The present disclosure is directed at a system and method for accessing an articular joint surface. The present disclosure is further directed at a method and system for replacing at least a portion of an articular surface.
Articular cartilage, found at the ends of articulating bone in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load bearing surface. Hyaline cartilage problems, particularly in knee, hip joints, and should joints, are generally caused by disease such as occurs with rheumatoid arthritis or wear and tear (osteoarthritis), or secondary to an injury, either acute (sudden), or recurrent and chronic (ongoing). Such cartilage disease or deterioration can compromise the articular surface causing pain and eventually, loss of joint movement. As a result, various methods have been developed to treat and repair damaged or destroyed articular cartilage.
For smaller defects, traditional options for this type of problem include leaving the lesions or injury alone and living with it, or performing a procedure called abrasion arthroplasty or abrasion chondralplasty. The principle behind this procedure is to attempt to stimulate natural healing. The bone surface is drilled using a high speed rotary burr or shaving device and the surgeon removes about 1 mm of bone from the surface of the lesion. This creates an exposed subchondral bone bed that will bleed and will initiate a fibrocartilage healing response. One problem with this procedure is that the exposed bone is not as smooth as it originally was following the drilling and burring which tends to leave a series of ridges and valleys, affecting the durability of the fibrocartilage response. Further, although this procedure can provide good short term results, (1-3 years), fibrocartilage is seldom able to support long-term weight bearing and is prone to wear, soften and deteriorate.
Another procedure, called Microfracture incorporates some of the principles of drilling, abrasion and chondralplasty. During the procedure, the calcified cartilage layer of the chondral defect is removed. Several pathways or “microfractures” are created to the subchondral bleeding bone bed by impacting a metal pick or surgical awl at a minimum number of locations within the lesion. By establishing bleeding in the lesion and by creating a pathway to the subchondral bone, a fibrocartilage healing response is initiated, forming a replacement surface. Results for this technique may be expected to be similar to abrasion chondralplasty.
Another means used to treat damaged articular cartilage is a cartilage transplant. Essentially, this procedure involves moving cartilage from an outside source or other knee or from within the same knee into the defect. Typically, this is done by transferring a peg of cartilage with underlying bone and fixing it in place with a screw or pin or by a press fit. Although useful for smaller defects, large defects present a problem, as this procedure requires donor pegs proportionate to the recipient bed. Large diameter lesions may exceed the capacity to borrow from within the same knee joint and rule out borrowing from another source.
Larger defects, however, generally require a more aggressive intervention. Typically treatment requires replacing a portion or all of the articular surface with an implant or prosthetic having an outer layer that that is polished or composed of a material that provides a lubricious load bearing surface in approximation of an undamaged cartilage surface. Replacement of a portion, or all, of the articular surface requires first cutting, boring, or reaming the damaged area to remove the damaged cartilage. A recess to receive an implant or prosthetic is formed at the damaged site. The implant or prosthetic is then secured to the bone in an appropriate position in the recess.
The treatment and/or replacement procedure often requires direct access to the damaged surface of the cartilage. While the most commonly damaged portions of some joints may easily be accessed for repair using a minimally invasive procedure some joints are not nearly as accessible. For example, the superior or medial femoral head, the medial humeral head, the glenoid, etc. do not permit direct access sufficient to carry out replacement of the articular surface in a minimally invasive manner. In fact, repair of such obstructed joints often requires an invasive procedure and necessitates complete dislocation of the joint. Procedures of such an invasive nature may be painful and require an extended recovery period.
Accordingly, it is an object of the present invention to provide a method for replacing an articular joint surface that is obscured from axial approach that is less invasive than conventional procedures and may not necessitate completely dislocating the joint.
The subject matter of the present disclosure is set forth by description of embodiments consistent therewith, which description should be considered in combination with the accompanying drawings, wherein:
By way of overview, the present disclosure provides a retrograde articular surface replacement system that may include a method and apparatus for replacing at least a portion of an articular surface including accessing a desired portion of the articular surface through a portion of bone. While the preceding overview and the following specific embodiments of the system according to the present disclosure are directed at a system for replacing at least a portion of an articular surface, the system herein may be used in connection with procedures other than the replacement of portions of an articular surface. From a broad standpoint, the system disclosed herein may provide an apparatus and method for accessing a bone, joint, etc., indirectly.
Turning to
The locating hoop 12 may include an opening there through such that when the locating hoop 12 is disposed on the articular surface 22 a portion of the articular surface may be exposed through the opening of the locating hoop 12. Furthermore, when the locating hoop 12 is disposed on the articular surface 22 the locating hoop 12 may achieve a desired orientation relative to a portion of the articular surface 22 exposed through the opening of the locating hoop 12. According to the illustrated embodiment, the locating hoop 12 may generally be configured as a ring having a circular opening extending therethrough. As shown, the locating hoop 12 may be positioned on an articular surface 22. According to one embodiment, when the locating hoop 12 is positioned on the articular surface 22 the locating hoop 12 may be oriented such that the axis of the opening of the locating hoop 12 may be generally normal to the articular surface 22 at the point of intersection by the axis of the opening. According alternative embodiments, the locating hoop 12 may achieve various other desired orientations relative to the articular surface 22.
