System and method for retrograde procedure

Information

  • Patent Grant
  • 7901408
  • Patent Number
    7,901,408
  • Date Filed
    Monday, August 22, 2005
    19 years ago
  • Date Issued
    Tuesday, March 8, 2011
    13 years ago
Abstract
A system and method may be used for accessing an articular surface and for preparing an implant site on the articular surface. The method may include locating a portion of the articular. An access passage may be drilled towards the articular surface though bone behind the articular surface. An implant site may be excised in the articular surface relative to an axis defined by the access passage.
Description
FIELD

The present disclosure is directed at a system and method for accessing an articular joint surface. The present disclosure is further directed at a method and system for replacing at least a portion of an articular surface.


BACKGROUND

Articular cartilage, found at the ends of articulating bone in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load bearing surface. Hyaline cartilage problems, particularly in knee, hip joints, and should joints, are generally caused by disease such as occurs with rheumatoid arthritis or wear and tear (osteoarthritis), or secondary to an injury, either acute (sudden), or recurrent and chronic (ongoing). Such cartilage disease or deterioration can compromise the articular surface causing pain and eventually, loss of joint movement. As a result, various methods have been developed to treat and repair damaged or destroyed articular cartilage.


For smaller defects, traditional options for this type of problem include leaving the lesions or injury alone and living with it, or performing a procedure called abrasion arthroplasty or abrasion chondralplasty. The principle behind this procedure is to attempt to stimulate natural healing. The bone surface is drilled using a high speed rotary burr or shaving device and the surgeon removes about 1 mm of bone from the surface of the lesion. This creates an exposed subchondral bone bed that will bleed and will initiate a fibrocartilage healing response. One problem with this procedure is that the exposed bone is not as smooth as it originally was following the drilling and burring which tends to leave a series of ridges and valleys, affecting the durability of the fibrocartilage response. Further, although this procedure can provide good short term results, (1-3 years), fibrocartilage is seldom able to support long-term weight bearing and is prone to wear, soften and deteriorate.


Another procedure, called Microfracture incorporates some of the principles of drilling, abrasion and chondralplasty. During the procedure, the calcified cartilage layer of the chondral defect is removed. Several pathways or “microfractures” are created to the subchondral bleeding bone bed by impacting a metal pick or surgical awl at a minimum number of locations within the lesion. By establishing bleeding in the lesion and by creating a pathway to the subchondral bone, a fibrocartilage healing response is initiated, forming a replacement surface. Results for this technique may be expected to be similar to abrasion chondralplasty.


Another means used to treat damaged articular cartilage is a cartilage transplant. Essentially, this procedure involves moving cartilage from an outside source or other knee or from within the same knee into the defect. Typically, this is done by transferring a peg of cartilage with underlying bone and fixing it in place with a screw or pin or by a press fit. Although useful for smaller defects, large defects present a problem, as this procedure requires donor pegs proportionate to the recipient bed. Large diameter lesions may exceed the capacity to borrow from within the same knee joint and rule out borrowing from another source.


Larger defects, however, generally require a more aggressive intervention. Typically treatment requires replacing a portion or all of the articular surface with an implant or prosthetic having an outer layer that that is polished or composed of a material that provides a lubricious load bearing surface in approximation of an undamaged cartilage surface. Replacement of a portion, or all, of the articular surface requires first cutting, boring, or reaming the damaged area to remove the damaged cartilage. A recess to receive an implant or prosthetic is formed at the damaged site. The implant or prosthetic is then secured to the bone in an appropriate position in the recess.


The treatment and/or replacement procedure often requires direct access to the damaged surface of the cartilage. While the most commonly damaged portions of some joints may easily be accessed for repair using a minimally invasive procedure some joints are not nearly as accessible. For example, the superior or medial femoral head, the medial humeral head, the glenoid, etc. do not permit direct access sufficient to carry out replacement of the articular surface in a minimally invasive manner. In fact, repair of such obstructed joints often requires an invasive procedure and necessitates complete dislocation of the joint. Procedures of such an invasive nature may be painful and require an extended recovery period.


Accordingly, it is an object of the present invention to provide a method for replacing an articular joint surface that is obscured from axial approach that is less invasive than conventional procedures and may not necessitate completely dislocating the joint.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter of the present disclosure is set forth by description of embodiments consistent therewith, which description should be considered in combination with the accompanying drawings, wherein:



FIG. 1 illustrates an embodiment of a retrograde articular surface replacement system consistent with the present disclosure;



FIG. 2 illustrates the use of the retrograde articular surface replacement system of FIG. 1 to position a guide pin in a bone;



FIG. 3 shows a fixation element positioned below an articular surface using a retrograde articular surface replacement system according to the present disclosure;



FIG. 4 is a cross-sectional view of the retrograde articular surface replacement system depicted in FIG. 3;



FIG. 5 is an enlarged cross-sectional view of a portion of the retrograde articular surface replacement system of FIG. 4 adjacent a locating hoop thereof;



FIG. 6 is an enlarged cross-sectional view of a portion of a retrograde articular surface replacement system consistent with the present disclosure including a depth probe



FIG. 7 is a representational cross-sectional view of an articular surface having an implant installed therein using a retrograde articular surface replacement system according to the present disclosure;



FIG. 8 is a perspective view of a retrograde articular surface replacement system consistent with the present disclosure applied to an articular surface of a femoral head;



FIG. 9 is an enlarged view of a portion of the articular surface replacement system of FIG. 8 adjacent the articular surface of the femoral head;



FIG. 10 is a perspective view of an embodiment of the articular surface replacement system in use to replace a cooperating articular surface consistent with the present disclosure;



FIG. 11 illustrates an implant site excised in a cooperating articular surface consistent with the present disclosure;



FIG. 12 depicts an articular surface implant installed in a cooperating articular surface;



FIG. 13 is a cross-sectional view of the articular surface of FIG. 12;



FIG. 14 is a cross-sectional view of one embodiment of a cored drill and a guide pin; and



FIG. 15 is a cross-sectional view of one embodiment of a cutting device and a wire.





DESCRIPTION

By way of overview, the present disclosure provides a retrograde articular surface replacement system that may include a method and apparatus for replacing at least a portion of an articular surface including accessing a desired portion of the articular surface through a portion of bone. While the preceding overview and the following specific embodiments of the system according to the present disclosure are directed at a system for replacing at least a portion of an articular surface, the system herein may be used in connection with procedures other than the replacement of portions of an articular surface. From a broad standpoint, the system disclosed herein may provide an apparatus and method for accessing a bone, joint, etc., indirectly.


Turning to FIG. 1, an embodiment of a retrograde articular surface replacement system 10 is illustrated. The system 10 may generally include a locating device, such as locating hoop 12, coupled to a guide, such as a cannulated shaft 18. The locating hoop 12 and the cannulated shaft 18 may be maintained in a positional and angular relationship by an arm 16. Consistent with the illustrated embodiment, the cannulated shaft 18 may be coupled to a tool support 14, and the tool support 14 may be coupled to the locating device 12 by an arm 16. The locating hoop 12 and the cannulated shaft 18 may be positioned in an opposed arrangement around a bone 20 having an articular surface 22.


The locating hoop 12 may include an opening there through such that when the locating hoop 12 is disposed on the articular surface 22 a portion of the articular surface may be exposed through the opening of the locating hoop 12. Furthermore, when the locating hoop 12 is disposed on the articular surface 22 the locating hoop 12 may achieve a desired orientation relative to a portion of the articular surface 22 exposed through the opening of the locating hoop 12. According to the illustrated embodiment, the locating hoop 12 may generally be configured as a ring having a circular opening extending therethrough. As shown, the locating hoop 12 may be positioned on an articular surface 22. According to one embodiment, when the locating hoop 12 is positioned on the articular surface 22 the locating hoop 12 may be oriented such that the axis of the opening of the locating hoop 12 may be generally normal to the articular surface 22 at the point of intersection by the axis of the opening. According alternative embodiments, the locating hoop 12 may achieve various other desired orientations relative to the articular surface 22.


