The present teachings generally relate to an inflatable device, and its use in reshaping the right heart, reducing tricuspid regurgitations, or/and delaying progression of heart failure due to tricuspid regurgitation.
Tricuspid valve diseases relate to conditions in which the valve between the two right heart chambers (i.e., the right ventricle and the right atrium) doesn't function properly and these diseases often occur with other heart valve problems. Examples of the tricuspid valve diseases include tricuspid valve regurgitation, tricuspid valve stenosis, tricuspid valve atresia, and the Ebstein's anomaly. In the tricuspid valve regurgitation, the tricuspid valve doesn't close properly and blood flows back into the right atrium; in the tricuspid valve stenosis, the tricuspid valve is narrowed and reduces the amount of blood flowing into the right ventricle; in the tricuspid atresia, a congenital heart disease, a solid wall of tissues blocks the blood from flowing between the two right heart chambers; and in the Ebstein's anomaly, a malformed tricuspid valve situates at a position lower than the normal position in the right ventricle and causes blood to flow back into the right atrium. There are other tricuspid valve diseases generally known to a person with ordinary skill in the art and these tricuspid valve diseases are also included in the present teachings.
A tricuspid valve disease can be corrected by an annuloplasty ring. In some instances, this device is preferred for surgically repairing a defective tricuspid valve. An annuloplasty ring is an anatomically-correct three-dimensional (3D) ring and can flexibly conform to the heart valve opening. This ring is implanted into a defective tricuspid valve and reduces the valve opening. Properly implanted, an annuloplasty ring allows the valve to open and close properly.
Tricuspid valve repair surgeries can be done in one of the following two ways: a minimally invasive surgery or an open-heart surgery. A minimally invasive method involves making a small incision in the upper or lower chest and inserting a valve repairing system/device percutaneously. After the valve is repaired, the incision is closed with dissolving sutures. Comparing to an open-heart surgery, advantages of a minimally invasive approach include a shorter recovery time, less post-operation pain, and earlier return to work and normal daily activities.
However, there are drawbacks in valve replacement therapies and, as a result, needs exist for repairing a diseased tricuspid valve percutaneously.
One aspect of the present teachings provides a device configured to be positioned against a right heart. The device has a collapsed delivery profile and an inflated deployment profile. The flexible outer layer is configured to prevent moisture and gas from crossing the flexible outer layer. The device comprises a flexible outer layer encasing a cavity. The cavity is configured to be filled with an injection medium. The device further includes an injection port configured to be used to allow the injection medium enter into the cavity.
In one embodiment, the device has a portion of the flexible outer layer which inflates to a greater extent than the rest of the flexible outer layer.
In another embodiment, the flexible outer layer further comprises a first component and a second component, wherein the first component and the second component are binding together to form a waist. The first component is configured to be positioned against the right atrium. The second component is configured to be positioned against a right ventricle. The waist is configured to be positioned outside of the tricuspid annulus. In its deployed configuration, the waist of the flexible outer layer inflates to a less extent than the first and second components.
Another aspect of the present teachings provides a device configured to be positioned against a right heart, wherein the device has a collapsed delivery profile and an inflated deployment profile. The device comprises a flexible outer layer encasing a primary cavity and a secondary cavity radially outside of the primary cavity. The primary cavity is configured to be filled with an injection medium. The secondary cavity is configured to be filled with tissue binding adhesives. A barrier separates the primary and second cavities, preventing moisture and gas from crossing the barrier. And a portion of the flexible outer layer outside of the secondary cavity has a plurality of pores, allowing the tissue binding adhesive to exit the secondary cavity to the outside of the flexible outer layer.
In one embodiment, when filled with injection medium, the barrier separating the primary and second cavities expands to a greater extent than the portion of the flexible outer layer outside of the secondary cavity.
Certain specific details are set forth in the following description and figures to provide an understanding of various embodiments of the present teachings. Those of ordinary skill in the relevant art would understand that they can practice other embodiments of the present teachings without one or more of the details described herein. Thus, it is not the intention of the Applicant(s) to restrict or in any way limit the scope of the appended claims to such details. While various processes are described with reference to steps and sequences in the following disclosure, the steps and sequences of steps should not be taken as required to practice all embodiments of the present teachings.
As used herein, the term “lumen” means a canal, a duct, or a generally tubular space or cavity in the body of a subject, including a vein, an artery, a blood vessel, a capillary, an intestine, and the like. The term “lumen” can also refer to a tubular space in a catheter, a sheath, a hollow needle, a tube, or the like.
As used herein, the term “proximal” shall mean close to the operator (less into the body) and “distal” shall mean away from the operator (further into the body). In positioning a medical device inside a patient, “distal” refers to the direction away from a catheter insertion location and “proximal” refers to the direction close to the insertion location.
As used herein, the term “wire” can be a strand, a cord, a fiber, a yarn, a filament, a cable, a thread, or the like, and these terms may be used interchangeably.
As used herein, the term “sheath” may also be described as a “catheter” and, thus, these terms can be used interchangeably.
Unless otherwise specified, all numbers expressing quantities, measurements, and other properties or parameters used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, it should be understood that the numerical parameters set forth in the following specification and attached claims are approximations. At the very least and not as an attempt to limit the application of the doctrine of equivalents to the scope of the attached claims, numerical parameters should be read in light of the number of reported significant digits and the application of ordinary rounding techniques.
The present teachings relate to devices and methods for treating a tricuspid valve regurgitation percutaneously. A person with ordinary skill in the art would recognize that the figures and description thereto refer to various embodiments of the present teachings and, unless indicated otherwise by their contexts, do not limit the scope of the attached claims.