The tool support 14 may include an opening 24 extending inwardly from a rear portion 26 of the tool support 14. The tool support 14 may define one or more windows 28 to the opening 24. According to one embodiment, the window 28 may include a transparent region of the tool support 14. For example, the window 28 may include a transparent plastic, glass, etc. region allowing the interior of the opening 24 to be viewed. Alternatively, the window 28 may be provided as an opening in a side region of the tool support 14. In such a configuration, the window 28 may not only allow the interior of the opening 24 to be viewed, but may also allow the interior of the opening 24 to be accessed and/or allow tools and/or objects within the opening 24 to be manipulated from the exterior of the tool support 14.
The tool support 14 may also include a bore 30 extending from the opening 24 to a front region of the tool support 14. As shown, the bore 30 may be sized to receive the cannulated shaft 18 therethrough. According to one embodiment, the inside diameter of the bore 30 may be closely sized to the outside diameter of the cannulated shaft 18 to maintain the cannulated shaft 18 in substantially coaxial alignment with the bore 30. Additionally, the tool support 14 may include a locking mechanism 32 that may be engaged to resist axial and/or rotational movement of the cannulated shaft 18. Suitable locking mechanisms 32 may have a variety of configurations. For example, the locking mechanism 32 may be a frictional locking mechanism including a bearing member that may press against, and frictionally engage, the cannulated shaft 18. Another suitable locking mechanism 32 may include a plurality of teeth that may be selectively engaged with corresponding features, such as circumferential grooves/ridges on at least a portion of the exterior of the cannulated shaft 18. Various other locking mechanisms may also, or alternatively, be employed herein.
The locating hoop 12 and the tool support 14 may be coupled to one another by an arm 16. The arm 16 may maintain the locating hoop 12 and the tool support 14 in a desired angular alignment and or position relative to one another. For example, the arm 16 may orient the locating hoop 12 and the tool support 14 such that the axis of the bore 30 intersects the center of the opening of the locating hoop 12 at a desired angle. The arm 16 may also arrange the tool support 14 and locating hoop 12 in predetermined relative angular alignments in which the axis of the bore 30 does not intersect the opening of the locating hoop 12. According to one embodiment, the locating hoop 12 may be oriented perpendicular to the guide shaft 18.
Consistent with the illustrated embodiment, the arm 16 may be a compound arcuate member having a fixed geometry. Accordingly, the relationship between the locating hoop 12 and the tool support 14 may be fixed relationship. It is contemplated herein, however, that the arm 16 may be releasably coupled to the tool support 14 and/or the locating hoop 12. In such an embodiment the tool support 14 and/or the locating hoop 12 may be separated from the arm 16. The arm 16 may be replaced with another arm, or arm 16 and locating hoop 12 assembly, providing a different configuration and/or providing a different angular alignment and or positional relationship between the locating hoop 12 and the tool support 14. According to a related embodiment, the arm 16 may be provided as an adjustable feature, thereby allowing the angular alignment and/or positional relationship between the locating hoop 12 and the tool support 14 to be varied or modified without replacing the arm 16.
Consistent with the illustrated embodiment, the cannulated guide shaft 18 may generally include a proximal receptacle portion 33, a shaft portion 34, and a distal tip 36. The shaft portion 34 may include at least one lumen extending along the length of the cannulated shaft 18. At least a portion of the shaft 34 may be disposed in the bore 30 of the tool support 14. Desirably, the shaft 34 is sized with respect to the bore 30, to provide a minimal of clearance. Accordingly, positioning the shaft portion 34 at least partially within the bore 30 may align an axis of the lumen in a predetermined relationship relative to the axis of the bore 30. As previously discussed, the bore 30 may in turn be oriented in a predetermined angular and/or positional arrangement relative to the locating hoop 12. The locating hoop 12 may itself be arranged in a predetermined relationship to the articular surface 22. Accordingly, when the shaft 34 is at least partially disposed within the bore 30 the lumen of the shaft portion 34 may be arranged in a desired angular and/or positional orientation relative to the opening of the locating hoop 12. In one embodiment, the axis of the lumen may be oriented parallel to the axis of the bore 30 when the shaft portion 34 is at least partially received in the bore 30. In a further embodiment, the lumen may be oriented coaxial with the bore 30 when the shaft portion 34 is at least partially received in the bore 30.