The tool support 14 may include an opening 24 extending inwardly from a rear portion 26 of the tool support 14. The tool support 14 may define one or more windows 28 to the opening 24. According to one embodiment, the window 28 may include a transparent region of the tool support 14. For example, the window 28 may include a transparent plastic, glass, etc. region allowing the interior of the opening 24 to be viewed. Alternatively, the window 28 may be provided as an opening in a side region of the tool support 14. In such a configuration, the window 28 may not only allow the interior of the opening 24 to be viewed, but may also allow the interior of the opening 24 to be accessed and/or allow tools and/or objects within the opening 24 to be manipulated from the exterior of the tool support 14.


The tool support 14 may also include a bore 30 extending from the opening 24 to a front region of the tool support 14. As shown, the bore 30 may be sized to receive the cannulated shaft 18 therethrough. According to one embodiment, the inside diameter of the bore 30 may be closely sized to the outside diameter of the cannulated shaft 18 to maintain the cannulated shaft 18 in substantially coaxial alignment with the bore 30. Additionally, the tool support 14 may include a locking mechanism 32 that may be engaged to resist axial and/or rotational movement of the cannulated shaft 18. Suitable locking mechanisms 32 may have a variety of configurations. For example, the locking mechanism 32 may be a frictional locking mechanism including a bearing member that may press against, and frictionally engage, the cannulated shaft 18. Another suitable locking mechanism 32 may include a plurality of teeth that may be selectively engaged with corresponding features, such as circumferential grooves/ridges on at least a portion of the exterior of the cannulated shaft 18. Various other locking mechanisms may also, or alternatively, be employed herein.


The locating hoop 12 and the tool support 14 may be coupled to one another by an arm 16. The arm 16 may maintain the locating hoop 12 and the tool support 14 in a desired angular alignment and or position relative to one another. For example, the arm 16 may orient the locating hoop 12 and the tool support 14 such that the axis of the bore 30 intersects the center of the opening of the locating hoop 12 at a desired angle. The arm 16 may also arrange the tool support 14 and locating hoop 12 in predetermined relative angular alignments in which the axis of the bore 30 does not intersect the opening of the locating hoop 12. According to one embodiment, the locating hoop 12 may be oriented perpendicular to the guide shaft 18.


Consistent with the illustrated embodiment, the arm 16 may be a compound arcuate member having a fixed geometry. Accordingly, the relationship between the locating hoop 12 and the tool support 14 may be fixed relationship. It is contemplated herein, however, that the arm 16 may be releasably coupled to the tool support 14 and/or the locating hoop 12. In such an embodiment the tool support 14 and/or the locating hoop 12 may be separated from the arm 16. The arm 16 may be replaced with another arm, or arm 16 and locating hoop 12 assembly, providing a different configuration and/or providing a different angular alignment and or positional relationship between the locating hoop 12 and the tool support 14. According to a related embodiment, the arm 16 may be provided as an adjustable feature, thereby allowing the angular alignment and/or positional relationship between the locating hoop 12 and the tool support 14 to be varied or modified without replacing the arm 16.


Consistent with the illustrated embodiment, the cannulated guide shaft 18 may generally include a proximal receptacle portion 33, a shaft portion 34, and a distal tip 36. The shaft portion 34 may include at least one lumen extending along the length of the cannulated shaft 18. At least a portion of the shaft 34 may be disposed in the bore 30 of the tool support 14. Desirably, the shaft 34 is sized with respect to the bore 30, to provide a minimal of clearance. Accordingly, positioning the shaft portion 34 at least partially within the bore 30 may align an axis of the lumen in a predetermined relationship relative to the axis of the bore 30. As previously discussed, the bore 30 may in turn be oriented in a predetermined angular and/or positional arrangement relative to the locating hoop 12. The locating hoop 12 may itself be arranged in a predetermined relationship to the articular surface 22. Accordingly, when the shaft 34 is at least partially disposed within the bore 30 the lumen of the shaft portion 34 may be arranged in a desired angular and/or positional orientation relative to the opening of the locating hoop 12. In one embodiment, the axis of the lumen may be oriented parallel to the axis of the bore 30 when the shaft portion 34 is at least partially received in the bore 30. In a further embodiment, the lumen may be oriented coaxial with the bore 30 when the shaft portion 34 is at least partially received in the bore 30.


With additional reference to the cross-sectional view of FIG. 4, the receptacle portion 33 of the cannulated shaft 18 may include a cupped or conical interior profile leading to the lumen of the cannulated shaft 18. The cupped or conical receptacle portion 33 may facilitate the insertion of instruments, devices, etc. into the lumen of the cannulated shaft 18. Consistent with the preceding aspects, instruments, devices, etc. inserted into the lumen with the aid of the cupped or conical receptacle portion 33 may be at least generally oriented in a predetermined relationship to the opening of the locating hoop 12 by virtue of the orientation of the lumen relative to the opening of the locating hoop 12. Accordingly, instruments, devices, etc. may be at least generally placed in a predetermined orientation and/or alignment relative to a portion of the articular surface 22 identified within the locating hoop 12.


As shown in the FIG. 1, the locating hoop 12 may be positioned around a desired portion of the articular surface 22. The cannulated shaft 18 may then be inserted extending through the bore 30 of the tool support 14. The cannulated shaft 18 may be positioned so that the distal tip 36 of the cannulated shaft 18 may bear against the bone 20 opposite the articular surface 22 in the predetermined alignment relative to the opening of the locating hoop 12. As in the illustrated arrangement, when the locating hoop 12 and the distal tip 36 of the cannulated shaft 18 are positioned to bear on opposing sides of the bone 20, the distal tip 36 of the cannulated shaft 18 may contact the bone 20 at an angle. In such an orientation, only a portion of the distal tip 36 may actually contact the bone 20. The partial contact between the distal tip 36 and the bone 20 may make the distal tip 36 susceptible to moving across the surface of the bone 20, and therein altering the position of the locating hoop 12 on the articular surface 22.


Movement of the distal tip 36 of the cannulated shaft 18 across the surface of the bone 20 may be reduced by providing the distal tip 36 having biting features. For example, as shown the tip 36 may have a serrated or saw tooth end feature. When the distal tip 36 is pressed against the bone 20, the serrated end feature may engage the bone 20 and resist movement once the tip 36 is so engaged. Accordingly, the system 10 may be placed in a desired position and/or alignment relative to the articular surface 22 by positioning the bone between the locating hoop 12 and the distal tip 36 of the cannulated shaft 18. The locating hoop 12 and distal tip 36 may be brought to bear on opposing sides of the bone 20. The cannulated shaft 18 may then be locked in position using the locking mechanism 32 of the tool support 14. Accordingly, it may be possible to maintain the system 10 in the desired position and/or alignment relative to the articular surface even when the desired position causes the distal tip 36 of the cannulated shaft 18 to contact the bone at an angle such that only a portion of the distal tip 36 contacts the bone 20.


Turning to FIG. 2, a system 10 consistent with FIG. 1 may be used in a procedure for replacing a portion of an articular surface 22. According to an embodiment of the procedure consistent with the present disclosure, once the locating hoop 12 and the cannulated shaft 18 are oriented in a desired alignment relative to the articular surface 22, a reference axis may be established relative to the articular surface 22. According to one embodiment, establishing the reference axis may include providing a passage or hole through the bone 20. The passage or hole may pass all the way through the bone 20 and exit the articular surface 22. This may allow the alignment and orientation of the reference axis relative to the articular surface 22 to be verified.