An aspect of the present teachings relates to methods of reducing the size of the right heart, and subsequently reducing the tricuspid regurgitation. In various embodiments, the method includes deploying a balloon (10) through a percutaneous subxiphoid approach to the outside of the pericardium (2) as illustrated in
In various embodiments, the balloon is positioned inside or outside of the pericardium. In various embodiments, the balloon is positioned approximately to the anterior and posterior commissure with a small portion, such as 30%, against the right atrium and a relatively larger portion against the right ventricle. In various embodiments, the balloon is anchored to the sternum. In various embodiments, the balloon is shaped to be self-anchoring, self-aligning, or self-stabilizing. In some embodiments, the balloon in its deployed configuration includes an indentation. In certain embodiments, the indentation is in a shape of wedge. In certain embodiments, the indentation is configured to fit the heart into the wedge when the balloon is in its deployed configuration. In particular embodiments, the wedge pushes posteriorly on the anterior portion of the right heart. In particular embodiments, the balloon is stabilized between the heart and the sternum by the wedge cupping with the right heart.
In various embodiments, access for an insertion catheter is created through a needle and wire exchange. In some embodiments, a needle is used to puncture the chest cavity starting from below the xiphoid process and angling the needle superior and left. In some embodiments, a needle is used to puncture the chest cavity through the 5th or 6th intercostal space on the left side of the sternum. In some embodiments, once a needle is passed through the sternum, a wire is advanced through the needle into the space between the sternum and the pericardial sac. In various embodiments, the wire is specially designed to help remove any adhesions between the pericardium and the sternum. In some embodiments, the wire is left behind and the needle is removed. In various embodiments, an insertion catheter is advanced over the wire and into the target region of the anatomy. In some embodiments, the insertion catheter includes a dilating sheath or dilating tip designed to increase the diameter of the needle hole. In some embodiments, a separate dilating member is used prior to insertion of the catheter. In some embodiments, a fluid is injected into the target space of the anatomy in order to facilitate the subsequent inflation of the bladder. In some embodiments, the fluid is saline or nitrogen gas. In some embodiments, the fluid includes a biocompatible, bio-resorbable lubricant.
In various embodiments, access for an insertion catheter is accomplished through a novel modification of a pericardiocentesis kit. In some embodiments, a needle is advanced through the sternum and through the pericardium as is commonly done to aspirate effusions from the pericardium. In some embodiments, a wire is advanced through the needle and into the pericardial space and the needle is retracted out of the body. In some embodiments, an access catheter is advanced over the wire. In various embodiments, the access catheter is designed with a blunted tip such that it passes through the sternum but does not dilate the hole in the pericardium created by the needle. In some embodiments, the access catheter is advanced through the sternum and up to but not through the pericardium. In some embodiments, the wire is withdrawn and the catheter is repositioned in order to deliver the balloon.
In various embodiments, the delivery of the access catheter is aided by fluoroscopy, transesophageal echocardiography, or transthoracic echocardiography. In some embodiments, the delivery catheter or delivery system includes piezo electric elements designed to function as a specially designed echo probe. In some embodiments, the access catheter delivery system is designed to engage a separate and commercially available TTE probe for imaging assistance during the procedure.
In various embodiments, the access to the space between the pericardium and the heart chambers is facilitated by an indwelling catheter in the right heart. In some embodiments, the right heart catheter is designed to create a small puncture in the right atrial appendage. In some embodiments, the right heart catheter is used to inject a predetermined amount of saline or other fluid into the pericardial space. In some embodiments, the fluid is echogenic. In some embodiments, the fluid is used to create separation between the right heart and the pericardium. In some embodiments, the fluid is injected into the pericardium and then aspirated back through the access catheter or through the right heart catheter. In some embodiments, a space is created between the pericardium and the right heart by a right heart catheter. In certain embodiments, the right heart catheter is designed to grasp a portion of the right heart, for example, the right atrial appendage, or the anterior wall of the right atrium. In some embodiments, the right heart catheter is designed to grasp the anterior wall of the right heart above the plane of the right coronary artery. In certain embodiments, the right heart catheter is retracted by 2-3 cm in order to create some space between the pericardium and the right heart.
In various embodiments, the distal end of the insertion needle (8) is positioned outside of the pericardium. In other embodiments, the distal end of the insertion needle (8) is further advanced slightly to puncture the pericardium and reach inside the pericardial space.
Another aspect of the present teachings provides an inflatable balloon (10) that can be deployed at a treatment location, as shown in
In various embodiments, as shown in
According to some embodiments, the medium filled inside the cavity (37) of the balloon (10) could be an injectable medium, such as a liquid, a hydrogel, a gas, or foam. In an embodiment, other materials or structures, that is capable of maintaining its volume as well as changing its shape to conform to the anatomic space at the implanting location while under compression, could also be used. In another embodiment, the injectable medium is capable of reducing its volume while under compression, and increasing its volume after the compression is removed, for example, a material capable of undergoing a phase change from a first volume to a second volume at the temperature and/or pressure ranges inside a body cavity (37) may also be used.
Now referring to
Continue referring to
According to some embodiments, the flexible wall (32) of the device comprises at least one gas barrier layer. According to some embodiments, the flexible wall (32) comprises at least one moisture barrier layer. According to some embodiments, the gas barrier layer and moisture barrier layer are laminated together. In some embodiments, the gas barrier is constructed as an external layer of the flexible wall (32). In some embodiments, the moisture barrier is constructed as an internal layer of the flexible wall (32). In other embodiments, the moisture barrier is constructed as an external layer of the flexible wall (32). In other embodiments, the gas barrier is constructed as an internal layer of the flexible wall (32). In other embodiments, the gas barrier material and moisture barrier material are blended together to form a single barrier layer. Yet in other embodiments, more than one layer of the gas barrier and/or more than one layer of the moisture barrier layer are incorporated. In some embodiments, the more than one layer of the gas barrier and the more than one layer of the moisture barrier layer are arranged in an alternating manner. In yet other embodiments, any other arrangements are equally applicable as long as they are suitable for the purpose of the present teachings and their manufacturing capability.