With additional reference to the cross-sectional view of
As shown in the
Movement of the distal tip 36 of the cannulated shaft 18 across the surface of the bone 20 may be reduced by providing the distal tip 36 having biting features. For example, as shown the tip 36 may have a serrated or saw tooth end feature. When the distal tip 36 is pressed against the bone 20, the serrated end feature may engage the bone 20 and resist movement once the tip 36 is so engaged. Accordingly, the system 10 may be placed in a desired position and/or alignment relative to the articular surface 22 by positioning the bone between the locating hoop 12 and the distal tip 36 of the cannulated shaft 18. The locating hoop 12 and distal tip 36 may be brought to bear on opposing sides of the bone 20. The cannulated shaft 18 may then be locked in position using the locking mechanism 32 of the tool support 14. Accordingly, it may be possible to maintain the system 10 in the desired position and/or alignment relative to the articular surface even when the desired position causes the distal tip 36 of the cannulated shaft 18 to contact the bone at an angle such that only a portion of the distal tip 36 contacts the bone 20.
Turning to
A reference axis may be established, consistent with the present disclosure, by drilling a hole through the bone 20 in a predetermined alignment relative to the cannulated shaft 18. According to one embodiment, the hole may be aligned coaxially with the cannulated shaft 18. Consistent with the present disclosure, the hole for the reference axis may be relatively small diameter compared to the lumen of the cannulated shaft 18. The reference axis hole may be drilled in the desired alignment using a reducer shaft 38. The reducer shaft 38 may be a cannulated shaft having an outside diameter sized to be received within the lumen of the cannulated shaft 18. The inside diameter of the lumen of the reducer shaft 38 may be sized to receive and align a pilot drill bit for drilling a reference axis hole having the desired diameter. Similar to the cannulated shaft 18, the reducer shaft 38 may include a cupped or conical proximal receptacle 40. The cupped or conical receptacle 40 may facilitate aligning instruments, tools, and/or other devices with the lumen of the reducer shaft 38, and/or inserting such instruments, tools, and/or other devices into the lumen of the reducer shaft 38.
With the locating hoop 12 and cannulated shaft 18 aligned and locked in a desired orientation relative to the articular surface 22, the reducer shaft 38 may be inserted into the lumen of the cannulated shaft 18 via the opening 24 in the rear of the tool support 14. The reducer shaft 38 may extend through at least a portion of the lumen of the cannulated shaft 18. According to one embodiment, the reducer shaft 38 may extend through the cannulated shaft 18 and contact the bone 20 or terminate proximate the surface of the bone 20. In such a configuration, the instruments, tools, etc., such as the pilot drill bit, may be fully supported up to the surface of the bone 20.
With the reducer shaft 38 in position within the lumen of the cannulated shaft 18, a guide pin 42 may be loaded through the opening 24 of the tool support 14 and into the lumen of the reducer shaft 38. Loading the guide pin 42 into the lumen of the reducer shaft may be facilitated by the cupped or conical receptacle 40 of the reducer shaft 38. The guide pin 42 may include a drill tip (not shown) or other cutting feature disposed on a distal end of the guide pin 42. The guide pin may be driven, e.g., by a drive motor or manual drive handle, from the rear portion 26 of the tool support 14. The depth of the hole may be gauged by observing penetration of the guide pin 42 through the articular surface 22 within the opening of the locating hoop 12. Alternatively, the separation between the tool support 14 and the locating hoop 12 may be known based on the configuration of the arm 16, locating hoop 12, and tool support 14. In one embodiment, the guide pin 42 may be provided having indicia representative of depth of penetration. The depth of the reference axis hole may be determined from the relationship between the guide pin 42 and at least one of the tool support 14, the reducer shaft 38 and the cannulated shaft 18, etc.
After the guide pin 42 has been drilled into and/or through the bone 20 in the above described manner, the guide pin 42 may be maintained extending into/through the bone and/or articular surface 22. The guide pin 42 extending at least partially into or through the bone 20 may provide a reference axis aligned through the reducer shaft 38. The guide pin 42 may be used locate subsequent operations and/or instruments relative to the reference axis. Once the guide pin 42 has been positioned in the hole through the bone 20, the reducer shaft 38 may be withdrawn from the lumen of the cannulated shaft 18. At least a portion of the guide pin 42 may remain in the hole extending into the bone 20. If the guide pin 42 is provided with a close fit with the hole, the guide pin 42 may be maintained in a desired alignment with the reference axis.
According to an alternative embodiment, a drill may be used to provide a hole extending into and/or through the bone 20. The reducer shaft 38 may be used to align and/or support the drill bit during the drilling operation. After the hole has been drilled extending into or through the bone 20, a guide pin 42 may be inserted extending into or through the hole to provide a reference axis, in a similar manner to the preceding description.