A reference axis may be established, consistent with the present disclosure, by drilling a hole through the bone 20 in a predetermined alignment relative to the cannulated shaft 18. According to one embodiment, the hole may be aligned coaxially with the cannulated shaft 18. Consistent with the present disclosure, the hole for the reference axis may be relatively small diameter compared to the lumen of the cannulated shaft 18. The reference axis hole may be drilled in the desired alignment using a reducer shaft 38. The reducer shaft 38 may be a cannulated shaft having an outside diameter sized to be received within the lumen of the cannulated shaft 18. The inside diameter of the lumen of the reducer shaft 38 may be sized to receive and align a pilot drill bit for drilling a reference axis hole having the desired diameter. Similar to the cannulated shaft 18, the reducer shaft 38 may include a cupped or conical proximal receptacle 40. The cupped or conical receptacle 40 may facilitate aligning instruments, tools, and/or other devices with the lumen of the reducer shaft 38, and/or inserting such instruments, tools, and/or other devices into the lumen of the reducer shaft 38.


With the locating hoop 12 and cannulated shaft 18 aligned and locked in a desired orientation relative to the articular surface 22, the reducer shaft 38 may be inserted into the lumen of the cannulated shaft 18 via the opening 24 in the rear of the tool support 14. The reducer shaft 38 may extend through at least a portion of the lumen of the cannulated shaft 18. According to one embodiment, the reducer shaft 38 may extend through the cannulated shaft 18 and contact the bone 20 or terminate proximate the surface of the bone 20. In such a configuration, the instruments, tools, etc., such as the pilot drill bit, may be fully supported up to the surface of the bone 20.


With the reducer shaft 38 in position within the lumen of the cannulated shaft 18, a guide pin 42 may be loaded through the opening 24 of the tool support 14 and into the lumen of the reducer shaft 38. Loading the guide pin 42 into the lumen of the reducer shaft may be facilitated by the cupped or conical receptacle 40 of the reducer shaft 38. The guide pin 42 may include a drill tip (not shown) or other cutting feature disposed on a distal end of the guide pin 42. The guide pin may be driven, e.g., by a drive motor or manual drive handle, from the rear portion 26 of the tool support 14. The depth of the hole may be gauged by observing penetration of the guide pin 42 through the articular surface 22 within the opening of the locating hoop 12. Alternatively, the separation between the tool support 14 and the locating hoop 12 may be known based on the configuration of the arm 16, locating hoop 12, and tool support 14. In one embodiment, the guide pin 42 may be provided having indicia representative of depth of penetration. The depth of the reference axis hole may be determined from the relationship between the guide pin 42 and at least one of the tool support 14, the reducer shaft 38 and the cannulated shaft 18, etc.


After the guide pin 42 has been drilled into and/or through the bone 20 in the above described manner, the guide pin 42 may be maintained extending into/through the bone and/or articular surface 22. The guide pin 42 extending at least partially into or through the bone 20 may provide a reference axis aligned through the reducer shaft 38. The guide pin 42 may be used locate subsequent operations and/or instruments relative to the reference axis. Once the guide pin 42 has been positioned in the hole through the bone 20, the reducer shaft 38 may be withdrawn from the lumen of the cannulated shaft 18. At least a portion of the guide pin 42 may remain in the hole extending into the bone 20. If the guide pin 42 is provided with a close fit with the hole, the guide pin 42 may be maintained in a desired alignment with the reference axis.


According to an alternative embodiment, a drill may be used to provide a hole extending into and/or through the bone 20. The reducer shaft 38 may be used to align and/or support the drill bit during the drilling operation. After the hole has been drilled extending into or through the bone 20, a guide pin 42 may be inserted extending into or through the hole to provide a reference axis, in a similar manner to the preceding description.


After the guide pin 42 has been positioned extending from the bone 20 in a desired position relative to the reference axis, a larger hole may be drilled into the bone for receiving a fixation and/or location element. Consistent with one embodiment, the hole for the fixation element may extend all of the way through the bone 20 and the articular surface 22. In other embodiments, however, the hole for the fixation element may extend only partially through the bone 20.


In one embodiment, the hole or tunnel for the fixation element may be drilled at least part of the way through the bone 20 using a cored drill 110, FIG. 14. That is, the drill 110 may include a lumen 112, or opening therethrough. The lumen 112 through the drill 110 may be sized to receive the guide pin 42. With the guide pin 42 received through the lumen 112 of the drill 110, the hole for the fixation element may be drilled into the bone 20 with the drill carried on/supported by the guide pin. Carrying the drill 110 on the guide pin 42 in this manner may allow the hole for the fixation element to be provided in a desired alignment relative to the reference axis through the articular surface 22. Additionally, carrying the drill 110 on the guide pin 42 may, for example, eliminate the need for an additional reducer tube to support the drill on the outside diameter thereof in a situation in which the outside diameter of the drill is less than the inside diameter of the lumen of the cannulated shaft 18. Alternatively, or additionally, a reducer tube supporting the outside diameter of the drill may be used for drilling the hole.


Turning next to FIGS. 3 and 4, after a hole or tunnel has been drilled through the bone 20 for a fixation element, the fixation element may be positioned within the bone. Consistent herewith, the fixation element may be an element adapted to retain, or assist in retaining, an implant to the bone 20. In the illustrated embodiment, the fixation element is configured as a screw 44. According to one embodiment, the screw 44 may be delivered to the bone 20 through the cannulated shaft 18. The outside diameter of the screw 44 may, therefore, be smaller than the inside diameter of the lumen of the cannulated shaft 18, thereby allowing the screw to be passed from the tool support 14 and through the cannulated shaft 18. The hole through the bone 20 for receiving the screw 44 may have a diameter smaller than the outside diameter of the threads of the screw 44 to allow the threads of the screw 44 to engage the bone 20. Various other elements or features may additionally or alternatively be used as fixation elements.


Consistent with the illustrated embodiment, the screw 44 may be rotatably driven, i.e., screwed, into the bone using a probe-driver 46. The probe-driver 46 may include a shaft 48 that is configured to extend through the lumen of the cannulated shaft 18. A distal region of the shaft 48 may be provided having a feature for engaging and/or driving the screw 44. For example, the shaft 48 may include a hexagonal region that is adapted to be received by a corresponding hexagonal socket, or opening, in the screw 44. Various other features and configurations may be utilized to permit the shaft 48 to engage and/or drive the screw 44.


The probe-driver 46 may also include a knob 50 coupled to the proximal end of the shaft 48. The knob 50 may be coupled to the shaft 48 in a torsionally stiff manner such that rotating the knob 50 may also rotate the shaft 48 to drive the screw 44. Additionally, the probe-driver may include a cylindrical region 52 that may be sized to be rotatably received in the opening 24 of the tool support 14. According to one embodiment, the cylindrical region 52 may be sized relative to the opening 24 so that the probe-driver 46 may be supported by the opening 24 of the tool support 14.


Consistent with one embodiment, the cylindrical region 52 of the probe-driver 46 and the tool support 14 may include cooperating indicia (not shown) representative of the depth of penetration of the cylindrical region 52 into the opening 24 of the tool support 14. According to one embodiment, the indicia may be correlated to depth of insertion of the screw 44 into the bone 20. Accordingly, the depth of installation of the screw 44 into the bone 20 can be controlled and/or ascertained. The cooperating indicia may include, for example, a graduated scale and a reference, a vernier scale, or other system of reference marks.