A variety of gas barrier materials, including polyvinylidene chloride, ethyl vinyl alcohol, fluoropolymers, or etc., can be used for constructing a device of the present teachings. Gas barrier materials are generally relatively stiff, have high moisture vapor permeability, and low impact strength. Consequently, a layer of flexible material with high moisture barrier and high impact strength should also be incorporated into the flexible wall (32) of the device.
A variety of moisture barrier materials, including polyamide, polyethylene, polypropylene, polyurethane, polyamide/polyester copolymer, polystyrene/polybutadiene copolymer, and etc., can be used for constructing a device of the present teachings. The moisture barrier materials are generally flexible and have high impact strength.
In some embodiments, an additional reinforcement layer is incorporated into the flexible wall (32) in order to enhance the structural integrity of the device. In some embodiments, the reinforcement layer has high impact strength. In certain embodiments, the reinforcement layer is made of a polymer, including polyurethane, EVA, PE, polypropylene, or silicone. In various embodiments, the reinforcement layer is an external layer of the flexible wall (32). In various embodiments, the reinforcement layer is an internal layer of the flexible wall (32). In various embodiments, the reinforcement layer is a middle layer of the flexible wall (32). In some embodiments, the flexible wall (32) includes more than one reinforcement layer. In certain embodiments, at least one of the more than one reinforcement layers is between a gas barrier layer and a moisture barrier layer.
In some embodiments, the device have three, four, five, or more layers including a gas barrier layer, a moisture barrier layer, and one or more reinforcement layers. In some embodiments, the device has multiple gas barrier layers and/or multiple moisture barrier layers, arranged in a sequential or non-sequential arrangement.
In various embodiments, the overall thickness of the flexible wall (32) is preferably minimized. In some embodiments, the overall thickness of the flexible wall (32) ranges between 0.003 to 0.03 inches. In some embodiments, each layer of the flexible wall (32) has a same thickness. In some embodiments, at least two layers have different thickness. In certain embodiments, each layer of the flexible wall (32) has a different thickness from the other layers.
The layers of the flexible wall (32) can be made in any number of ways known to those skilled in the art, including, but not limited to, lamination, co-extrusion, dip molding, spray molding, or the like. In various embodiments, the flexible wall (32) is made by laminating two or more layers together. Lamination can be achieved through many techniques known to those skilled in art. In some embodiments, the lamination is achieved by using heating, solvents, adhesives, tie layers, or other like methods.
One skill in the art would understand that the material used to construct the flexible wall (32) of the device is sufficiently flexible in the thickness ranges selected for the present teachings. Since the device is subject to external pressures, the device's material in various embodiments is able to transmit the pressure from the sternum to the right heart. In various embodiments, the material used to construct the flexible wall (32) is selected to produce an appropriate compression to the right heart. In various embodiments, the pressure and volume of the inflation medium (injection medium) is selected to produce an appropriate compression to the right heart. For example, in its deployed profile, the device is sufficiently stiff to compress the right heart. In some embodiments, the compression leads to a change of the profile of the tricuspid annulus. In some embodiments, the device is flexible enough to accommodate the right heart expansion during the diastolic cycles.
According to some embodiments, the right heart pressure, such as the right ventricle pressure, is closely monitored during the balloon expansion in order to prevent from over-pressuring the right heart. For example, during the balloon expansion, the pulmonary capillary wedge pressure (PCWP) can be monitored and the PCWP can sometimes serve as a good indicator for the right ventricle pressure. When it shows that the right ventricle is over pressured, for example, beyond 40 mmHg, a clinician can deflate the balloon.
According to some other embodiments of the present teachings, the balloon is designed in such way that after deployed, it can still be reattached to a catheter in order to further inflate or deflate the balloon to achieve the optimum treatment result. For example, a balloon can include an injection port which can be reattached by an injection catheter after the procedure. In another example, a balloon can also include a lead which can be left behind and used to be re-attached for pressure adjustment after the procedure.
According to other embodiments of the present teachings, a pumping mechanism between the components of the balloons is also incorporated in the design in order to allow fluid transfer between the components. In some embodiments, such pumping mechanism allows pressure adjustment in each component of the balloon and can be used to avoid over pressuring certain part of the heart, or create a messaging effect to the heart.
In some embodiments, the flexible wall (32) comprises a continuous layer of material. In some embodiments, such as
One skilled in the art should understand that the two components can be identical or different in sizes. In some embodiments, the components to be deployed against the right ventricle are larger than the component to be deployed against right atrium. According to some embodiments, the seams are accomplished in any of a variety of manners known to those skilled in the art. In certain embodiments, the bonding of the two components are achieved by using heat bonding, chemical bonding, mechanism bonding, and the like. One skilled the art should understand that more than two components can be included in forming the device. Thus, the embodiments disclosed herein should not be viewed as limiting.
According to some embodiments, once injected with a medium of the present teachings, the balloon (10) device as illustrated in
According to some embodiments of the present teachings, the balloon is expanded in a sequential motion with one component expanding after another. In other embodiments of the present teachings, the balloon expansion is controlled by a dynamic pulse control, such that one component is expanded with a long pulse, and another component is expanded with a high pulse. One skilled in the art should understand that balloon expansion can be achieved by many other ways, and the exemplary approaches described herein should not be viewed as limiting to the scope of the present teachings.
In some embodiments, once inflated, the balloon (10) has an overall width of 2 mm-4 cm and an overall height of 4 mm-6 cm. In some embodiments, the portion of the balloon (10) against the right ventricle is greater than the portion of the balloon (10) against the right atrium.