After the guide pin 42 has been positioned extending from the bone 20 in a desired position relative to the reference axis, a larger hole may be drilled into the bone for receiving a fixation and/or location element. Consistent with one embodiment, the hole for the fixation element may extend all of the way through the bone 20 and the articular surface 22. In other embodiments, however, the hole for the fixation element may extend only partially through the bone 20.
In one embodiment, the hole or tunnel for the fixation element may be drilled at least part of the way through the bone 20 using a cored drill 110,
Turning next to
Consistent with the illustrated embodiment, the screw 44 may be rotatably driven, i.e., screwed, into the bone using a probe-driver 46. The probe-driver 46 may include a shaft 48 that is configured to extend through the lumen of the cannulated shaft 18. A distal region of the shaft 48 may be provided having a feature for engaging and/or driving the screw 44. For example, the shaft 48 may include a hexagonal region that is adapted to be received by a corresponding hexagonal socket, or opening, in the screw 44. Various other features and configurations may be utilized to permit the shaft 48 to engage and/or drive the screw 44.
The probe-driver 46 may also include a knob 50 coupled to the proximal end of the shaft 48. The knob 50 may be coupled to the shaft 48 in a torsionally stiff manner such that rotating the knob 50 may also rotate the shaft 48 to drive the screw 44. Additionally, the probe-driver may include a cylindrical region 52 that may be sized to be rotatably received in the opening 24 of the tool support 14. According to one embodiment, the cylindrical region 52 may be sized relative to the opening 24 so that the probe-driver 46 may be supported by the opening 24 of the tool support 14.
Consistent with one embodiment, the cylindrical region 52 of the probe-driver 46 and the tool support 14 may include cooperating indicia (not shown) representative of the depth of penetration of the cylindrical region 52 into the opening 24 of the tool support 14. According to one embodiment, the indicia may be correlated to depth of insertion of the screw 44 into the bone 20. Accordingly, the depth of installation of the screw 44 into the bone 20 can be controlled and/or ascertained. The cooperating indicia may include, for example, a graduated scale and a reference, a vernier scale, or other system of reference marks.
Consistent with a particular embodiment, the indicia may be correlated to the depth of the screw 44 beneath the articular surface 22. Such a correlation may be achieved based on the known distance between the articular surface 22, as established by the locating hoop 12, and the tool support 14 which is established by the arm 16. Using a screw 44 having a known length and a predetermined seating height of the screw on the shaft 48 of the probe-driver 46, it may be possible to drive the screw 44 into the bone 20 to a predetermined distance from the articular surface 22.
With additional reference to
In a related embodiment, illustrated in
Embodiments may be provided combining various aspects of the previously described cooperating indicia on the probe-driver 46 and tool support 14 and the probe feature 54 on the shaft 48 of the probe-driver 46. Such embodiments combining these aspects may be used to position the screw at a predetermined depth relative to at least one of the locating hoop 12 and the articular surface 22.
According to an alternative embodiment, the fixation element, such as screw 44 may be inserted into the bone from the articular surface 22. According to such an embodiment, after a hole has been drilled through the articular surface 22, the screw 44 may be passed to the articular surface 22 and introduced into the hole therein. For example, a line, such as a metal wire, plastic filament, etc., may be passed through the hole and the screw 44 or attached to the screw 44 and pass through the hole. The screw 44 may then be drawn to the hole in the articular surface 22. The screw 44 may then be driven into the articular surface in a manner similar to the preceding embodiment, e.g., using a drive shaft extending through the hole in the bone 20.
After the screw 44 has been installed at a desired position in the bone 20, a region of the articular surface 22 surrounding the axis of the screw 44 may be excised to provide an implant site. The articular surface 22 may be excised using a rotating cutting device 100,
According to one embodiment, the cutting device may include a socket or opening along the rotational axis of the cutting device. For example, the cutting device may include a hexagonal socket along the rotational axis of the cutting device. The socket or opening along the rotational axis of the cutting device may allow the cutting device to be rotationally driven to excise at least a portion of the articular surface. Once the cutting device has been positioned on the articular surface with the rotational axis of the cutting device generally aligned with the opening through the screw 44, a drive shaft may be inserted through the hole through the bone and the opening through the screw and may engage the cutting device. For example, in the case of a cutting device having a hexagonal socket, the drive shaft may include a hexagonal feature adapted to be received in the hexagonal socket of the cutting device.
Once the drive shaft has been engaged with the cutting device, the cutting device may be rotatably driven by the drive shaft. The drive shaft, and thereby the cutting device, may be manually driven, e.g., by rotating a handle proximal to the cutting device, or may be mechanically drive, e.g., by a drive motor or drill device. While the cutting device is being rotatably driven by the drive shaft, the cutting device may also be pulled in to the articular surface 22, thereby excising the articular surface to form a generally circular implant site.
