The present invention relates generally to information networks and specifically to transmitting information such as media information over communication lines such as coaxial conductor cables (hereinafter, “coax”).
Home networking over coax is a known technology which has vast commercial potential.
The Multimedia over Coax Alliance (“MoCA™”), at its website mocalliance.org, provides an example of a suitable specification (MoCA 1.0) for transmitting digital video and entertainment information through coaxial cable deployed in a building, home or other structure or region. The specification has been distributed to an open membership.
MoCA 1.0 is but one example of a suitable home networking technology. MoCA and similar technologies tap into the unused bandwidth available on deployed coax. More than 70% of homes in the United States have deployed coax. Many have coax in one or more primary entertainment locations, such as family rooms, media rooms and master bedrooms. MoCA or other suitable technologies allow homeowners to utilize the coax as a networking system and to deliver other entertainment and information programming with high quality of service (“QoS”).
The technology underlying MoCA, for example, provides high speed (270 mbps), high QoS, and the innate security of a shielded, wired connection combined with state-of-the-art packet-level encryption. Coax is designed for carrying high bandwidth video. Today, it is regularly used to securely deliver millions of dollars of pay-per-view and premium video content on a daily basis. The MoCA network, or other similar suitable networks, can also be used as a backbone for multiple wireless access points used to extend the reach of wireless communication throughout a home.
MoCA, or other similar suitable technologies, can typically provide a consistent, high throughput, high quality connection through deployed coaxial cables to video devices in the home without affecting the analog or digital services present on the cable. MoCA provides a primary link for digital entertainment, and may also act in concert with other wired and wireless networks to extend entertainment throughout the home.
MoCA works with access technologies such as ADSL and VDSL services or Fiber to the Home (FTTH), that typically enter the home on a twisted pair or on an optical fiber, operating in a frequency band from a few hundred kilohertz to 8.5 MHz for ADSL and 12 MHZ for VDSL. As services reach the home on via xDSL or FTTH, they may be routed via MoCA technology and the in-home coax to the video devices. Cable functionalities, such as video, voice and Internet access, may be provided to homes, via coaxial cable, by cable operators, and use coaxial cables running within the homes to reach individual cable service consuming devices locating in various rooms within the home. Typically, MoCA type functionalities run in parallel with the cable functionalities, on different frequencies.
Coax infrastructure inside a house typically includes coaxial wires and splitters. Splitters used in homes typically have one input and two or more outputs and are designed to transfer signals from input to outputs in the forward direction, or from outputs to input in the backward direction and to isolate splitter outputs and prevent signals from flowing room/outlet to room/outlet. Isolation is useful in order to a) reduce interference from other devices and b) maximize power transfer from Point Of Entry (POE) to outlets for best TV reception.
The MoCA technology is specifically designed to go backwards through splitters (insertion) and go from splitter output to output (isolation). All outlets in a house can be reached from each other by a single “isolation jump” and a number of “insertion jumps”. Typically, isolation jumps have an attenuation of 5 to 40 dB and each insertion jump attenuates approximately 3 dB. MoCA has a dynamic range in excess of 55 dB while supporting 200 Mbps throughput. Therefore MoCA can work effectively through a significant number of splitters.
MoCA is a managed network unlike some other home networking technologies. It is specifically designed to support streaming video without packet loss providing very high video quality between outlets.
Digital cable programming is delivered with threshold Packet Error Rate (PER) of below 1e-6. The home network may preferably have similar or better performance so as not to degrade viewing.
The disclosures of any publications and patent documents mentioned in the specification, and of the publications and patent documents cited therein directly or indirectly, are hereby incorporated by reference.
The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, and in which:
The present invention provides improved systems and methods for streaming media over coax.
Some embodiments of the invention may include a system for transmitting packets over a network of communication channels. The system may include a set of nodes comprising at least first and second nodes and a network access coordinator operative to coordinate the access of the set of nodes to a synchronous network of channels, wherein, if at least one individual packet has been transmitted from the first node to the second node which did not receive at least one packet, the second node is operative to send a retransmission request to the network access coordinator requesting retransmission of at least one individual packet.