Consistent with a particular embodiment, the indicia may be correlated to the depth of the screw 44 beneath the articular surface 22. Such a correlation may be achieved based on the known distance between the articular surface 22, as established by the locating hoop 12, and the tool support 14 which is established by the arm 16. Using a screw 44 having a known length and a predetermined seating height of the screw on the shaft 48 of the probe-driver 46, it may be possible to drive the screw 44 into the bone 20 to a predetermined distance from the articular surface 22.


With additional reference to FIGS. 5 and 6, the distal end of the shaft 48 may include a probe feature 54. As shown, the probe feature 54 may extend through the screw 44 and beyond the end of the screw 44 a predetermined distance. Consistent with the embodiment illustrated in FIG. 5, the probe feature 54 may be used to position the screw 44 at a predetermined depth in the bone 20 relative to the locating hoop 12. The screw 44 may be provided having a known length and may be configured to seat on the shaft 48 of the probe-driver 46 a known distance from the distal tip of the shaft 48. The known length and known seating height of the screw 44 may be based on predetermined design characteristics and/or on measurements taken prior to installation of the screw 44. Consistent with the embodiment of FIG. 5, the screw 44 may be positioned at a predetermined depth relative to the locating hoop 12 by driving the screw 44 until the probe feature 54 reaches a predetermined height relative to the locating hoop 12. For example, the screw 44 may be driven into the bone until the tip of the probe 54, at the distal end of the shaft 48 of the probe-driver 46, is flush with the top of the locating hoop 12 as shown. Various other alignment relationships between the tip of the probe 54 on the shaft 48 of the probe-driver 46 may also, or alternatively, be used for positioning the screw 44 at a desired depth within the bone 20.


In a related embodiment, illustrated in FIG. 6, the probe feature 54 of the probe-driver 46 may be used to position the screw 44 at a predetermined depth relative to the articular surface 22. For example, the screw 44 may be positioned at a predetermined depth relative to the original articular surface 22, or may be positioned at a predetermined depth relative to the articular surface 22 surrounding the hole for receiving the screw 44. According to either embodiment, a screw 44 may be provided having a predetermined length and having a predetermined seating height on the distal end of the shaft 48. The screw 44 may then be driven into the bone 20 until the probe feature 54 reaches a predetermined height relative to the articular surface 22.


Embodiments may be provided combining various aspects of the previously described cooperating indicia on the probe-driver 46 and tool support 14 and the probe feature 54 on the shaft 48 of the probe-driver 46. Such embodiments combining these aspects may be used to position the screw at a predetermined depth relative to at least one of the locating hoop 12 and the articular surface 22.


According to an alternative embodiment, the fixation element, such as screw 44 may be inserted into the bone from the articular surface 22. According to such an embodiment, after a hole has been drilled through the articular surface 22, the screw 44 may be passed to the articular surface 22 and introduced into the bole therein. For example, a line, such as a metal wire, plastic filament, etc., may be passed through the hole and the screw 44 or attached to the screw 44 and pass through the hole. The screw 44 may then be drawn to the hole in the articular surface 22. The screw 44 may then be driven into the articular surface in a manner similar to the preceding embodiment, e.g., using a drive shaft extending through the hole in the bone 20.


After the screw 44 has been installed at a desired position in the bone 20, a region of the articular surface 22 surrounding the axis of the screw 44 may be excised to provide an implant site. The articular surface 22 may be excised using a rotating cutting device 100, FIG. 15, that may be positioned so that the rotational axis of the cutting device 100 may be generally aligned with the axis of the opening through the screw 44 (screw 44 not shown in FIG. 14 for clarity). According to one embodiment, a line 101, such as a metal wire, plastic filament, etc., may be passed through the bone 20 so that it extends from the articular surface 22 and from the opposed side of the bone. The wire 101 may pass through, or be coupled to the cutting device 100 along the rotational axis there of. The cutting device 100 may then be drawn toward the articular surface 22 by withdrawing the wire 101 through the bone or by sliding the cutting device 100 along the wire 101 towards the articular surface 22. In either case, the wire 101 passing through the bone 20 may act to align the rotational axis of the cutting device 100 with the axis of the opening through the screw 44. Alternative methods for positioning the cutting device 100 relative to the articular surface 22 may also be employed consistent with the present disclosure, including manually positioning the cutting device 100.


According to one embodiment, the cutting device may include a socket or opening along the rotational axis of the cutting device. For example, the cutting device may include a hexagonal socket along the rotational axis of the cutting device. The socket or opening along the rotational axis of the cutting device may allow the cutting device to be rotationally driven to excise at least a portion of the articular surface. Once the cutting device has been positioned on the articular surface with the rotational axis of the cutting device generally aligned with the opening through the screw 44, a drive shaft may be inserted through the hole through the bone and the opening through the screw and may engage the cutting device. For example, in the case of a cutting device having a hexagonal socket, the drive shaft may include a hexagonal feature adapted to be received in the hexagonal socket of the cutting device.


Once the drive shaft has been engaged with the cutting device, the cutting device may be rotatably driven by the drive shaft. The drive shaft, and thereby the cutting device, may be manually driven, e.g., by rotating a handle proximal to the cutting device, or may be mechanically drive, e.g., by a drive motor or drill device. While the cutting device is being rotatably driven by the drive shaft, the cutting device may also be pulled in to the articular surface 22, thereby excising the articular surface to form a generally circular implant site.


The depth of the implant site may be controlled in a variety of manners including visual inspection of the implant site and/or the depth of the cutting device in the implant site, indicia on the drive shaft indicative of the depth the cutting device has been pulled into the articular surface, etc. According to one embodiment, the depth of the implant site may be controlled by the screw 44, or other fixation element. The screw 44 may include an upper bearing surface 56, generally in FIG. 6. The cutting device may have a corresponding lower bearing surface adjacent the screw 44. The cutting device may be rotatably driven and pulled into the articular surface 22 until the lower bearing surface of the cutting device bears against the upper bearing surface 56 of the screw 44. Accordingly, the excision site may be provided having a predetermined depth relative to the screw.


Depending upon the diameter of the implant site, the locating hoop 12 and/or the tool support 14 may be removed from the bone 20 prior to excising the implant site. For example, if the diameter of the implant site is to be equal to, or greater than, the inside diameter of the locating hoop 12, it may be desirable to remove the locating hoop from the region of the articular surface 22 to be excised prior to excising the implant site. If the diameter of the implant site, however, is to be smaller than the inside diameter of the locating hoop 12, the locating hoop 12 may optionally be maintained in position on the articular surface 22. If the locating hoop 12, tool support 14, etc., are removed during excision of the implant site, the opening extending through the screw 44 may serve as an alignment feature. That is, the diameter of the drive shaft may be dimensioned relative to the opening through the screw 44 such that the drive shaft may be maintained in a generally desired alignment by the opening through the screw 44 during excision of the implant site.


According to an alternative embodiment, the implant site may be excised prior to, or without, the installation of a fixation element such as a screw. In such an embodiment, the depth of the implant site may be provided using visual inspection, indicia on the drive shaft and/or cutting device, etc. The orientation of the excision may be controlled either by the tool support 14, e.g. via a guiding cannulated shaft or other guide feature, or by the hole through the bone. In either case the implant site may be provided in a manner as described above, with the cutting device being rotatably driven to excise a desired portion of the articular surface 22, and/or underlying bone 20.


As shown in FIG. 7, once the implant site has been excised, an implant 58 replacing at least a portion of the articular surface 22 may be installed into the implant site. A wide variety of implants and/or implants having various different characteristics may suitable be employed to replace at least a portion of an articular surface consistent with the present disclosure. Accordingly, the disclosure herein should not be considered to be limited to a particular implant. According to one embodiment, a suitable implant may have a generally circular shape. However, implants having various other shapes may also be required depending upon the shape of the implant site. Implant sites having a non-circular shape may result when at least a portion of the cutting path of the cutting device does not contact the articular surface or bone. For example, if at the depth of the implant site the width of the articular surface is less than the cutting radius of the cutting device, an implant site may be provided having a truncated circular shape. Various other shapes of implant sites may result depending upon the profile of the articular surface at the depth of the implant and the radius of the cutting path of the cutting device used to excise the implant site.