The depth of the implant site may be controlled in a variety of manners including visual inspection of the implant site and/or the depth of the cutting device in the implant site, indicia on the drive shaft indicative of the depth the cutting device has been pulled into the articular surface, etc. According to one embodiment, the depth of the implant site may be controlled by the screw 44, or other fixation element. The screw 44 may include an upper bearing surface 56, generally in
Depending upon the diameter of the implant site, the locating hoop 12 and/or the tool support 14 may be removed from the bone 20 prior to excising the implant site. For example, if the diameter of the implant site is to be equal to, or greater than, the inside diameter of the locating hoop 12, it may be desirable to remove the locating hoop from the region of the articular surface 22 to be excised prior to excising the implant site. If the diameter of the implant site, however, is to be smaller than the inside diameter of the locating hoop 12, the locating hoop 12 may optionally be maintained in position on the articular surface 22. If the locating hoop 12, tool support 14, etc., are removed during excision of the implant site, the opening extending through the screw 44 may serve as an alignment feature. That is, the diameter of the drive shaft may be dimensioned relative to the opening through the screw 44 such that the drive shaft may be maintained in a generally desired alignment by the opening through the screw 44 during excision of the implant site.
According to an alternative embodiment, the implant site may be excised prior to, or without, the installation of a fixation element such as a screw. In such an embodiment, the depth of the implant site may be provided using visual inspection, indicia on the drive shaft and/or cutting device, etc. The orientation of the excision may be controlled either by the tool support 14, e.g. via a guiding cannulated shaft or other guide feature, or by the hole through the bone. In either case the implant site may be provided in a manner as described above, with the cutting device being rotatably driven to excise a desired portion of the articular surface 22, and/or underlying bone 20.
As shown in
Referring again to
According to one aspect, the system herein may be used to provide information regarding the curvature of the articular surface 22. According to one embodiment, the curvature of the articular surface 22 may be measured or approximated using the locating hoop 12. The locating hoop 12 may contact the articular surface at a plurality of locations about the bottom circumference of the locating hoop 12 and/or continuously about the bottom circumference of the locating hoop 12. The height of the articular surface 22 in the center of the locating hoop 12 may be measured relative to the bottom circumference of the locating hoop 12, for example by using the probe-driver 46. Two generally opposed points of contact between the bottom circumference of the locating hoop 12 together with the radius of the locating hoop 12, and the height of the articular surface 22 generally in the center of the locating hoop 12 may define three points on a curve generally corresponding to the curvature of the articular surface. The geometry of the articular surface 22 may be mapped or approximated by developing one or more such curves approximating the curvature of the articular surface. A map or approximation of the curvature of the articular surface 22 may be used to select and/or fabricate an implant that may suitably replace a desired portion of the articular surface 22.
An implant 58 may be retained in an implant site by a variety of mechanisms. For example, the implant may include one or more features adapted to interact with the fixation element to retain the implant in the implant site. Consistent with the illustrated embodiment, the screw 44 may include an opening extending there through. At least a portion of the opening may be configured having a precision taper. The implant 58 may include a post 62 having a precision taper adapted to mate with the taper of the opening of the screw 44. The implant 58 may be retained in the implant site by inserting the tapered post 62 of the implant 58 into the tapered opening in the screw 44 and applying an axial pressure or impact to the implant 58, thereby seating the tapered post 62 in the tapered opening.
Various other features and methods may be used to retain the implant in the implant site. The implant and the fixation element may include interacting or cooperating features other than a tapered post and tapered opening. For example, the fixation element and implant may include conventional compression fits features, snap-fits, etc. In an embodiment that does not employ a separate fixation element, the implant may include a feature such as a barbed post that may engage the sides of the implant site and/or a hole drilled into, or through, the bone. Bone cement may additionally, or alternatively, be used to secure an implant in an implant site.
According to a related embodiment, the locating hoop 12 and tool support 14 may be removed after the guide pin 42 has been installed in the bone 20. As discussed above, the guide pin 42 may establish a reference axis for carrying out subsequent steps of an articular surface replacement procedure. For example, the guide pin may establish a reference axis for guiding a cored drill bit, described above. The cored drill may be used to provide a tunnel for a fixation element which may include an opening or a feature oriented in a predetermined relationship to the reference axis. According to one embodiment, the opening or feature in the fixation element may be used for positioning and aligning subsequent operations, instruments, and/or devices.
Turning to
Consistent with the illustrated embodiment, the biting features of the distal tip 36a of the cannulated shaft 18a may be especially useful for reducing or preventing undesired movement of the cannulated shaft 18a relative to the femoral head 102, or a similar highly arcuate or angled surface. As also indicated in the illustrated embodiment, the articular replacement system 10a may suitably be employed to replace a portion of a femoral head 102, or similarly configured joint, without reference to the axis of the neck of the joint. This aspect of the present disclosure may allow the amount of the articular surface being replaced to be minimized.