The network may have a Coordinated MAC to allow contention free access. The coordinated MAC may be a home network coordinated MAC such as, for example, that described in the MoCA MAC/PHY SPECIFICATION v. 1.0 (“the MoCA Specification”), Feb. 22, 2006, which is hereby incorporated herein in its entirety. The MoCA Specification identifies features of a home network over existing coaxial cable. The method may allow the expansion of the coordinated network MAC to other media in the home like power lines and phone lines (or wireless) to improve the accessibility of the network to rooms in the home that are not accessible via coaxial cables.
The retransmission request for an individual packet which failed to transmit in MAP cycle N may occur in MAP cycle N+1.
The network access coordinator may be operative to receive and to accede to the retransmission request.
The retransmission of an individual packet which failed to transmit in MAP cycle N may occur in MAP cycle N+2.
Some embodiments of the invention may include a system for transmitting packets over a network of communication channels. The system may include a set of nodes interconnected by a synchronous network of channels and a network access coordinator operative to coordinate the access of the set of nodes to the synchronous network of channels including providing a plurality of slots in each MAP cycle for packet transmission requests sent to the coordinator by individual nodes in the set of nodes, and wherein at least one individual node in the set of nodes is operative to utilize an individual slot from among the plurality of slots to transmit to the coordinator both a reservation request and a retransmission request, the reservation request including a request to transmit a first packet to a first additional node and the retransmission request including a request that a second additional node retransmit a second packet previously unsuccessfully transmitted from the second additional node to the individual node.
In some embodiments, the network access coordinator may be operative to provide a plurality of slots in each MAP cycle for packet transmission requests sent to the coordinator by individual nodes in the set of nodes. At least one individual node in the set of nodes may be operative to utilize an individual slot from among the plurality of slots to transmit to the coordinator both a reservation request and a retransmission request, the reservation request including a request to transmit a first packet to a first additional node and the retransmission request including a request that a second additional node retransmit a second packet previously unsuccessfully transmitted from the second additional node to the individual node.
In some embodiments, if a plurality of packets have been transmitted from the first node to the second node which did not receive at least some of the plurality of packets, the second node may be operative to send a single burst to the network access coordinator. The burst may include retransmission requests requesting retransmission of those packets from among the plurality of packets which were not received.
In some embodiments, a retransmission request sent by the second node in a MAP cycle N may requests retransmission of only those packets which were not received by the second node in a previous MAP cycle N−1.
In some embodiments, overhead information which is common to the reservation request and the re-transmission request may be transmitted by the individual node to the coordinator only once.
In some embodiments, if the first node sent the second node, in a MAP cycle N1, an aggregation frame including a plurality of packets only some of which were received by the second node, in MAP cycle N, the second node may refrain from requesting retransmission of those packets, from among those sent in MAP cycle N−1, which were successfully received and successfully de-aggregated by the second node.
In some embodiments, at least one retransmission request may include an indication of a slot duration to be used to retransmit the individual packet.
In some embodiments, if the first node sent the second node , in a MAP cycle N−1, an aggregation frame including a plurality of packets only some of which were received by the second node, the retransmission request sent by the second node to the network access coordinator may request retransmission of less than all of the plurality of packets and may include an indication, computed by the second node, of a slot duration to be used to retransmit the packets for which retransmission is requested.
In some embodiments, a retransmission request sent by the individual node in a MAP cycle N requests retransmission of only those packets which were not received by the individual node in a previous MAP cycle N−1.
In some embodiments, if in a MAP cycle N−1, the second additional node sent the individual node an aggregation frame including a plurality of packets, only some of which were received by the individual node, in MAP cycle N, the individual node may refrain from requesting retransmission of those packets, from among those sent in MAP cycle N-1, which were successfully received and successfully de-aggregated by the individual node.
In some embodiments, if in a MAP cycle N−1, the second additional node sent the individual node an aggregation frame including a plurality of packets only some of which were received by the individual node, the retransmission request sent by the individual node to the network access coordinator may request retransmission of less than all of the plurality of packets and may include an indication, computed by the individual node, of a slot duration to be used to retransmit the packets for which retransmission is requested.
Some embodiments of the invention may include a method for transmitting packets over a network of communication channels. The method may include coordinating the access of a set of nodes to a synchronous network of channels interconnecting the set of nodes. The coordinating may include providing a plurality of slots in each MAP cycle for packet transmission requests sent to a coordinator by individual nodes in the set of nodes. In some embodiments, at least one individual node in the set of nodes may be operative to utilize an individual slot from among the plurality of slots to transmit to the coordinator both a reservation request and a retransmission request, the reservation request including a request to transmit a first packet to a first additional node and the retransmission request including a request that a second additional node retransmit a second packet previously unsuccessfully transmitted from the second additional node to the individual node.