In various embodiments, the balloon is designed to be compliant only up to a predetermined size and shape. After the balloon is inflated to this shape by the injectable fluid, the balloon resists further inflation. In some embodiments, the resistance to additional inflation is accomplished by the composite construction of the balloon. In some embodiments, the wall of the balloon includes fibrous members such as suture material, braided polyester fibers, nylon strands, or other materials. In some embodiments, the bladder is loosely defined as a non-compliant balloon. In some embodiments, the bladder is designed to inflate in a stepwise manner. In various embodiments, in the first step, the bladder is designed to expand in a manner that is largely flat, expanding along the contact surface of the right heart and the sternum. In some embodiments, as the inflation pressure increases and the largely flat expansion of the balloon nears its final size, the balloon expands largely by increasing in thickness. In some embodiments, the balloon includes two fluid sealed cavities/chambers. In some embodiments, the first cavity/chamber includes a large flat shape which contours to the wall of the sternum and to the shape of the heart. In some embodiments, the second cavity/chamber is designed to expand largely in the thickness dimension, thereby pushing against the sternum and the heart but not expanding in other directions.
According to various embodiments (e.g.,
According to some embodiments, the injection tube (36) has a connected end joining to the flexible wall (32) and a free end (35) extending into the cavity (37) of the balloon (10). In certain embodiments, the tube includes a tubular lumen (33) extending from the connected end to its free end (35). The tubular lumen (33) forms a flow path for the injection medium to be delivered inside the cavity (37) of the balloon (10). In other embodiments, the valve (38) is positioned inside the tubular lumen (33) of the Tube. Although
According to various embodiments, the injection tube (36) is made of polyethylene, Pebax, polyurethane, etc. In various embodiments, the injection tube (36) is made by a known technique in the field. In some embodiments, the injection tube (36) is made by extrusion. According to various embodiments, the valve (38) and flap are made from a flexible material such as polyurethane, silicone, or polyethylene. According to some embodiments, the bonding between the valve (38) and tube, the tube and the flexible wall (32) of the balloon (30), and the flap and the tube is achieved by a known technique in the field. In certain embodiments, the bonding is achieved through a mechanical means. In particular embodiments, the bonding is through a screw, a bolt, a clamp, or the like. In certain embodiments, the bonding is achieved through a chemical means. In particular embodiments, the bonding is achieved through an adhesive or the like. In some embodiments, the bonding is achieved through a thermal means. In particular embodiments, the bonding is achieved by ultrasonic welding, laser welding, overmolding, or the like. Other attachment methods known to the skilled artisan can also be used.
According to various embodiments of the present teachings, upon the device being filled with the medium content, the device resumes a predesigned deployed profile. In some embodiments, upon inflation, the device assumes a general spherical profile, a pillow profile, or a snow man profile with a waist. One skilled in the art should understand that an inflated device can assume any profile that is suitable for its intended function.
According to various embodiments, the valve (38) inside the injection tube (36) has a duckbill configuration. In some embodiments, the valve (38) includes a first and a second duck bill valve (38) leaflets which are attached to the tubular wall. In some embodiments, the leaflets extend in the direction toward the free end (35) of the injection tube (36) and form a pair of coaptive edges. This configuration allows a distal-direction flow to separate the coaptive edges, thereby enabling inflation of the device. Upon removal of the injection medium source, the inflation medium within the device in combination with the natural bias of the leaflets cause the leaflets to coapt, thereby preventing any proximal flow of medium through the flow path. One skilled in the art should understand that other suitable valve (38) design, such as tricuspid, flap, biased valve (38), known in the field could also be used here. Thus, the embodiments disclosed herein should not be viewed as limiting to the overall scope of the present teachings.
When the balloon (50) is in its delivery collapsed profile, the adhesive is stored inside the secondary cavity (52). The delivery system carries the collapsed balloon (50) into the treatment location. Once the balloon (50) is filled with injection medium, as the balloon (50) expands, the external porous layer (58) outside of the secondary cavity (52) also stretches, allowing the pores to be opened up. As the balloon (50) further expands, it squeezes the adhesive, letting it exit the pores (62). The adhesive is configured to bond the balloon (50) with the sternum.
In some embodiments, when filled with the injection medium, the barrier (56) separating the primary and second cavities (54, 52) expands more than the portion of the flexible outer wall outside of the secondary cavity (52). As a result, the difference in stretchability would allow the primary cavity (54) to expand at a greater rate than the secondary cavity, thereby pushing the tissue binding adhesive out of the pores (62) in the flexible wall (58).
In some embodiments, the balloon (50) is designed such that under certain inflation pressures, the adhesive remains inside the secondary cavity (52). Once a clinician is satisfied with the deployment and/or apposition, the balloon (50) is inflated to a final pressure and the adhesive is then pushed out to the external surface (58). In some embodiments, the adhesive is activated upon being exposed to the moisture of the anatomy.
According to one embodiment of the present teachings, the secondary cavity is configured to be positioned approximately to the right ventricle, so that after an adhesive is applied to the exterior surface, the balloon is bonded to the right ventricle. In another embodiment, the secondary cavity is configured to be positioned approximately to the right atrium, so that the adhesive is used to bond the balloon to the right atrium of the heart.
According to various embodiments, the delivery catheter (24) has a central lumen extending axially therethrough. The central lumen axially slideably receives an injection catheter (26) for filling the balloon (40). The injection catheter (26) comprises a tubular body having a proximal end, a distal end, and a medium injection lumen extending throughout the length from its distal end to a proximal hub where a connector is typically used for coupling the proximal hub to a source of inflation medium.
According to various embodiments, the injection catheter (26) extends distally, or retracts proximally, independent of the delivery catheter (24). The distal end of the injection catheter (26) has a generally tubular shape and is configured to be positioned within the valve (48) inside the injection port (44) of the balloon (40). The distal end of the delivery catheter (24) is dimensioned such that it fits through the injection port (44) of the balloon (40). In some embodiments, the delivery catheter (24) further includes a distal stop surface configured to stop the proximal movement of the device as shown in
In various embodiments, the valve (48) inside the injection tube (46) of the balloon (40) has a mechanism that prevents the injection medium from back-flowing to the outside of the balloon (10). According to some embodiments, once the injection catheter (26) is placed inside the injection port (44), a clinician can inject the inflation medium into the cavity (47) of the balloon (40).