Referring again to FIG. 7, an implant 58 according to the illustrated embodiment of the present disclosure may be provided having a load bearing surface 60 that may approximate the geometry or curvature of the articular surface being replaced by the implant. In one embodiment the geometry of the load bearing surface may be based on the actual articular surface being replaced. For example, mapping techniques known in the art may be used to measure the geometry of the region of the actual articular surface being replaced. An implant may then be constructed or selected from a set of implants having predetermined geometries. Alternatively, an implant for a specific application may be fabricated or selected from a set of standard sized/shaped implants to provide a general approximation of the articular surface being replaced. Selection or fabrication of an implant may rely on various degrees of quantitative reference to the articular surface being replaced, including no quantitative reference to the articular surface.


According to one aspect, the system herein may be used to provide information regarding the curvature of the articular surface 22. According to one embodiment, the curvature of the articular surface 22 may be measured or approximated using the locating hoop 12. The locating hoop 12 may contact the articular surface at a plurality of locations about the bottom circumference of the locating hoop 12 and/or continuously about the bottom circumference of the locating hoop 12. The height of the articular surface 22 in the center of the locating hoop 12 may be measured relative to the bottom circumference of the locating hoop 12, for example by using the probe-driver 46. Two generally opposed points of contact between the bottom circumference of the locating hoop 12 together with the radius of the locating hoop 12, and the height of the articular surface 22 generally in the center of the locating hoop 12 may define three points on a curve generally corresponding to the curvature of the articular surface. The geometry of the articular surface 22 may be mapped or approximated by developing one or more such curves approximating the curvature of the articular surface. A map or approximation of the curvature of the articular surface 22 may be used to select and/or fabricate an implant that may suitably replace a desired portion of the articular surface 22.


An implant 58 may be retained in an implant site by a variety of mechanisms. For example, the implant may include one or more features adapted to interact with the fixation element to retain the implant in the implant site. Consistent with the illustrated embodiment, the screw 44 may include an opening extending there through. At least a portion of the opening may be configured having a precision taper. The implant 58 may include a post 62 having a precision taper adapted to mate with the taper of the opening of the screw 44. The implant 58 may be retained in the implant site by inserting the tapered post 62 of the implant 58 into the tapered opening in the screw 44 and applying an axial pressure or impact to the implant 58, thereby seating the tapered post 62 in the tapered opening.


Various other features and methods may be used to retain the implant in the implant site. The implant and the fixation element may include interacting or cooperating features other than a tapered post and tapered opening. For example, the fixation element and implant may include conventional compression fits features, snap-fits, etc. In an embodiment that does not employ a separate fixation element, the implant may include a feature such as a barbed post that may engage the sides of the implant site and/or a hole drilled into, or through, the bone. Bone cement may additionally, or alternatively, be used to secure an implant in an implant site.


According to a related embodiment, the locating hoop 12 and tool support 14 may be removed after the guide pin 42 has been installed in the bone 20. As discussed above, the guide pin 42 may establish a reference axis for carrying out subsequent steps of an articular surface replacement procedure. For example, the guide pin may establish a reference axis for guiding a cored drill bit, described above. The cored drill may be used to provide a tunnel for a fixation element which may include an opening or a feature oriented in a predetermined relationship to the reference axis. According to one embodiment, the opening or feature in the fixation element may be used for positioning and aligning subsequent operations, instruments, and/or devices.


Turning to FIGS. 8 and 9, the versatility of an articular surface replacement system 10a is illustrated. In the depicted embodiment the articular surface replacement system 10a is shown positioned to replace at least a portion of an articular feature such as femoral head 102. As with the previously described embodiment, the system 10a may generally include a locating hoop 12a coupled in a predetermined orientation and alignment with a tool support 14a by an arm 16a. The tool support 14a may, in turn, position a cannulated shaft 18a in a predetermined orientation and alignment with the locating hoop 12a.


Consistent with the illustrated embodiment, the biting features of the distal tip 36a of the cannulated shaft 18a may be especially useful for reducing or preventing undesired movement of the cannulated shaft 18a relative to the femoral head 102, or a similar highly arcuate or angled surface. As also indicated in the illustrated embodiment, the articular replacement system 10a may suitably be employed to replace a portion of a femoral head 102, or similarly configured joint, without reference to the axis of the neck of the joint. This aspect of the present disclosure may allow the amount of the articular surface being replaced to be minimized.


Referring to FIGS. 10 through 13, a further embodiment of the articular surface replacement system is illustrated. In the further embodiment, an articular surface replacement system consistent with the present disclosure may be used to access an articular surface, at least in part, by tunneling through an adjacent bone. In the illustrated embodiment, a portion of a glenoid articular surface 62 may be accessed through a portion of the humerus 20a and the articular surface 22 thereof. For the purpose of clarity and the ease of understanding, the glenoid articular surface 62 and surrounding structure are only representationally depicted in a simplified manner, rather than being illustrated in the full and complete structure of the scapula. Similarly, the structure and relationship of the humerus and glenoid also representationally depicted, in an at least slightly exploded form, for the sake of clarity and illustration of detail. While the illustrated embodiment is depicted with reference to the head of the humerus and the glenoid articular surface, the system herein is susceptible to use in the context of various other bones, joints, and articular surfaces.


Referring first to FIG. 10, the system 10a, generally including a locating hoop 12a coupled to a tool holder (not shown) via an arm 16a may be used to locate a cannulated shaft 18a in a desired relationship to defect on the articular surface 22a of the humerus 20a, or on the glenoid articular surface 62 in a manner generally as described with reference to the preceding embodiment. Particularly, the locating hoop 12a may be located surrounding, or in a desired relationship to, a defect in, or portion of, the articular surface to be replaced. Consistent with the illustrated embodiment, the defect or portion to be replaced may be located in either the articular surface 22a of the humerus or in the glenoid articular surface 62. Consistent with an embodiment herein, a corresponding portion of each articular surface 22a, 62 may be replaced.


As shown, with the locating hoop 12a located in a desired relationship to the defect or portion of an articular surface 62 to be replaced, a guide pin 42a may be drilled through the humerus 20a an the articular surface 22a thereof, using a cannulated shaft 18a to orient and support the guide pin 42a. The guide pin 42a may provide a reference axis for carrying out subsequent procedures. According to one embodiment, the guide pin 42a may be drilled at least a portion of the way into the glenoid articular surface 62 to mark the point of intersection of the reference axis with the glenoid articular surface 62.


Turning next to FIG. 11, after a reference axis has been provided through the humerus 20a, an implant site 64 may be created in the glenoid articular surface 62. The implant site 64 may be provided by supplying a rotary cutter between the glenoid articular surface 62 and the articular surface 22a of the humerus 20a. The rotary cutter may include a socket or opening for receiving a drive shaft 65 therein. The drive shaft 65 may be provided extending through the humerus 20a and may rotatably engage the rotary cutter between the articular surface 22a of the humerus 20a and the glenoid articular surface 62. The rotary cutter may be manually or mechanically rotatably driven and urged into the glenoid articular surface 62 to excise a region of the glenoid articular surface 62 and underlying bone. As would be expected, the rotary cutter may produce an implant site 64 in the glenoid articular surface 62 having a generally circular geometry.