Some embodiments may include a method for transmitting packets over a network of communication channels. The method may include coordinating the access of a set of nodes, which may include at least first and second nodes, to a synchronous network of channels interconnecting the set of nodes. In some embodiments, if at least one individual packet has been transmitted from the first node to the second node which did not receive at least one packet, the second node may be operative to send a retransmission request to a network access coordinator requesting retransmission of at least one individual packet.
Typically, as a result of the de-aggregation process, the Rx node knows the size of a frame since size information is included in the frame's header. The Rx node may know some or all of the sizes of the individual packets in the frame either because this information was included in packet headers, and the packet headers were received even if their associated packets were not, or because the information regarding sizes of packets was included in the frame header. If a particular packet size is not known, the Rx node typically requests that all packets from that packet onward be re-transmitted. If all packet sizes are known, the Rx typically requests re-transmission only of missing packets and easily indicates a suitable slot duration as the sum of the known sizes of all missing packets.
Positive or Negative Acknowledgements for properly received packets are typically effected via the Reservation Request messages from the receiving node to the network coordinator.
An acknowledgment message (“ACK”) is typically a single message referring to a burst of received packets. In the context of packet aggregation distinct negative acknowledgment messages (“NACKs”) typically correspond to individual packets in the aggregated received burst.
The network coordinator may include an Automatic Retransmission request (“ARQ”) mechanism. If so, it may be used as a proxy to convey one or more ACK messages to the transmitting node and to retransmit one or more improperly received packets. The ARQ mechanism typically does not require additional bandwidth, in contrast to conventional retransmission mechanisms.
Some embodiments of the invention may include a method for retransmitting a packet before initial transmission of a next-queued packet. Packet order is thus retained by not transmitting the next-queued packet before receiving an acknowledgement of the already-transmitted packet.
Table 1 lists abbreviations that are used in the description and FIGS. herein.
One prior art MAC Access Method is described in the MoCA MAC/PHY SPECIFICATION v1.0, Feb. 22, 2006.
The
Typically, there is an Inter Frame Gap (IFG) between any two bursts transmitted, and there is a minimum burst size. If data size is smaller than the Min Burst Size an extension packet size may be allocated as shown in
The IFG as well as the Min Burst Size typically cause additional overhead and reduce the effective data rate of the network, however, they contribute toward reliable operation of the modem.
Retransmission is useful for increasing the robustness of data transfers, because a packet that was received with an error can be retransmitted. In particular, retransmissions are common in media that are susceptible to impulse noises. Impulse noises are created by home appliances as well as other noise sources and are received on wired media such as phone lines and power lines. Other media, such as Ethernet CATS wires and coaxial wires, are much less susceptible to impulse noises due to their better isolation from external noises. An impulse noise can be high enough in amplitude and long enough in time to cause packet errors or even packet loss.
If a coordinated network is to operate over noisy media (such as telephone lines or power lines) a Retransmission Protocol (“RP”) is typically employed to provide appropriate network performance. The coordinated network shown in
In some embodiments of the invention, the network coordinator may select from several retransmission protocols. One protocol may be set as a default method that is implemented by all nodes. A general algorithm for an RP is as follows:
B. If the receiving node does not receive the packet correctly, the receiving node sends a Retransmission Request (RTR).
The maximum number of retransmissions is typically a parameter of a data stream. The stream may include video data. The stream may include voice data. The stream may include browsing data. The stream may include any suitable type of data. After the transmitting node has sent the maximum number of retransmissions, no further attempts to transmit the packet are made. The receiving node typically forwards the received packets in the order of transmission by the transmitting node. If a packet is missing, the receiver node typically does not forward the next packet until the missing packet is received unless the maximum number of retransmissions has been reached.
Five illustrative ARQ protocol-based methods, and three more general retransmission methods based thereupon, are now described. In some embodiments of the invention, nodes may select an ARQ protocol during the establishment of a connection. One of the options is typically set as a default method that is implemented by all nodes. For example, Method #1 can be the default method. In general, ARQ protocols follow an algorithm such as:
A. An indication that the frame is in Retransmission Protocol;
B. An indication that the method of RP is preferred over RQ-T; and
C. Single or burst RQ-T.
A. If single RQ-T is used, a slot is allocated for transmission of the first frame by the TX node, a slot is then allocated for transmission of the single RQ-T message by the RX node, and finally, slots are allocated for the rest of the frames deemed “required” by the TX node.