After the balloon (40) is inflated to a desired size, a clinician in various embodiments stops the medium injection and removes the injection catheter (26). As shown in
As shown in
Following the inflation of the balloon (10), as shown in
In various embodiments, the balloon device expands in a step-wise fashion. In some embodiments, the balloon device expands to a first length. In some embodiments, the balloon device expands to a first width. In some embodiments, the balloon expands to a first length first and a first width second. In some embodiments, the balloon expands to a first width first and a first length second. In certain embodiments, the first length is predetermined. In certain embodiments, the first length is adjustable according to the patient's need. For example, as shown in
One skilled in the art should understand that the devices disclosed above are merely embodiments of the present teachings. For example, the balloons illustrated in the drawings show only one injection port for inflation. One skilled in the art should understand that more than one injection ports can be incorporated in the balloon design without departing from the scope of the present teachings. In another example, the implantation of the balloon at a desired treatment site is done through a subxiphoid puncture procedure. An alternative to such implantation route can be to insert the balloon into the right atrium through a standard right heart catheterization procedure followed by a puncture to the heart wall from inside the right atrium. A further alternative can be to insert the balloon into the right atrium, then to extend through the tricuspid valve into the right ventricle, and finally to puncture through the right ventricular wall. Other alternative implantation route(s) can also be incorporated, and all of which should be considered as part of the present teachings.
The methods and devices disclosed above are useful for treating one or more symptoms of tricuspid regurgitation, by reducing the right heart size. One skilled in the art would further recognize that devices according to the present teachings could be used to treat various symptoms of mitral regurgitation. For example, the devices disclosed herein can be deployed against the left heart.
Various embodiments have been illustrated and described herein by way of examples, and one of ordinary skill in the art would recognize that variations can be made without departing from the spirit and scope of the present teachings. The present teachings are capable of other embodiments or of being practiced or carried out in various other ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this present teachings belong. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present teachings. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The present application is a continuation of U.S. patent application Ser. No. 15/393,867 filed on Dec. 29, 2016, which claims priority to U.S. patent application Ser. No. 62/272,882, filed Dec. 30, 2015, each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3604488 | Wishart et al. | Sep 1971 | A |
3656185 | Carpentier | Apr 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3881366 | Bradley et al. | May 1975 | A |
3898701 | La Russa | Aug 1975 | A |
4042979 | Angell | Aug 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4214349 | Munch | Jul 1980 | A |
4261342 | Aranguren Duo | Apr 1981 | A |
4290151 | Massana | Sep 1981 | A |
4434828 | Trincia | Mar 1984 | A |
4473928 | Johnson | Oct 1984 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4625727 | Leiboff | Dec 1986 | A |
4712549 | Peters et al. | Dec 1987 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
4961738 | Mackin | Oct 1990 | A |
5041090 | Scheglov | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5300034 | Behnke et al. | Apr 1994 | A |
5325845 | Adair | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5346498 | Greelis et al. | Sep 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5593424 | Northrup, III | Jan 1997 | A |
5601572 | Middleman et al. | Feb 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5643317 | Pavcnik et al. | Jul 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5676653 | Taylor et al. | Oct 1997 | A |
5683402 | Cosgrove et al. | Nov 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702398 | Tarabishy | Dec 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5716397 | Myers | Feb 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730150 | Peppel et al. | Mar 1998 | A |
5733331 | Peredo | Mar 1998 | A |
5749371 | Zadini et al. | May 1998 | A |
5752963 | Allard et al. | May 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5810746 | Goldstein et al. | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6042554 | Rosenman et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074417 | Peredo | Jun 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6132390 | Cookston et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6165119 | Schweich, Jr. et al. | Dec 2000 | A |
6174332 | Loch et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6228032 | Eaton et al. | May 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6328746 | Gambale | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6451054 | Stevens | Sep 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6503274 | Howanec, Jr. et al. | Jan 2003 | B1 |
6524338 | Gundry | Feb 2003 | B1 |
6530952 | Vesely | Mar 2003 | B2 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6554845 | Fleenor et al. | Apr 2003 | B1 |
6564805 | Garrison et al. | May 2003 | B2 |
6565603 | Cox | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6592593 | Parodi et al. | Jul 2003 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6651671 | Donion et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6682558 | Tu et al. | Jan 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764310 | Ichihashi et al. | Jul 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6764810 | Ma et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoen et al. | Sep 2004 | B1 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6802319 | Stevens et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6855126 | Flinchbaugh | Feb 2005 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6960217 | Bolduc | Nov 2005 | B2 |
6964684 | Ortiz et al. | Nov 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6976995 | Mathis et al. | Dec 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7007798 | Happonen et al. | Mar 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077850 | Kortenbach | Jul 2006 | B2 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7150737 | Purdy et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7186264 | Liddicoat et al. | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7192443 | Solem et al. | Mar 2007 | B2 |
7220277 | Arru et al. | May 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7226477 | Cox | Jun 2007 | B2 |
7226647 | Kasperchik et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7311729 | Mathis et al. | Dec 2007 | B2 |
7314485 | Mathis | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7329279 | Haug et al. | Feb 2008 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7338511 | Mirigian | Mar 2008 | B2 |