Referring to FIGS. 12 and 13, after the implant site 64 has been excised, an implant 66 may be installed therein. Consistent with the illustrated embodiment, the implant 66 may have a generally circular cross-section and may have an outward face that may replace the excised region of the glenoid articular surface 62. The outward face of the implant 66 may be provided to generally correspond to the original glenoid articular surface 62, based on varying degrees of quantitative and/or qualitative comparison. Alternatively, or additionally, the implant 66 may have an outward face that is adapted to provide a desired interaction with a cooperating implant to be installed in the articular surface 22a or the humerus 20a. The implant 66 may be installed in the implant site 64 using a variety of techniques, including bone cement, separate fixation elements, one or more features on the implant to engage the walls of the excise site, etc., including combination thereof.


An implant site may be created in the articular surface 22a of the humerus 20a to provide an implant in the articular surface 22a of the humerus 20a that may interact with the implant 66 in the glenoid articular surface 62. Such an implant site may be created as described with reference to FIGS. 1 through 7. The implant site in the humerus 20a may be provided either before or after the implant site 64 in the glenoid articular surface 62.


Various other features and advantages of the articular replacement system described herein will be appreciated by those having skill in the art. Similarly, the system disclosed herein is susceptible to numerous modifications and variations without materially departing from the spirit of the disclosure.

Claims
  • 1. An apparatus for retrograde access to an articular surface comprising: a locating device configured to be positioned on a portion of said articular surface;a tool support comprising a bore, wherein a longitudinal axis of said bore is coaxial with said locating device to establish a reference axis relative to said articular surface,an arm configured to be fixably coupled to said locating device and to said tool support, said arm configured to maintain a positional and angular relationship between said locating feature and said tool support;a cannulated shaft configured to move within said bore of said tool support along said reference axis when said tool support and said arm are fixably coupled;a screw configured to be secured within said tunnel; anda probe-driver comprising a shaft configured to extend through the cannulated shaft, a distal end of said probe-driver including a probe feature configured to extend through said screw and a predetermined distance beyond a top of said screw, said probe feature configured to position said screw at a predetermined depth in said bone relative to said locating device.
  • 2. An apparatus according to claim 1, wherein said locating device comprises a locating hoop having an opening configured to expose a portion of said articular surface.
  • 3. An apparatus according to claim 1, wherein said locating device is configured to measure geometry of said articular surface.
  • 4. An apparatus according to claim 2, wherein a longitudinal axis of said cannulated shaft intersects said locating hoop.
  • 5. An apparatus according to claim 1, wherein cannulated shaft is extensible from said tool support coupled to said arm.
  • 6. An apparatus according to claim 1, wherein said cannulated shaft further comprises a plurality of teeth disposed about a distal end region, said plurality of teeth configured to engage against bone beneath said articular surface.
  • 7. An apparatus according to claim 6, wherein said cannulated shaft further comprises a distal tip coupled to a distal end region of said cannulated shaft, said distal tip comprising said plurality of teeth.
  • 8. An apparatus according to claim 1, wherein said cannulated shaft further comprises a proximal receptacle portion having a generally conical inner profile leading to the lumen of said cannulated shaft.
  • 9. An apparatus according to claim 1, further comprising a guide pin configured to be disposed through said cannulated shaft and said locating device and into said bone beneath said articular surface along said reference axis.
  • 10. An apparatus according to claim 9, further comprising a cannulated drill configured to be advanced over said guide pin along said reference axis.
  • 11. An apparatus according to claim 9, further comprising a reducer shaft configured to be at least partially received within said bore, said reduced shaft comprising a reduce lumen configured to coaxially align a longitudinal axis of said guide pin along said reference axis.
  • 12. An apparatus according to claim 1, further comprising a core drill configured to be disposed through said bore along said reference axis.
  • 13. An apparatus according to claim 1, further comprising a lock configured to secure a position of said cannulated shaft relative to said bore.
  • 14. An apparatus comprising: a guide pin configured to be secured to bone beneath a patient's articular surface;a retrograde articular surface replacement system comprising: a locating device configured to be positioned on a portion of said articular surface;a guide comprising a bore, wherein a longitudinal axis of said bore is coaxial with said locating device to establish a reference axis relative to said articular surface,an arm configured to be fixably coupled to said locating device and to said guide, said arm configured to maintain a positional and angular relationship between said locating feature and said guide; anda cannulated shaft configured to move within said bore of said guide along said reference axis when said guide and arm are fixably coupled;a drill configured to be disposed through said bore and to form a tunnel extending along said reference axis to said articular surface; anda rotating cutting device having a rotating axis configured to be generally aligned with said reference axis to form an excision site in said patient's articular surface generally centered about said reference axis;a screw configured to be secured within said tunnel;a probe-driver comprising a shaft configured to extend through the cannulated shaft, a distal end of said probe-driver including a probe feature configured to extend through said screw and a predetermined distance beyond a top of said screw, said probe feature configured to position said screw at a predetermined depth in said bone relative to said locating device; andan implant configured to be coupled to said screw, said implant comprising a load bearing surface having a contour based on an original surface contour of said patient's removed articular surface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application Ser. No. 60/603,473, filed Aug. 20, 2004. This application is also a continuation in part of U.S. patent application Ser. No. 11/169,326, filed Jun. 28, 2005, which claims the benefit of U.S. provisional patent application Ser. No. 60/583,549, filed Jun. 28, 2004. This application is also a continuation in part of U.S. patent application Ser. No. 10/994,453, filed Nov. 22, 2004, which claims the benefit of U.S. provisional patent application Ser. No. 60/523,810, filed Nov. 20, 2003. Additionally, this application is also a continuation in part of U.S. patent application Ser. No. 10/308,718, filed Dec. 3, 2002 now U.S. Pat. No. 7,163,541. Then entire disclosures of all of the above listed applications are incorporated herein by reference.