B. If a burst of RQ-T is used, slots are allocated for transmission of all frames deemed “required” by the TX node, and one slot is then allocated for transmission of the burst RQ-T message by the RX node.
A short RQ-S signal is easy to distinguish from other network signals. A short RQ-S may use a commonly known (MoCA, e.g.) PHY preamble used by the network with different parameters. For example, an RQ-S with R-ACK indication may comprise 8 S signals followed by 4 L2 series followed by an inverted 4 L2 series followed by an S quiet period and two L1 sequences. An RQ-S with RTR indication may comprise 8 S signals followed by 4 L2 series followed by inverted 4 L2 series followed by an S quiet period and two L4 sequences, such as that shown below.
A. That the frame is in Retransmission Protocol; and
B. That the method of RP is preferred over RQ-C.
A. The sequence of frame s for retransmission;
B. If the frame was an aggregation frame and a portion of its packets was received incorrectly, send the packet sequence of the missed packets;
C. The durations used for retransmission of these frames. If the whole frame is to be retransmitted, the duration may be taken from the RX data slot, whereas if only a portion of the frame is to be retransmitted, the duration may be computed according to the PRY profile of the TX and RX nodes.
Methods 6 or 8 may be usable for high bit rate stream such as RD video.
Method 7 may be usable for low bit rate stream such as voice in which the RX node is only a listener. This method may reduce bandwidth when the RR is allocated infrequently or not at all for the TX or RX nodes. The RR is not allocated to the TX node when the stream is sent in an unsolicited manner.
Method 8 may save bandwidth for RP by merging the RP in the RR slots. To the extent that the RX node receives streams in RP, the saved time increases.
It is appreciated that for clarity the description throughout the specification, including specific examples of parameter values provided herein, is sometimes specific to certain protocols such as the MoCA and/or Ethernet protocols however, this is not intended to be limiting and the invention may be suitably generalized to other cable protocols and/or other packet protocols. For example, use of terms, such as Map, Allocation Unit, Reservation Request etc. which may be specific to a particular protocol such as MoCA or Ethernet, to describe a particular feature or embodiment is not intended to limit the scope of that feature or embodiment to that protocol specifically; instead the terms are used generally and are each intended to include parallel and similar terms defined under other protocols.
It is appreciated that software components of the present invention including programs and data may, if desired, be implemented in ROM (read only memory) form including CD-ROMs, EPROMs and EEPROMs, or may be stored in any other suitable computer-readable medium such as but not limited to disks of various kinds, cards of various kinds and RAMs. Components described herein as software may, alternatively, be implemented wholly or partly in hardware, if desired, using conventional techniques.
Features of the present invention which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, features of the invention which are described for brevity in the context of a single embodiment may be provided separately or in any suitable subcombination.