7361190 | Shaoulian et al. | Apr 2008 | B2 |
7364588 | Mathis et al. | Apr 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7431726 | Spence et al. | Oct 2008 | B2 |
7442207 | Rafiee | Oct 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7510577 | Moaddeb et al. | Mar 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7559936 | Levine | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7585321 | Cribier | Sep 2009 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7591826 | Alferness et al. | Sep 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7686822 | Shayani | Mar 2010 | B2 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7704269 | St. Goar et al. | Apr 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7722666 | Lafontaine | May 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7883538 | To et al. | Feb 2011 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7927371 | Navia et al. | Apr 2011 | B2 |
7942927 | Kaye et al. | May 2011 | B2 |
7947056 | Griego et al. | May 2011 | B2 |
7955315 | Feinberg et al. | Jun 2011 | B2 |
7955377 | Melsheimer | Jun 2011 | B2 |
7981152 | Webler et al. | Jul 2011 | B1 |
7992567 | Hirotsuka et al. | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
7993397 | Lashinski et al. | Aug 2011 | B2 |
8012201 | Lashinski et al. | Sep 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8034103 | Burriesci et al. | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070804 | Hyde et al. | Dec 2011 | B2 |
8070805 | Vidlund et al. | Dec 2011 | B2 |
8075616 | Solem et al. | Dec 2011 | B2 |
8100964 | Spence | Jan 2012 | B2 |
8123801 | Milo | Feb 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8142496 | Berreklouw | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8152844 | Rao et al. | Apr 2012 | B2 |
8163013 | Machold et al. | Apr 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8187324 | Webler et al. | May 2012 | B2 |
8202315 | Hlavka et al. | Jun 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216302 | Wilson et al. | Jul 2012 | B2 |
8231671 | Kim | Jul 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8265758 | Policker et al. | Sep 2012 | B2 |
8277502 | Miller et al. | Oct 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8287591 | Keidar et al. | Oct 2012 | B2 |
8292884 | Levine et al. | Oct 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8328868 | Paul et al. | Dec 2012 | B2 |
8333777 | Schaller et al. | Dec 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8343174 | Goldfarb et al. | Jan 2013 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8349002 | Milo | Jan 2013 | B2 |
8353956 | Miller et al. | Jan 2013 | B2 |
8357195 | Kuehn | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8419825 | Burgler et al. | Apr 2013 | B2 |
8430926 | Kirson | Apr 2013 | B2 |
8449573 | Chu | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8460370 | Zakay | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8475491 | Milo | Jul 2013 | B2 |
8475525 | Maisano et al. | Jul 2013 | B2 |
8480732 | Subramanian | Jul 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523940 | Richardson et al. | Sep 2013 | B2 |
8551161 | Dolan | Oct 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8608797 | Gross et al. | Dec 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8728155 | Montorfano et al. | May 2014 | B2 |
8734467 | Miller et al. | May 2014 | B2 |
8734699 | Heideman et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8778021 | Cartledge | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
8795355 | Alkhatib | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808368 | Maisano et al. | Aug 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852261 | White | Oct 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870949 | Rowe | Oct 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8889861 | Skead et al. | Nov 2014 | B2 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8911494 | Hammer et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8926697 | Gross et al. | Jan 2015 | B2 |
8932343 | Alkhatib et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8940044 | Hammer et al. | Jan 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8951286 | Sugimoto et al. | Feb 2015 | B2 |
8961594 | Maisano et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8961596 | Maisano et al. | Feb 2015 | B2 |
8961602 | Kovach et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8992604 | Gross et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011520 | Miller et al. | Apr 2015 | B2 |
9011530 | Reich et al. | Apr 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9107749 | Bobo et al. | Aug 2015 | B2 |
9119719 | Zipory et al. | Sep 2015 | B2 |
9125632 | Loulmet et al. | Sep 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9138316 | Bielefeld | Sep 2015 | B2 |
9173646 | Fabro | Nov 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9180007 | Reich et al. | Nov 2015 | B2 |
9192472 | Gross et al. | Nov 2015 | B2 |
9198756 | Aklog et al. | Dec 2015 | B2 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9326857 | Cartledge et al. | May 2016 | B2 |
9414921 | Miller et al. | Aug 2016 | B2 |
9427316 | Schweich, Jr. et al. | Aug 2016 | B2 |
9474606 | Zipory et al. | Oct 2016 | B2 |
9526613 | Gross et al. | Dec 2016 | B2 |
9561104 | Miller et al. | Feb 2017 | B2 |
9693865 | Gilmore et al. | Jul 2017 | B2 |
9730793 | Reich et al. | Aug 2017 | B2 |
9788941 | Hacohen | Oct 2017 | B2 |
9801720 | Gilmore et al. | Oct 2017 | B2 |
9907547 | Gilmore et al. | Mar 2018 | B2 |
10368852 | Gerhardt et al. | Aug 2019 | B2 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20020022862 | Grafton et al. | Feb 2002 | A1 |
20020082525 | Oslund et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020169358 | Mortier et al. | Nov 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20020188301 | Dallara et al. | Dec 2002 | A1 |
20020188350 | Arru et al. | Dec 2002 | A1 |
20020198586 | Inoue | Dec 2002 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078653 | Vesely et al. | Apr 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20040002735 | Lizardi et al. | Jan 2004 | A1 |
20040010287 | Bonutti | Jan 2004 | A1 |
20040019359 | Worley et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040059413 | Argento | Mar 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040133374 | Kattan | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040176788 | Opolski | Sep 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040225233 | Frankowski et al. | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050055038 | Kelleher et al. | Mar 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050090834 | Chiang et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119734 | Spence et al. | Jun 2005 | A1 |
20050125002 | Baran et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050159728 | Armour et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050187568 | Klenk et al. | Aug 2005 | A1 |
20050192596 | Jugenheimer et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050234481 | Waller | Oct 2005 | A1 |