Referring to
Referring first to
As shown, with the locating hoop 12a located in a desired relationship to the defect or portion of an articular surface 62 to be replaced, a guide pin 42a may be drilled through the humerus 20a an the articular surface 22a thereof, using a cannulated shaft 18a to orient and support the guide pin 42a. The guide pin 42a may provide a reference axis for carrying out subsequent procedures. According to one embodiment, the guide pin 42a may be drilled at least a portion of the way into the glenoid articular surface 62 to mark the point of intersection of the reference axis with the glenoid articular surface 62.
Turning next to
Referring to
An implant site may be created in the articular surface 22a of the humerus 20a to provide an implant in the articular surface 22a of the humerus 20a that may interact with the implant 66 in the glenoid articular surface 62. Such an implant site may be created as described with reference to
Various other features and advantages of the articular replacement system described herein will be appreciated by those having skill in the art. Similarly, the system disclosed herein is susceptible to numerous modifications and variations without materially departing from the spirit of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 11/209,170 (now U.S. Pat. No. 7,901,408), filed Aug. 22, 2005 which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/603,473, filed Aug. 20, 2004. This application is a continuation of U.S. patent application Ser. No. 11/209,170 (now U.S. Pat. No. 7,901,408), filed Aug. 22, 2005 which is also a continuation-in-part of U.S. patent application Ser. No. 11/169,326, filed Jun. 28, 2005, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/583,549, filed Jun. 28, 2004. This application is a continuation of U.S. patent application Ser. No. 11/209,170 (now U.S. Pat. No. 7,901,408), filed Aug. 22, 2005 which is also a continuation in part of U.S. patent application Ser. No. 10/994,453 (now U.S. Pat. No. 7,896,885), filed Nov. 22, 2004 which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/523,810, filed Nov. 20, 2003. Additionally, this application is a continuation of U.S. patent application Ser. No. 11/209,170 (now U.S. Pat. No. 7,901,408), filed Aug. 22, 2005 which is also a continuation in part of U.S. patent application Ser. No. 10/308,718 (now U.S. Pat. No. 7,163,541), filed Dec. 3, 2002. Then entire disclosures of all of the above listed applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
992819 | Springer | May 1911 | A |
1451610 | Gestas | Apr 1923 | A |
2267925 | Johnston | Dec 1941 | A |
2379984 | Nereaux | Jul 1943 | A |
2381102 | Boyd | Oct 1943 | A |
2570465 | Lundholm | Oct 1951 | A |
3176395 | Warner et al. | Apr 1965 | A |
3715763 | Link | Feb 1973 | A |
3840905 | Deane | Oct 1974 | A |
3852830 | Marmor | Dec 1974 | A |
4016651 | Kawahara et al. | Apr 1977 | A |
4016874 | Maffei et al. | Apr 1977 | A |
4034418 | Jackson et al. | Jul 1977 | A |
4044464 | Schiess et al. | Aug 1977 | A |
4158894 | Worrell | Jun 1979 | A |
4319577 | Bofinger et al. | Mar 1982 | A |
4330891 | Brånemark et al. | May 1982 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4344192 | Imbert | Aug 1982 | A |
4433687 | Burke et al. | Feb 1984 | A |
4462120 | Rambert et al. | Jul 1984 | A |
4474177 | Whiteside | Oct 1984 | A |
4484570 | Sutter et al. | Nov 1984 | A |
4531517 | Forte et al. | Jul 1985 | A |
4535768 | Hourahane et al. | Aug 1985 | A |
4565768 | Nonogaki et al. | Jan 1986 | A |
4634720 | Dorman et al. | Jan 1987 | A |
4655752 | Honkanen et al. | Apr 1987 | A |
4661536 | Dorman et al. | Apr 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4664669 | Ohyabu et al. | May 1987 | A |
4673407 | Martin | Jun 1987 | A |
4693986 | Vit et al. | Sep 1987 | A |
4708139 | Dunbar, IV | Nov 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4714478 | Fischer | Dec 1987 | A |
4719908 | Averill et al. | Jan 1988 | A |