This application claims priority as a continuation application from U.S. patent application Ser. No. 12/731,291, filed on Mar. 25, 2010, which claims priority as a continuation application from U.S. patent application Ser. No. 11/942,114, filed on Nov. 19, 2007, issued as U.S. Pat. No. 7,742,495, which is a nonprovisional of the following U.S. Provisional Applications: U.S. Provisional Application No. 60/866,532, entitled, “A METHOD FOR PACKET AGGREGATION IN A COORDINATED HOME NETWORK,” filed on Nov. 20, 2006; U.S. Provisional Application No. 60/866,527, entitled, “RETRANSMISSION IN COORDINATED HOME NETWORK,” filed on Nov. 20, 2006; U.S. Provisional Application No. 60/866,519, entitled, “IQ IMBALANCE CORRECTION USING 2-TONE SIGNAL IN MULTI-CARRIER RECEIVERS,” filed on Nov. 20, 2006; U.S. Provisional Application No. 60/907,111, entitled, “SYSTEM AND METHOD FOR AGGREGATION OF PACKETS FOR TRANSMISSION THROUGH A COMMUNICATIONS NETWORK,” filed on Mar. 21, 2007; U.S. Provisional Application No. 60/907,126, entitled, “MAC TO PHY INTERFACE APPARATUS AND METHODS FOR TRANSMISSION OF PACKETS THROUGH A COMMUNICATIONS NETWORK,” filed on Mar. 22, 2007; U.S. Provisional Application No. 60/907,819, entitled, “SYSTEMS AND METHODS FOR RETRANSMITTING PACKETS OVER A NETWORK OF COMMUNICATION CHANNELS,” filed on Apr. 18, 2007; and U.S. Provisional Application No. 60/940,998, entitled “MOCA AGGREGATION,” filed on May 31, 2007. All of the foregoing applications are hereby incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3836888 | Boenke et al. | Sep 1974 | A |
4413229 | Grant | Nov 1983 | A |
4536875 | Kume et al. | Aug 1985 | A |
4608685 | Jain et al. | Aug 1986 | A |
4893326 | Duran et al. | Jan 1990 | A |
5052029 | James et al. | Sep 1991 | A |
5170415 | Yoshida et al. | Dec 1992 | A |
5343240 | Yu | Aug 1994 | A |
5421030 | Baran | May 1995 | A |
5440335 | Beveridge | Aug 1995 | A |
5570355 | Dail et al. | Oct 1996 | A |
5638374 | Heath | Jun 1997 | A |
5671220 | Tonomura | Sep 1997 | A |
5796739 | Kim et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5805591 | Naboulsi et al. | Sep 1998 | A |
5805806 | McArthur | Sep 1998 | A |
5815662 | Ong | Sep 1998 | A |
5822677 | Peyrovian | Oct 1998 | A |
5822678 | Evanyk | Oct 1998 | A |
5845190 | Bushue et al. | Dec 1998 | A |
5850400 | Eames et al. | Dec 1998 | A |
5854887 | Kindell et al. | Dec 1998 | A |
5856975 | Rostoker et al. | Jan 1999 | A |
5877821 | Newlin et al. | Mar 1999 | A |
5886732 | Humpleman | Mar 1999 | A |
5896556 | Moreland et al. | Apr 1999 | A |
5917624 | Wagner | Jun 1999 | A |
5930493 | Ottesen et al. | Jul 1999 | A |
5963844 | Dail | Oct 1999 | A |
5982784 | Bell | Nov 1999 | A |
6009465 | Decker et al. | Dec 1999 | A |
6028860 | Laubach et al. | Feb 2000 | A |
6055242 | Doshi et al. | Apr 2000 | A |
6069588 | O'Neill, Jr. | May 2000 | A |
6079006 | Pickett | Jun 2000 | A |
6081519 | Petler | Jun 2000 | A |
6081533 | Laubach et al. | Jun 2000 | A |
6111911 | Sanderford, Jr. et al. | Aug 2000 | A |
6118762 | Nomura et al. | Sep 2000 | A |
6157645 | Shobatake | Dec 2000 | A |
6167120 | Kikinis | Dec 2000 | A |
6192070 | Poon et al. | Feb 2001 | B1 |
6219409 | Smith et al. | Apr 2001 | B1 |
6229818 | Bell | May 2001 | B1 |
6243413 | Beukema | Jun 2001 | B1 |
6304552 | Chapman et al. | Oct 2001 | B1 |