20050240199 | Martinek et al. | Oct 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20050267571 | Spence et al. | Dec 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060004443 | Liddicoat et al. | Jan 2006 | A1 |
20060020326 | Bolduc et al. | Jan 2006 | A9 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060025858 | Aiameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060041319 | Taylor et al. | Feb 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074486 | Liddicoat et al. | Apr 2006 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060095009 | Lampropoulos et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060149280 | Harvie et al. | Jul 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060184240 | Jimenez et al. | Aug 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060206203 | Yang et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060241622 | Zergiebel | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287661 | Bolduc et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20070001627 | Lin et al. | Jan 2007 | A1 |
20070010857 | Sugimoto et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070021781 | Jervis et al. | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070027536 | Mihaljevic et al. | Feb 2007 | A1 |
20070038221 | Fine et al. | Feb 2007 | A1 |
20070038293 | St.Goar et al. | Feb 2007 | A1 |
20070038296 | Navia et al. | Feb 2007 | A1 |
20070039425 | Wang | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070083235 | Jervis et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070106328 | Wardle et al. | May 2007 | A1 |
20070112359 | Kimura et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173931 | Tremulis et al. | Jul 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070239208 | Crawford | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070255397 | Ryan et al. | Nov 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070270755 | Von Oepen et al. | Nov 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070295172 | Swartz | Dec 2007 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080027483 | Cartledge et al. | Jan 2008 | A1 |
20080027555 | Hawkins | Jan 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080058595 | Snoke et al. | Mar 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065204 | Macoviak et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080086138 | Stone et al. | Apr 2008 | A1 |
20080086164 | Rowe | Apr 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097523 | Bolduc et al. | Apr 2008 | A1 |
20080103572 | Gerber | May 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080167713 | Boiling | Jul 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080195200 | Vidlund et al. | Aug 2008 | A1 |
20080208265 | Frazier et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080262480 | Stahler et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275300 | Rothe et al. | Nov 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080275551 | Alfieri | Nov 2008 | A1 |
20080281353 | Aranyi et al. | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080294251 | Annest et al. | Nov 2008 | A1 |
20080300537 | Bowman | Dec 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20090028670 | Garcia et al. | Jan 2009 | A1 |
20090043381 | Macoviak et al. | Feb 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090062866 | Jackson | Mar 2009 | A1 |
20090076547 | Sugimoto et al. | Mar 2009 | A1 |
20090076586 | Hauser et al. | Mar 2009 | A1 |
20090076600 | Quinn | Mar 2009 | A1 |
20090082797 | Fung et al. | Mar 2009 | A1 |
20090088837 | Gillinov et al. | Apr 2009 | A1 |
20090093670 | Annest et al. | Apr 2009 | A1 |
20090093877 | Keidar et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105816 | Olsen et al. | Apr 2009 | A1 |
20090125102 | Cartledge et al. | May 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090177274 | Scorsin et al. | Jul 2009 | A1 |
20090248148 | Shaolian et al. | Oct 2009 | A1 |
20090254103 | Deutsch | Oct 2009 | A1 |
20090264994 | Saadat | Oct 2009 | A1 |
20090287231 | Brooks et al. | Nov 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
20090292353 | Yoganathan et al. | Nov 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100001038 | Levin et al. | Jan 2010 | A1 |
20100010538 | Juravic et al. | Jan 2010 | A1 |
20100023118 | Medlock et al. | Jan 2010 | A1 |
20100030014 | Ferrazzi | Feb 2010 | A1 |
20100030328 | Seguin et al. | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100049213 | Serina et al. | Feb 2010 | A1 |
20100063542 | van der Burg et al. | Mar 2010 | A1 |
20100063550 | Felix et al. | Mar 2010 | A1 |
20100063586 | Hasenkam et al. | Mar 2010 | A1 |
20100070028 | Sugimoto | Mar 2010 | A1 |
20100076499 | McNamara et al. | Mar 2010 | A1 |
20100094248 | Nguyen et al. | Apr 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100114180 | Rock et al. | May 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20100121435 | Subramanian et al. | May 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100152845 | Bloom et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100179574 | Longoria et al. | Jul 2010 | A1 |
20100210899 | Schankereli | Aug 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234935 | Bashiri et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100249920 | Bolling et al. | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100262233 | He | Oct 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100292785 | Seguin et al. | Nov 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20100305475 | Hinchliffe | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110004210 | Johnson et al. | Jan 2011 | A1 |
20110004298 | Lee et al. | Jan 2011 | A1 |
20110009956 | Cartledge et al. | Jan 2011 | A1 |
20110011917 | Louimet | Jan 2011 | A1 |
20110015476 | Franco | Jan 2011 | A1 |
20110026208 | Utsuro et al. | Feb 2011 | A1 |
20110029066 | Gilad et al. | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110060407 | Ketai et al. | Mar 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110118832 | Punjabi | May 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110144703 | Krause et al. | Jun 2011 | A1 |
20110184510 | Maisano et al. | Jul 2011 | A1 |
20110202130 | Cartledge et al. | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110230941 | Markus | Sep 2011 | A1 |
20110230961 | Langer et al. | Sep 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110257433 | Walker | Oct 2011 | A1 |
20110257633 | Cartledge et al. | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20110276062 | Bolduc | Nov 2011 | A1 |
20110288435 | Christy et al. | Nov 2011 | A1 |
20110301498 | Maenhout et al. | Dec 2011 | A1 |
20120029627 | Salahieh et al. | Feb 2012 | A1 |
20120035712 | Maisano et al. | Feb 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120078355 | Zipory et al. | Mar 2012 | A1 |
20120078359 | Li et al. | Mar 2012 | A1 |
20120089022 | House et al. | Apr 2012 | A1 |
20120095552 | Spence et al. | Apr 2012 | A1 |
20120109155 | Robinson et al. | May 2012 | A1 |
20120150290 | Gabbay | Jun 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120158023 | Mitelberg et al. | Jun 2012 | A1 |
20120179086 | Shank et al. | Jul 2012 | A1 |
20120191123 | Brister et al. | Jul 2012 | A1 |