4722331 | Fox | Feb 1988 | A |
4729761 | White | Mar 1988 | A |
4781182 | Purnell et al. | Nov 1988 | A |
4788970 | Karas et al. | Dec 1988 | A |
4823780 | Odensten et al. | Apr 1989 | A |
4842604 | Dorman et al. | Jun 1989 | A |
4896663 | Vandewalls | Jan 1990 | A |
4911153 | Border | Mar 1990 | A |
4911720 | Collier | Mar 1990 | A |
4920958 | Walt et al. | May 1990 | A |
4927421 | Goble et al. | May 1990 | A |
4936853 | Fabian et al. | Jun 1990 | A |
4938778 | Ohyabu et al. | Jul 1990 | A |
4940467 | Tronzo | Jul 1990 | A |
4945904 | Bolton et al. | Aug 1990 | A |
4976037 | Hines | Dec 1990 | A |
4978258 | Lins | Dec 1990 | A |
4979957 | Hodorek | Dec 1990 | A |
4989110 | Zevin et al. | Jan 1991 | A |
4990163 | Ducheyne et al. | Feb 1991 | A |
4997434 | Seedhom et al. | Mar 1991 | A |
4998938 | Ghajar et al. | Mar 1991 | A |
5007930 | Dorman et al. | Apr 1991 | A |
5019104 | Whiteside et al. | May 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5092895 | Albrektsson et al. | Mar 1992 | A |
5100405 | McLaren | Mar 1992 | A |
5127920 | MacArthur | Jul 1992 | A |
5154720 | Trott et al. | Oct 1992 | A |
5180384 | Mikhail | Jan 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5201881 | Evans | Apr 1993 | A |
5207753 | Badrinath | May 1993 | A |
5211647 | Schmieding | May 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5234435 | Seagrave, Jr. | Aug 1993 | A |
5255838 | Gladdish, Jr. et al. | Oct 1993 | A |
5263498 | Caspari et al. | Nov 1993 | A |
5263987 | Shah | Nov 1993 | A |
5282863 | Burton | Feb 1994 | A |
5290313 | Heldreth | Mar 1994 | A |
5312411 | Steele | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5314482 | Goodfellow et al. | May 1994 | A |
5324295 | Shapiro | Jun 1994 | A |
5336224 | Selman | Aug 1994 | A |
5354300 | Goble et al. | Oct 1994 | A |
5358525 | Fox et al. | Oct 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5374270 | McGuire et al. | Dec 1994 | A |
5383937 | Mikhail | Jan 1995 | A |
5387218 | Meswania | Feb 1995 | A |
5395401 | Bahler | Mar 1995 | A |
5409490 | Ethridge | Apr 1995 | A |
5409494 | Morgan | Apr 1995 | A |
5413608 | Keller | May 1995 | A |
5423822 | Hershberger | Jun 1995 | A |
5423823 | Schmieding | Jun 1995 | A |
5425733 | Schmieding | Jun 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5480443 | Elias | Jan 1996 | A |
5486178 | Hodge | Jan 1996 | A |
5509918 | Romano | Apr 1996 | A |
5520695 | Luckman | May 1996 | A |
5522900 | Hollister | Jun 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5540696 | Booth, Jr. et al. | Jul 1996 | A |
5562664 | Durlacher et al. | Oct 1996 | A |
5580353 | Mendes et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5593450 | Scott et al. | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5597273 | Hirsch | Jan 1997 | A |
5601550 | Esser | Feb 1997 | A |
5607480 | Beaty | Mar 1997 | A |
5616146 | Murray | Apr 1997 | A |
5620055 | Javerlhac | Apr 1997 | A |
5624463 | Stone et al. | Apr 1997 | A |
5632745 | Schwartz | May 1997 | A |
5634927 | Houston et al. | Jun 1997 | A |
5645598 | Brosnahan, III | Jul 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
5681320 | McGuire | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683400 | McGuire | Nov 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5700264 | Zucherman et al. | Dec 1997 | A |
5700265 | Romano | Dec 1997 | A |
5702401 | Shaffer | Dec 1997 | A |
5702465 | Burkinshaw | Dec 1997 | A |
5702467 | Gabriel et al. | Dec 1997 | A |
5741266 | Moran et al. | Apr 1998 | A |
5765973 | Hirsch et al. | Jun 1998 | A |
5769855 | Bertin et al. | Jun 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5771310 | Vannah | Jun 1998 | A |
5776137 | Katz | Jul 1998 | A |
5782835 | Hart et al. | Jul 1998 | A |
5800440 | Stead | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5816811 | Beaty | Oct 1998 | A |
5817095 | Smith | Oct 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5824105 | Ries et al. | Oct 1998 | A |
RE36020 | Moore et al. | Dec 1998 | E |