6307862 | Silverman | Oct 2001 | B1 |
6434151 | Caves et al. | Aug 2002 | B1 |
6466651 | Dailey | Oct 2002 | B1 |
6481013 | Dinwiddie et al. | Nov 2002 | B1 |
6526070 | Bernath et al. | Feb 2003 | B1 |
6553568 | Fijolek et al. | Apr 2003 | B1 |
6563829 | Lyles et al. | May 2003 | B1 |
6567654 | Coronel Arredondo et al. | May 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6622304 | Carhart | Sep 2003 | B1 |
6637030 | Klein | Oct 2003 | B1 |
6650624 | Quigley et al. | Nov 2003 | B1 |
6745392 | Basawapatna et al. | Jun 2004 | B1 |
6763032 | Rabenko et al. | Jul 2004 | B1 |
6785296 | Bell | Aug 2004 | B1 |
6816500 | Mannette et al. | Nov 2004 | B1 |
6831899 | Roy | Dec 2004 | B1 |
6836515 | Kay et al. | Dec 2004 | B1 |
6859899 | Shalvi et al. | Feb 2005 | B2 |
6862270 | Ho | Mar 2005 | B1 |
6877043 | Mallory et al. | Apr 2005 | B2 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6898210 | Cheng et al. | May 2005 | B1 |
6930989 | Jones, IV et al. | Aug 2005 | B1 |
6940833 | Jonas et al. | Sep 2005 | B2 |
6950399 | Bushmitch et al. | Sep 2005 | B1 |
6961314 | Quigley et al. | Nov 2005 | B1 |
6985437 | Vogel | Jan 2006 | B1 |
6996198 | Cvetkovic | Feb 2006 | B2 |
7035270 | Moore, Jr. et al. | Apr 2006 | B2 |
7065779 | Crocker et al. | Jun 2006 | B1 |
7089580 | Vogel et al. | Aug 2006 | B1 |
7116685 | Brown et al. | Oct 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7133697 | Judd et al. | Nov 2006 | B2 |
7142553 | Ojard et al. | Nov 2006 | B1 |
7146632 | Miller | Dec 2006 | B2 |
7149220 | Beukema et al. | Dec 2006 | B2 |
7194041 | Kadous | Mar 2007 | B2 |
7292527 | Zhou et al. | Nov 2007 | B2 |
7296083 | Barham et al. | Nov 2007 | B2 |
7327754 | Mills et al. | Feb 2008 | B2 |
7372853 | Sharma et al. | May 2008 | B2 |
7460543 | Malik et al. | Dec 2008 | B2 |
7487532 | Robertson et al. | Feb 2009 | B2 |
7532642 | Peacock | May 2009 | B1 |
7532693 | Narasimhan | May 2009 | B1 |
7555064 | Beadle | Jun 2009 | B2 |
7574615 | Weng et al. | Aug 2009 | B2 |
7606256 | Vitebsky et al. | Oct 2009 | B2 |
7652527 | Ido et al. | Jan 2010 | B2 |
7653164 | Lin et al. | Jan 2010 | B2 |
7664065 | Lu | Feb 2010 | B2 |
7675970 | Nemiroff et al. | Mar 2010 | B2 |
7742495 | Kliger et al. | Jun 2010 | B2 |
7817642 | Ma et al. | Oct 2010 | B2 |
7822060 | Sterenson et al. | Oct 2010 | B2 |
7860092 | Yoon et al. | Dec 2010 | B2 |
7916756 | Atsumi et al. | Mar 2011 | B2 |
8040908 | Choi et al. | Oct 2011 | B2 |
8184550 | Beck et al. | May 2012 | B2 |
8266265 | Liu et al. | Sep 2012 | B2 |
8358663 | Kliger et al. | Jan 2013 | B2 |
8553547 | Ohana et al. | Oct 2013 | B2 |
20010039660 | Vasilevsky et al. | Nov 2001 | A1 |
20020010562 | Schleiss et al. | Jan 2002 | A1 |
20020021465 | Moore et al. | Feb 2002 | A1 |
20020059623 | Rodriguez et al. | May 2002 | A1 |
20020059634 | Terry et al. | May 2002 | A1 |
20020069417 | Kliger | Jun 2002 | A1 |
20020078247 | Lu et al. | Jun 2002 | A1 |
20020078249 | Lu et al. | Jun 2002 | A1 |
20020097821 | Hebron et al. | Jul 2002 | A1 |
20020105970 | Shvodian | Aug 2002 | A1 |
20020136231 | Leatherbury et al. | Sep 2002 | A1 |
20020141347 | Harp et al. | Oct 2002 | A1 |
20020150155 | Florentin et al. | Oct 2002 | A1 |
20020166124 | Gurantz et al. | Nov 2002 | A1 |
20020174423 | Fifield et al. | Nov 2002 | A1 |
20020194605 | Cohen et al. | Dec 2002 | A1 |