US Referenced Citations (326)
Number Name Date Kind
992819 Springer May 1911 A
1451610 Gestas Apr 1923 A
2267925 Johnston Dec 1941 A
2570465 Lundholm Oct 1951 A
3176395 Warner et al. Apr 1965 A
3840905 Deane Oct 1974 A
4016651 Kawahara et al. Apr 1977 A
4034418 Jackson et al. Jul 1977 A
4044464 Schiess et al. Aug 1977 A
4158894 Worrell Jun 1979 A
4344192 Imbert Aug 1982 A
4433687 Burke et al. Feb 1984 A
4462120 Rambert et al. Jul 1984 A
4474177 Whiteside Oct 1984 A
4484570 Sutter et al. Nov 1984 A
4531517 Forte et al. Jul 1985 A
4535768 Hourahane et al. Aug 1985 A
4634720 Dorman et al. Jan 1987 A
4655752 Honkanen et al. Apr 1987 A
4661536 Dorman et al. Apr 1987 A
4662371 Whipple et al. May 1987 A
4664669 Ohyabu et al. May 1987 A
4673407 Martin Jun 1987 A
4693986 Vit et al. Sep 1987 A
4708139 Dunbar, IV Nov 1987 A
4712545 Honkanen Dec 1987 A
4714478 Fischer Dec 1987 A
4719908 Averill et al. Jan 1988 A
4729761 White Mar 1988 A
4823780 Odensten et al. Apr 1989 A
4842604 Dorman et al. Jun 1989 A
4896663 Vandewalls Jan 1990 A
4911153 Border Mar 1990 A
4920958 Walt et al. May 1990 A
4927421 Goble et al. May 1990 A
4938778 Ohyabu et al. Jul 1990 A
4940467 Tronzo Jul 1990 A
4976037 Hines Dec 1990 A
4978258 Lins Dec 1990 A
4979957 Hodorek Dec 1990 A
4989110 Zevin et al. Jan 1991 A
4990163 Ducheyne et al. Feb 1991 A
4997434 Seedhom et al. Mar 1991 A
4998938 Ghajar et al. Mar 1991 A
5007930 Dorman et al. Apr 1991 A
5019104 Whiteside et al. May 1991 A
5053049 Campbell Oct 1991 A
5092895 Albrektsson et al. Mar 1992 A
5100405 McLaren Mar 1992 A
5127920 MacArthur Jul 1992 A
5154720 Trott et al. Oct 1992 A
5192291 Pannek, Jr. Mar 1993 A
5201881 Evans Apr 1993 A
5211647 Schmieding May 1993 A
5224945 Pannek, Jr. Jul 1993 A
5255838 Gladdish, Jr. et al. Oct 1993 A
5263498 Caspari et al. Nov 1993 A
5263987 Shah Nov 1993 A
5282863 Burton Feb 1994 A
5290313 Heldreth Mar 1994 A
5312411 Steele May 1994 A
5314478 Oka et al. May 1994 A
5314482 Goodfellow et al. May 1994 A
5324295 Shapiro Jun 1994 A
5336224 Selman Aug 1994 A
5354300 Goble et al. Oct 1994 A
5358525 Fox et al. Oct 1994 A
5360446 Kennedy Nov 1994 A
5374270 McGuire et al. Dec 1994 A
5383937 Mikhail Jan 1995 A
5387218 Meswania Feb 1995 A
5395401 Bahler Mar 1995 A
5409490 Ethridge Apr 1995 A
5409494 Morgan Apr 1995 A
5413608 Keller May 1995 A
5423822 Hershberger Jun 1995 A
5458643 Oka et al. Oct 1995 A
5480443 Elias Jan 1996 A
5486178 Hodge Jan 1996 A
5509918 Romano Apr 1996 A
5520695 Luckman May 1996 A
5522900 Hollister Jun 1996 A
5534031 Matsuzaki et al. Jul 1996 A
5540696 Booth, Jr. et al. Jul 1996 A
5580353 Mendes et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5593450 Scott et al. Jan 1997 A
5595193 Walus et al. Jan 1997 A
5601550 Esser Feb 1997 A
5616146 Murray Apr 1997 A
5620055 Javerlhac Apr 1997 A
5624463 Stone et al. Apr 1997 A
5632745 Schwartz May 1997 A
5634927 Houston et al. Jun 1997 A
5645598 Brosnahan, III Jul 1997 A
5681311 Foley et al. Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683400 McGuire Nov 1997 A
5683465 Shinn et al. Nov 1997 A
5683466 Vitale Nov 1997 A
5700264 Zucherman et al. Dec 1997 A
5700265 Romano Dec 1997 A
5702401 Shaffer Dec 1997 A
5702465 Burkinshaw Dec 1997 A
5702467 Gabriel et al. Dec 1997 A
5741266 Moran et al. Apr 1998 A
5765973 Hirsch et al. Jun 1998 A
5769855 Bertin et al. Jun 1998 A
5771310 Vannah Jun 1998 A
5776137 Katz Jul 1998 A
5782835 Hart et al. Jul 1998 A
5800440 Stead Sep 1998 A
5810851 Yoon Sep 1998 A
5817095 Smith Oct 1998 A
5824087 Aspden et al. Oct 1998 A
5824105 Ries et al. Oct 1998 A
RE036020 Moore et al. Dec 1998 E
5882350 Ralph et al. Mar 1999 A
5885297 Matsen, III Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5888210 Draenert Mar 1999 A
5893889 Harrington Apr 1999 A
5895390 Moran et al. Apr 1999 A
5911126 Massen Jun 1999 A
5918604 Whelan Jul 1999 A
5919196 Bobic et al. Jul 1999 A
5928239 Mirza Jul 1999 A
5928286 Ashby et al. Jul 1999 A
5964752 Stone Oct 1999 A
5964768 Huebner Oct 1999 A
5964808 Blaha et al. Oct 1999 A
5968050 Torrie Oct 1999 A
5989269 Vibe-Hansen et al. Nov 1999 A
5990382 Fox Nov 1999 A
5997543 Truscott Dec 1999 A
5997582 Weiss Dec 1999 A
6004323 Park et al. Dec 1999 A
6010502 Bagby Jan 2000 A
6015411 Ohkoshi et al. Jan 2000 A
6017348 Hart et al. Jan 2000 A
6019767 Howell Feb 2000 A
6019790 Holmberg et al. Feb 2000 A
6045564 Walen Apr 2000 A
6052909 Gardner Apr 2000 A
6059831 Braslow May 2000 A
6071310 Picha et al. Jun 2000 A
6081741 Hollis Jun 2000 A
6086593 Bonutti Jul 2000 A
6102948 Brosnahan, III Aug 2000 A
6120542 Camino et al. Sep 2000 A
6132433 Whelan Oct 2000 A
6146385 Torrie et al. Nov 2000 A
6149654 Johnson Nov 2000 A
6152960 Pappas Nov 2000 A
6159216 Burkinshaw et al. Dec 2000 A
6165223 Metzger et al. Dec 2000 A
6168626 Hyon et al. Jan 2001 B1
6171340 McDowell Jan 2001 B1
6193724 Chan Feb 2001 B1
6206885 Ghahremani et al. Mar 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217619 Keller Apr 2001 B1
6235060 Kubein-Meesenburg May 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6299645 Ogden Oct 2001 B1
6299648 Doubler et al. Oct 2001 B1
6306142 Johanson et al. Oct 2001 B1
6315798 Ashby et al. Nov 2001 B1
6322500 Sikora et al. Nov 2001 B1
6328752 Sjostrom et al. Dec 2001 B1
6342075 MacArthur Jan 2002 B1
6358251 Mirza Mar 2002 B1
6358253 Torrie et al. Mar 2002 B1
6375658 Hangody et al. Apr 2002 B1
6383188 Kuslich May 2002 B2
6415516 Tirado et al. Jul 2002 B1
6443954 Bramlet et al. Sep 2002 B1
6461373 Wyman et al. Oct 2002 B2
6468309 Lieberman Oct 2002 B1
6478801 Ralph et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6494914 Brown Dec 2002 B2
6520964 Tallarida et al. Feb 2003 B2
6527754 Tallarida et al. Mar 2003 B1
6530956 Mansmann Mar 2003 B1
6540786 Chibrac et al. Apr 2003 B2
6551322 Lieberman Apr 2003 B1
6554866 Aicher et al. Apr 2003 B1
6575982 Bonutti Jun 2003 B1
6585666 Suh et al. Jul 2003 B2
6591581 Schmieding Jul 2003 B2
6599321 Hyde, Jr. Jul 2003 B2
6607561 Brannon Aug 2003 B2
6610067 Tallarida et al. Aug 2003 B2
6626950 Brown et al. Sep 2003 B2
6679917 Ek Jan 2004 B2