20120191182 | Hauser et al. | Jul 2012 | A1 |
20120203360 | Tagliabue | Aug 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120271198 | Whittaker et al. | Oct 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20120296417 | Hill et al. | Nov 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120310840 | Colombo et al. | Dec 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20130018459 | Maisano et al. | Jan 2013 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130046380 | Maisano et al. | Feb 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130085529 | Housman | Apr 2013 | A1 |
20130090724 | Subramanian et al. | Apr 2013 | A1 |
20130096673 | Hill et al. | Apr 2013 | A1 |
20130116776 | Gross et al. | May 2013 | A1 |
20130123910 | Cartledge et al. | May 2013 | A1 |
20130131791 | Hlavka et al. | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190863 | Cail et al. | Jul 2013 | A1 |
20130204361 | Adams et al. | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130231701 | Voss et al. | Sep 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130297013 | Klima et al. | Nov 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20140081394 | Keranen et al. | Mar 2014 | A1 |
20140088368 | Park | Mar 2014 | A1 |
20140094826 | Sutherland et al. | Apr 2014 | A1 |
20140094903 | Miller et al. | Apr 2014 | A1 |
20140094906 | Spence et al. | Apr 2014 | A1 |
20140114390 | Tobis et al. | Apr 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140142619 | Serina et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140148849 | Serina et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140163670 | Alon et al. | Jun 2014 | A1 |
20140163690 | White | Jun 2014 | A1 |
20140188108 | Goodine et al. | Jul 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140188215 | Hlavka et al. | Jul 2014 | A1 |
20140194976 | Starksen et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140243859 | Robinson | Aug 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140243963 | Sheps et al. | Aug 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140276648 | Hammer et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20140303720 | Sugimoto et al. | Oct 2014 | A1 |
20140309661 | Sheps et al. | Oct 2014 | A1 |
20140309730 | Alon et al. | Oct 2014 | A1 |
20140343668 | Zipory et al. | Nov 2014 | A1 |
20140350660 | Cocks et al. | Nov 2014 | A1 |
20140350662 | Vaturi | Nov 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150018940 | Quill et al. | Jan 2015 | A1 |
20150025553 | Del Nido et al. | Jan 2015 | A1 |
20150051697 | Spence et al. | Feb 2015 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
20150112429 | Khairkhahan et al. | Apr 2015 | A1 |
20150112432 | Reich et al. | Apr 2015 | A1 |
20150119936 | Gilmore et al. | Apr 2015 | A1 |
20150119979 | Maisano et al. | Apr 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150164637 | Khairkhahan et al. | Jun 2015 | A1 |
20150182336 | Zipory et al. | Jul 2015 | A1 |
20150209558 | Charlebois et al. | Jul 2015 | A1 |
20150272586 | Herman et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150351910 | Gilmore et al. | Dec 2015 | A1 |
20150352337 | Iga | Dec 2015 | A1 |
20160008132 | Cabiri et al. | Jan 2016 | A1 |
20160029920 | Kronstrom et al. | Feb 2016 | A1 |
20160058557 | Reich et al. | Mar 2016 | A1 |
20160113767 | Miller et al. | Apr 2016 | A1 |
20160120645 | Alon | May 2016 | A1 |
20160158008 | Miller et al. | Jun 2016 | A1 |
20160242762 | Gilmore et al. | Aug 2016 | A1 |
20160262755 | Zipory et al. | Sep 2016 | A1 |
20160302917 | Schewel | Oct 2016 | A1 |
20160317302 | Madjarov et al. | Nov 2016 | A1 |
20160361058 | Bolduc et al. | Dec 2016 | A1 |
20160361168 | Gross et al. | Dec 2016 | A1 |
20160361169 | Gross et al. | Dec 2016 | A1 |
20170000609 | Gross et al. | Jan 2017 | A1 |
20170100119 | Baird et al. | Apr 2017 | A1 |
20170224489 | Starksen et al. | Aug 2017 | A1 |
20170245993 | Gross et al. | Aug 2017 | A1 |
20180049875 | Iflah et al. | Feb 2018 | A1 |
20180140420 | Hayoz et al. | May 2018 | A1 |
20180228608 | Sheps et al. | Aug 2018 | A1 |
20180256334 | Sheps et al. | Sep 2018 | A1 |
20180318080 | Quill et al. | Nov 2018 | A1 |
20190038411 | Alon | Feb 2019 | A1 |
20190175344 | Khairkhahan | Jun 2019 | A1 |
20190175345 | Schaffner et al. | Jun 2019 | A1 |
20190240023 | Spence et al. | Aug 2019 | A1 |
20190321049 | Herman et al. | Oct 2019 | A1 |
20200015971 | Brauon et al. | Jan 2020 | A1 |
20200289267 | Peleg et al. | Sep 2020 | A1 |
20200337840 | Reich | Oct 2020 | A1 |
20210015475 | Lau | Jan 2021 | A1 |
20210059820 | Clark et al. | Mar 2021 | A1 |
20210085461 | Neumark et al. | Mar 2021 | A1 |
20210093453 | Peleg et al. | Apr 2021 | A1 |
20220096232 | Skaro et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
102869318 | Jan 2013 | CN |
113331995 | Sep 2021 | CN |
1034753 | Sep 2000 | EP |
3531975 | Sep 2019 | EP |
9205093 | Apr 1992 | WO |
9846149 | Oct 1998 | WO |
02085250 | Feb 2003 | WO |
03047467 | Jun 2003 | WO |
2008112740 | Sep 2008 | WO |
2010000454 | Jan 2010 | WO |
2012004679 | Jan 2012 | WO |
2012178115 | Dec 2012 | WO |
2012176195 | Mar 2013 | WO |
2014064964 | May 2014 | WO |
2014134183 | Sep 2014 | WO |
2020240282 | Dec 2020 | WO |
2021014440 | Jan 2021 | WO |
2021038559 | Mar 2021 | WO |
2021038560 | Mar 2021 | WO |
Entry |
---|
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009). |
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319. |
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522. |
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493. |
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001). |
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000). |
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011). |
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008. |
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008. |
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014). |
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008. |
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. |
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005). |
Dictionary.com definition of “lock”, Jul. 29, 2013. |
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003). |
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154. |
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007. |
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008. |
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. |
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech insight 8(3): 73, 99-108 (2006). |
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995). |
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484. |
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994). |
Swenson, O. An experimental implantable urinary sphincter. Invest. Urol, Sep. 1976;14(2):100-3. |
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391. |
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545. |
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978. |
Number | Date | Country | |
---|---|---|---|
20200383786 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62272882 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15393867 | Dec 2016 | US |
Child | 17001597 | US |