20030013453 | Lavaud et al. | Jan 2003 | A1 |
20030016751 | Vetro et al. | Jan 2003 | A1 |
20030022683 | Beckmann et al. | Jan 2003 | A1 |
20030060207 | Sugaya et al. | Mar 2003 | A1 |
20030063563 | Kowalski | Apr 2003 | A1 |
20030066082 | Kliger | Apr 2003 | A1 |
20030099253 | Kim | May 2003 | A1 |
20030152059 | Odman | Aug 2003 | A1 |
20030169769 | Ho et al. | Sep 2003 | A1 |
20030193619 | Farrand | Oct 2003 | A1 |
20030198244 | Ho et al. | Oct 2003 | A1 |
20040004934 | Zhu et al. | Jan 2004 | A1 |
20040037366 | Crawford | Feb 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040107445 | Amit | Jun 2004 | A1 |
20040163120 | Rabenko et al. | Aug 2004 | A1 |
20040172658 | Rakib et al. | Sep 2004 | A1 |
20040177381 | Kliger | Sep 2004 | A1 |
20040224715 | Rosenlof et al. | Nov 2004 | A1 |
20040258062 | Narvaez | Dec 2004 | A1 |
20050015703 | Terry et al. | Jan 2005 | A1 |
20050097196 | Wronski et al. | May 2005 | A1 |
20050152350 | Sung et al. | Jul 2005 | A1 |
20050152359 | Giesberts et al. | Jul 2005 | A1 |
20050175027 | Miller et al. | Aug 2005 | A1 |
20050204066 | Cohen et al. | Sep 2005 | A9 |
20050213405 | Stopler | Sep 2005 | A1 |
20060059400 | Clark et al. | Mar 2006 | A1 |
20060062250 | Payne | Mar 2006 | A1 |
20060068708 | Dessert et al. | Mar 2006 | A1 |
20060078001 | Chandra et al. | Apr 2006 | A1 |
20060104201 | Sundberg et al. | May 2006 | A1 |
20060256799 | Eng | Nov 2006 | A1 |
20060256818 | Shvodian et al. | Nov 2006 | A1 |
20060268934 | Shimizu et al. | Nov 2006 | A1 |
20060280194 | Jang et al. | Dec 2006 | A1 |
20070025317 | Bolinth et al. | Feb 2007 | A1 |
20070040947 | Koga | Feb 2007 | A1 |
20070064720 | Sterenson et al. | Mar 2007 | A1 |
20070127373 | Ho et al. | Jun 2007 | A1 |
20070160213 | Un et al. | Jul 2007 | A1 |
20070171919 | Godman et al. | Jul 2007 | A1 |
20070183786 | Hinosugi et al. | Aug 2007 | A1 |
20070206551 | Moorti et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070253379 | Kumar et al. | Nov 2007 | A1 |
20070286121 | Kolakowski et al. | Dec 2007 | A1 |
20080037487 | Li et al. | Feb 2008 | A1 |
20080037589 | Kliger | Feb 2008 | A1 |
20080080369 | Sumioka et al. | Apr 2008 | A1 |
20080089268 | Kinder et al. | Apr 2008 | A1 |
20080117919 | Kliger | May 2008 | A1 |
20080117929 | Kliger | May 2008 | A1 |
20080130779 | Levi | Jun 2008 | A1 |
20080178229 | Kliger | Jul 2008 | A1 |
20080189431 | Hyslop et al. | Aug 2008 | A1 |
20080212591 | Wu et al. | Sep 2008 | A1 |
20080225832 | Kaplan et al. | Sep 2008 | A1 |
20080238016 | Chen et al. | Oct 2008 | A1 |
20080259957 | Kliger | Oct 2008 | A1 |
20080271094 | Kliger | Oct 2008 | A1 |
20080273591 | Brooks et al. | Nov 2008 | A1 |
20080279219 | Wu et al. | Nov 2008 | A1 |
20080298241 | Ohana | Dec 2008 | A1 |
20090010263 | Ma et al. | Jan 2009 | A1 |
20090063878 | Schmidt et al. | Mar 2009 | A1 |
20090092154 | Malik et al. | Apr 2009 | A1 |
20090106801 | Horii | Apr 2009 | A1 |
20090122901 | Choi et al. | May 2009 | A1 |
20090165070 | McMullin | Jun 2009 | A1 |
20090217325 | Kliger | Aug 2009 | A1 |
20090252172 | Hare | Oct 2009 | A1 |
20090254794 | Malik et al. | Oct 2009 | A1 |
20090257483 | French et al. | Oct 2009 | A1 |
20090279643 | Shusterman | Nov 2009 | A1 |
20090285212 | Chu et al. | Nov 2009 | A1 |
20090296578 | Bernard et al. | Dec 2009 | A1 |
