entirely within the primary cavity and is only in fluid communication with the primary cavity and not the secondary cavity, the injection port being configured for being detachably coupled to an inflation catheter.
  • 18. The system according to claim 17, wherein the device further includes a one-way valve disposed within the injection tube used to introduce the injection medium into the primary cavity.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/393,867 filed on Dec. 29, 2016, which claims priority to U.S. patent application Ser. No. 62/272,882, filed Dec. 30, 2015, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (852)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4917698 Carpentier et al. Apr 1990 A
4961738 Mackin Oct 1990 A
5041090 Scheglov Aug 1991 A
5042707 Taheri Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke et al. Apr 1994 A
5325845 Adair Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5364408 Gordon Nov 1994 A
5383852 Stevens-Wright Jan 1995 A
5449368 Kuzmak Sep 1995 A
5450860 O'Connor Sep 1995 A
5464404 Abela et al. Nov 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5634936 Linden et al. Jun 1997 A
5643317 Pavcnik et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5676653 Taylor et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5733331 Peredo Mar 1998 A
5749371 Zadini et al. May 1998 A
5752963 Allard et al. May 1998 A
5782844 Yoon et al. Jul 1998 A
5810746 Goldstein et al. Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5993459 Larsen et al. Nov 1999 A
6042554 Rosenman et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6048351 Gordon et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6074341 Anderson et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6086582 Altman et al. Jul 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6174332 Loch et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6210347 Forsell Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6228032 Eaton et al. May 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319281 Patel Nov 2001 B1
6328746 Gambale Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec, Jr. et al. Jan 2003 B1
6524338 Gundry Feb 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6547801 Dargent et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6651671 Donion et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730121 Ortiz et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoen et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908478 Alferness et al. Jun 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007798 Happonen et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7338511 Mirigian Mar 2008 B2
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7377941 Rhee et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7431726 Spence et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7780726 Seguin Aug 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7981152 Webler et al. Jul 2011 B1
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8029556 Rowe Oct 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8100964 Spence Jan 2012 B2
8123801 Milo Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8262725 Subramanian Sep 2012 B2
8265758 Policker et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8419825 Burgler et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8449573 Chu May 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8475525 Maisano et al. Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734699 Heideman et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8889861 Skead et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961594 Maisano et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961596 Maisano et al. Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9138316 Bielefeld Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9226825 Starksen et al. Jan 2016 B2
9265608 Miller et al. Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9693865 Gilmore et al. Jul 2017 B2
9730793 Reich et al. Aug 2017 B2
9788941 Hacohen Oct 2017 B2
9801720 Gilmore et al. Oct 2017 B2
9907547 Gilmore et al. Mar 2018 B2
10368852 Gerhardt et al. Aug 2019 B2
20010021874 Carpentier et al. Sep 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020188350 Arru et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171760 Gambale Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20040002735 Lizardi et al. Jan 2004 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040059413 Argento Mar 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040225233 Frankowski et al. Nov 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090834 Chiang et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187568 Klenk et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050234481 Waller Oct 2005 A1
20050240199 Martinek et al. Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050267571 Spence et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025858 Aiameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060149280 Harvie et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070010857 Sugimoto et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038296 Navia et al. Feb 2007 A1
20070039425 Wang Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070083235 Jervis et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173931 Tremulis et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070239208 Crawford Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Macoviak et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086164 Rowe Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080103572 Gerber May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167713 Boiling Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080177380 Starksen et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080228030 Godin Sep 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281353 Aranyi et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080294251 Annest et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20090028670 Garcia et al. Jan 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076547 Sugimoto et al. Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090082797 Fung et al. Mar 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090093670 Annest et al. Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090125102 Cartledge et al. May 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090292353 Yoganathan et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100063542 van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100063586 Hasenkam et al. Mar 2010 A1
20100070028 Sugimoto Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100114180 Rock et al. May 2010 A1
20100121349 Meier et al. May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100286628 Gross Nov 2010 A1
20100292785 Seguin et al. Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100305475 Hinchliffe Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110009956 Cartledge et al. Jan 2011 A1
20110011917 Louimet Jan 2011 A1
20110015476 Franco Jan 2011 A1
20110026208 Utsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110060407 Ketai et al. Mar 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110184510 Maisano et al. Jul 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20120029627 Salahieh et al. Feb 2012 A1
20120035712 Maisano et al. Feb 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120158023 Mitelberg et al. Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120191123 Brister et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120203360 Tagliabue Aug 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120310840 Colombo et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20130018459 Maisano et al. Jan 2013 A1
20130030522 Rowe et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130046380 Maisano et al. Feb 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190863 Cail et al. Jul 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231701 Voss et al. Sep 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20140081394 Keranen et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140114390 Tobis et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140350660 Cocks et al. Nov 2014 A1
20140350662 Vaturi Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150112429 Khairkhahan et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119979 Maisano et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150164637 Khairkhahan et al. Jun 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150209558 Charlebois et al. Jul 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20150352337 Iga Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160029920 Kronstrom et al. Feb 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120645 Alon May 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160361058 Bolduc et al. Dec 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170100119 Baird et al. Apr 2017 A1
20170224489 Starksen et al. Aug 2017 A1
20170245993 Gross et al. Aug 2017 A1
20180049875 Iflah et al. Feb 2018 A1
20180140420 Hayoz et al. May 2018 A1
20180228608 Sheps et al. Aug 2018 A1
20180256334 Sheps et al. Sep 2018 A1
20180318080 Quill et al. Nov 2018 A1
20190038411 Alon Feb 2019 A1
20190175344 Khairkhahan Jun 2019 A1
20190175345 Schaffner et al. Jun 2019 A1
20190240023 Spence et al. Aug 2019 A1
20190321049 Herman et al. Oct 2019 A1
20200015971 Brauon et al. Jan 2020 A1
20200289267 Peleg et al. Sep 2020 A1
20200337840 Reich Oct 2020 A1
20210015475 Lau Jan 2021 A1
20210059820 Clark et al. Mar 2021 A1
20210085461 Neumark et al. Mar 2021 A1
20210093453 Peleg et al. Apr 2021 A1
20220096232 Skaro et al. Mar 2022 A1
Foreign Referenced Citations (19)
Number Date Country
102869318 Jan 2013 CN
113331995 Sep 2021 CN
1034753 Sep 2000 EP
3531975 Sep 2019 EP
9205093 Apr 1992 WO
9846149 Oct 1998 WO
02085250 Feb 2003 WO
03047467 Jun 2003 WO
2008112740 Sep 2008 WO
2010000454 Jan 2010 WO
2012004679 Jan 2012 WO
2012178115 Dec 2012 WO
2012176195 Mar 2013 WO
2014064964 May 2014 WO
2014134183 Sep 2014 WO
2020240282 Dec 2020 WO
2021014440 Jan 2021 WO
2021038559 Mar 2021 WO
2021038560 Mar 2021 WO
Non-Patent Literature Citations (28)
Entry
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Dictionary.com definition of “lock”, Jul. 29, 2013.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech insight 8(3): 73, 99-108 (2006).
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484.
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest. Urol, Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Related Publications (1)
Number Date Country
20200383786 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62272882 Dec 2015 US
Continuations (1)
Number Date Country
Parent 15393867 Dec 2016 US
Child 17001597 US