6746451 Middleton et al. Jun 2004 B2
6755837 Ebner Jun 2004 B2
6770078 Bonutti Aug 2004 B2
6783550 MacArthur Aug 2004 B2
6783551 Metzger Aug 2004 B1
6802864 Tornier Oct 2004 B2
6814735 Zirngibl Nov 2004 B1
6827722 Schoenefeld Dec 2004 B1
6860902 Reiley Mar 2005 B2
6884246 Sonnabend et al. Apr 2005 B1
6893467 Bercovy May 2005 B1
6923813 Phillips et al. Aug 2005 B2
6926739 OConnor Aug 2005 B1
6962577 Tallarida et al. Nov 2005 B2
6969393 Pinczewski et al. Nov 2005 B2
6984248 Hyde, Jr. Jan 2006 B2
6989016 Tallarida et al. Jan 2006 B2
7029479 Tallarida Apr 2006 B2
7063717 St. Pierre et al. Jun 2006 B2
7115131 Engh et al. Oct 2006 B2
7156880 Evans et al. Jan 2007 B2
7160305 Schmieding Jan 2007 B2
7163541 Ek Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7192431 Hangody et al. Mar 2007 B2
7204839 Dreyfuss et al. Apr 2007 B2
7204854 Guederian et al. Apr 2007 B2
7235107 Evans et al. Jun 2007 B2
7238189 Schmieding et al. Jul 2007 B2
7241316 Evans et al. Jul 2007 B2
7264634 Schmieding Sep 2007 B2
7290347 Augostino et al. Nov 2007 B2
7303577 Dean Dec 2007 B1
7311702 Tallarida et al. Dec 2007 B2
7361195 Schwartz et al. Apr 2008 B2
7510558 Tallarida Mar 2009 B2
7569059 Cerundolo Aug 2009 B2
7641658 Shaolian et al. Jan 2010 B2
20010012967 Mosseri Aug 2001 A1
20010039455 Simon et al. Nov 2001 A1
20010056266 Tallarida et al. Dec 2001 A1
20020055783 Tallarida et al. May 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020138150 Leclercq Sep 2002 A1
20020147498 Tallarida et al. Oct 2002 A1
20030028106 Miller Feb 2003 A1
20030028196 Bonutti Feb 2003 A1
20030060887 Ek Mar 2003 A1
20030065391 Re et al. Apr 2003 A1
20030100953 Rosa et al. May 2003 A1
20030105465 Schmieding et al. Jun 2003 A1
20030120276 Tallarida et al. Jun 2003 A1
20030120278 Morgan et al. Jun 2003 A1
20030130665 Pinczewski Jul 2003 A1
20030130741 McMinn Jul 2003 A1
20030171756 Fallin et al. Sep 2003 A1
20030181878 Tallarida et al. Sep 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030216669 Lang et al. Nov 2003 A1
20030225456 Ek Dec 2003 A1
20030225457 Justin et al. Dec 2003 A1
20040015170 Tallarida et al. Jan 2004 A1
20040034359 Schmieding et al. Feb 2004 A1
20040034437 Schmieding Feb 2004 A1
20040082906 Tallarida et al. Apr 2004 A1
20040106928 Ek Jun 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040138758 Evans et al. Jul 2004 A1
20040148030 Ek Jul 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040167632 Wen et al. Aug 2004 A1
20040193281 Grimes Sep 2004 A1
20040199166 Schmieding et al. Oct 2004 A1
20040210309 Denzer et al. Oct 2004 A1
20040220574 Pelo et al. Nov 2004 A1
20040230315 Ek Nov 2004 A1
20040260303 Carrison Dec 2004 A1
20050015153 Goble et al. Jan 2005 A1
20050038520 Binette et al. Feb 2005 A1
20050043805 Chudik Feb 2005 A1
20050043808 Felt Feb 2005 A1
20050065612 Winslow Mar 2005 A1
20050075642 Felt Apr 2005 A1
20050143731 Justin et al. Jun 2005 A1
20050143745 Hodorek et al. Jun 2005 A1
20050143831 Justin et al. Jun 2005 A1
20050154398 Miniaci Jul 2005 A1
20050209705 Niederauer et al. Sep 2005 A1
20050229323 Mills et al. Oct 2005 A1
20050287187 Mansmann Dec 2005 A1
20060004461 Justin et al. Jan 2006 A1
20060020343 Ek Jan 2006 A1
20060052878 Schmieding Mar 2006 A1
20060058744 Tallarida et al. Mar 2006 A1
20060058883 Aram et al. Mar 2006 A1
20060085006 Ek Apr 2006 A1
20060149370 Schmieding et al. Jul 2006 A1
20060190002 Tallarida Aug 2006 A1
20060195112 Ek Aug 2006 A1
20060229726 Ek Oct 2006 A1
20070005143 Ek Jan 2007 A1
20070038307 Webster et al. Feb 2007 A1
20070073394 Seedhom et al. Mar 2007 A1
20070093842 Schmieding Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100447 Steinberg May 2007 A1
20070118136 Ek May 2007 A1
20070123921 Ek May 2007 A1
20070179608 Ek Aug 2007 A1
20070233128 Schmieding et al. Oct 2007 A1
20070250067 Schmieding et al. Oct 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070288031 Dreyfuss et al. Dec 2007 A1
20070299519 Schmieding Dec 2007 A1
20080004659 Burkhart et al. Jan 2008 A1
20080015709 Evans et al. Jan 2008 A1
20080027430 Montgomery et al. Jan 2008 A1
20080033443 Sikora et al. Feb 2008 A1
20080086139 Bourke et al. Apr 2008 A1
20080172125 Ek Jul 2008 A1
20080183290 Baird et al. Jul 2008 A1
20080188935 Saylor et al. Aug 2008 A1
20080275512 Albertorio et al. Nov 2008 A1
20080306483 Iannarone Dec 2008 A1
20090198288 Hoof et al. Aug 2009 A1
20090234452 Steiner et al. Sep 2009 A1
20090275950 Sterrett et al. Nov 2009 A1
Foreign Referenced Citations (57)
Number Date Country
2001262308 Dec 2001 AU
2003262428 Aug 2009 AU
2933174 Apr 1980 DE
3516743 Nov 1986 DE
3840466 Jun 1990 DE
0241240 Oct 1987 EP
0350780 Jan 1990 EP
0485678 May 1992 EP
0327387 Sep 1992 EP
0505634 Sep 1992 EP
0903125 Mar 1999 EP
0903127 Mar 1999 EP
0661023 Aug 2001 EP
1426013 Sep 2004 EP
1278460 Apr 2009 EP
2242068 Mar 1975 FR
2642301 Mar 1990 FR
2676917 Dec 1992 FR
2693650 Jan 1994 FR
2718014 Oct 1995 FR
2733904 Nov 1996 FR
2739151 Mar 1997 FR
2372707 Sep 2002 GB
61502029 Sep 1986 JP
63300758 Dec 1988 JP
3504932 Oct 1991 JP
H03-092328 Nov 1992 JP
518511 Mar 1993 JP
06339490 Dec 1994 JP
11244315 Sep 1999 JP
2001525210 Dec 2001 JP
2002291779 Oct 2002 JP
2003534096 Nov 2003 JP
8803781 Jun 1988 WO
8909578 Oct 1989 WO
9427507 Dec 1994 WO
9624304 Aug 1996 WO
9722306 Jun 1997 WO
9920192 Apr 1999 WO
0105336 Jan 2001 WO
0182677 Nov 2001 WO
0191648 Dec 2001 WO
0191672 Dec 2001 WO
0217821 Mar 2002 WO
WO 02086180 Oct 2002 WO
03051210 Jun 2003 WO
03051211 Jun 2003 WO
03061516 Jul 2003 WO
03065909 Aug 2003 WO
2004014261 Feb 2004 WO
2004026170 Apr 2004 WO
2004052216 Jun 2004 WO
2004075777 Sep 2004 WO
2005051231 Jun 2005 WO
2005512331 Jun 2005 WO
2006004885 Jan 2006 WO
2006004885 Aug 2006 WO
Related Publications (1)
Number Date Country
20060085006 A1 Apr 2006 US
Provisional Applications (3)
Number Date Country
60603473 Aug 2004 US
60583549 Jun 2004 US
60523810 Nov 2003 US
Continuation in Parts (4)
Number Date Country
Parent 11169326 Jun 2005 US
Child 11209170 US
Parent 10994453 Nov 2004 US
Child 11169326 US
Parent 11209170 US
Child 11169326 US
Parent 10308718 Dec 2002 US
Child 11209170 US