20090316589 | Shafeeu | Dec 2009 | A1 |
20100031297 | Klein | Feb 2010 | A1 |
20100074263 | Bry et al. | Mar 2010 | A1 |
20100080312 | Moffatt et al. | Apr 2010 | A1 |
20100142378 | Matheney et al. | Jun 2010 | A1 |
20100142540 | Matheney et al. | Jun 2010 | A1 |
20100146616 | Garrett et al. | Jun 2010 | A1 |
20100150016 | Barr | Jun 2010 | A1 |
20100158013 | Kliger | Jun 2010 | A1 |
20100158015 | Wu | Jun 2010 | A1 |
20100158021 | Kliger | Jun 2010 | A1 |
20100158022 | Kliger | Jun 2010 | A1 |
20100162329 | Ford et al. | Jun 2010 | A1 |
20100174824 | Aloni et al. | Jul 2010 | A1 |
20100180171 | Liu et al. | Jul 2010 | A1 |
20100185731 | Wu | Jul 2010 | A1 |
20100185759 | Wu | Jul 2010 | A1 |
20100214916 | Wu et al. | Aug 2010 | A1 |
20100238932 | Kliger | Sep 2010 | A1 |
20100246586 | Ohana | Sep 2010 | A1 |
20100254278 | Kliger | Oct 2010 | A1 |
20100254402 | Kliger et al. | Oct 2010 | A1 |
20100281195 | Daniel et al. | Nov 2010 | A1 |
20100284474 | Kliger | Nov 2010 | A1 |
20100290461 | Kliger | Nov 2010 | A1 |
20100322134 | Wu | Dec 2010 | A1 |
20110001833 | Grinkemeyer et al. | Jan 2011 | A1 |
20110013633 | Klein et al. | Jan 2011 | A1 |
20110080850 | Klein et al. | Apr 2011 | A1 |
20110205891 | Kliger et al. | Aug 2011 | A1 |
20110206042 | Tarrab et al. | Aug 2011 | A1 |
20110310907 | Klein et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1422043 | Jun 2003 | CN |
1588827 | Mar 2005 | CN |
0385695 | Sep 1990 | EP |
0622926 | Nov 1994 | EP |
1501326 | Jan 2005 | EP |
60160231 | Aug 1985 | JP |
WO-9827748 | Jun 1998 | WO |
WO-9831133 | Jul 1998 | WO |
WO-9935753 | Jul 1999 | WO |
WO-9946734 | Sep 1999 | WO |
WO-0031725 | Jun 2000 | WO |
WO-0055843 | Sep 2000 | WO |
WO-0180030 | Oct 2001 | WO |
WO-0219623 | Mar 2002 | WO |
WO-2004023729 | Mar 2004 | WO |
WO-2004023806 | Mar 2004 | WO |
Entry |
---|
Ovadia, “Home Networking on Coax for Video and Multimedia, Overview for IEEE 802.1AVB”, May 30, 2007. |
“Microtune Introduces Industry's First 1-GHZ Cable Tuners Compatible with MoCA—Home Networking Standard”, Business Wire, Mar. 19, 2007. |
Ovadia, “MoCA: Ubiquitous Multimedia Networking in the Home”, Proceedings of the SPIE—The International Society for Optical Engineering SPIE, 2007, retrieved from <http://spiedl.aip.org/getpdf/servlet/getPDFServlet?filetype=pdf&id=PSISDG00677600000167760C00000&idtype=cvips&prog=normal>. |
European Search Report for Application No. EP 10 00 3164 mailed Jun. 22, 2010. |
International Search Report for International Patent Application No. PCT/US03/27253, dated Dec. 30, 2003. |
International Search Report for International Patent Application No. PCT/US03/27254, dated Feb. 3, 2004. |
Spangler, MoCA Brewing Up Bigger Bandwidth—Interview with CTO Anton Monk, Multichannel News, Dec. 15, 2008, retrieved from <http://www.multichannel.com/article/160878-MoCA—Brewing—Up—Bigger—Bandwidth.php>. |
Number | Date | Country | |
---|---|---|---|
20130128898 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
60940998 | May 2007 | US | |
60907819 | Apr 2007 | US | |
60907126 | Mar 2007 | US | |
60907111 | Mar 2007 | US | |
60866532 | Nov 2006 | US | |
60866527 | Nov 2006 | US | |
60866519 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12731291 | Mar 2010 | US |
Child | 13741334 | US | |
Parent | 11942114 | Nov 2007 | US |
Child | 12731291 | US |