5882350 | Ralph et al. | Mar 1999 | A |
5885297 | Matsen, III | Mar 1999 | A |
5885298 | Herrington et al. | Mar 1999 | A |
5888210 | Draenert | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895390 | Moran et al. | Apr 1999 | A |
5911126 | Massen | Jun 1999 | A |
5918604 | Whelan | Jul 1999 | A |
5919196 | Bobic et al. | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5928241 | Menut et al. | Jul 1999 | A |
5928286 | Ashby et al. | Jul 1999 | A |
5964752 | Stone | Oct 1999 | A |
5964768 | Huebner | Oct 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
5968050 | Torrie | Oct 1999 | A |
5989269 | Vibe-Hansen et al. | Nov 1999 | A |
5990382 | Fox | Nov 1999 | A |
5997543 | Truscott | Dec 1999 | A |
5997582 | Weiss | Dec 1999 | A |
6004323 | Park et al. | Dec 1999 | A |
6010502 | Bagby | Jan 2000 | A |
6015411 | Ohkoshi et al. | Jan 2000 | A |
6017348 | Hart et al. | Jan 2000 | A |
6019767 | Howell | Feb 2000 | A |
6019790 | Holmberg et al. | Feb 2000 | A |
6045564 | Walen | Apr 2000 | A |
6052909 | Gardner | Apr 2000 | A |
6059831 | Braslow | May 2000 | A |
6071310 | Picha et al. | Jun 2000 | A |
6081741 | Hollis | Jun 2000 | A |
6086593 | Bonutti | Jul 2000 | A |
6086614 | Mumme | Jul 2000 | A |
6102948 | Brosnahan, III | Aug 2000 | A |
6120511 | Chan | Sep 2000 | A |
6120542 | Camino et al. | Sep 2000 | A |
6132433 | Whelan | Oct 2000 | A |
6146385 | Torrie et al. | Nov 2000 | A |
6149654 | Johnson | Nov 2000 | A |
6152960 | Pappas | Nov 2000 | A |
6159216 | Burkinshaw et al. | Dec 2000 | A |
6165223 | Metzger et al. | Dec 2000 | A |
6168626 | Hyon et al. | Jan 2001 | B1 |
6171340 | McDowell | Jan 2001 | B1 |
6193724 | Chan | Feb 2001 | B1 |
6206885 | Ghahremani et al. | Mar 2001 | B1 |
6206926 | Pappas | Mar 2001 | B1 |
6217549 | Selmon et al. | Apr 2001 | B1 |
6217619 | Keller | Apr 2001 | B1 |
6235060 | Kubein-Meesenburg et al. | May 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6254605 | Howell | Jul 2001 | B1 |
6270347 | Webster et al. | Aug 2001 | B1 |
6280474 | Cassidy et al. | Aug 2001 | B1 |
6299645 | Ogden | Oct 2001 | B1 |
6299648 | Doubler et al. | Oct 2001 | B1 |
6306142 | Johanson et al. | Oct 2001 | B1 |
6315798 | Ashby et al. | Nov 2001 | B1 |
6322500 | Sikora et al. | Nov 2001 | B1 |
6328752 | Sjostrom et al. | Dec 2001 | B1 |
6342075 | MacArthur | Jan 2002 | B1 |
6358251 | Mirza | Mar 2002 | B1 |
6358253 | Torrie et al. | Mar 2002 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6375658 | Hangody et al. | Apr 2002 | B1 |
6383188 | Kuslich | May 2002 | B2 |
6415516 | Tirado et al. | Jul 2002 | B1 |
6443954 | Bramlet et al. | Sep 2002 | B1 |
6451023 | Salazar et al. | Sep 2002 | B1 |
6461373 | Wyman et al. | Oct 2002 | B2 |
6468309 | Lieberman | Oct 2002 | B1 |
6478801 | Ralph et al. | Nov 2002 | B1 |
6478822 | Leroux et al. | Nov 2002 | B1 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6494914 | Brown | Dec 2002 | B2 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6527754 | Tallarida et al. | Mar 2003 | B1 |
6530956 | Mansmann | Mar 2003 | B1 |
6540786 | Chibrac et al. | Apr 2003 | B2 |
6551322 | Lieberman | Apr 2003 | B1 |
6554866 | Aicher et al. | Apr 2003 | B1 |
6575980 | Robie et al. | Jun 2003 | B1 |
6575982 | Bonutti | Jun 2003 | B1 |
6585666 | Suh et al. | Jul 2003 | B2 |
6591581 | Schmieding | Jul 2003 | B2 |
6599321 | Hyde et al. | Jul 2003 | B2 |
6602258 | Katz | Aug 2003 | B1 |
6607561 | Brannon | Aug 2003 | B2 |
6610067 | Tallarida | Aug 2003 | B2 |
6610095 | Pope et al. | Aug 2003 | B1 |
6623474 | Ponzi | Sep 2003 | B1 |
6626950 | Brown et al. | Sep 2003 | B2 |
6629997 | Mansmann | Oct 2003 | B2 |
6632246 | Simon et al. | Oct 2003 | B1 |
6679917 | Ek | Jan 2004 | B2 |
6746451 | Middleton et al. | Jun 2004 | B2 |
6755837 | Ebner | Jun 2004 | B2 |
6755865 | Tarabishy | Jun 2004 | B2 |
6770078 | Bonutti | Aug 2004 | B2 |
6783550 | MacArthur | Aug 2004 | B2 |
6783551 | Metzger | Aug 2004 | B1 |
6802864 | Tornier | Oct 2004 | B2 |
6814735 | Zirngibl | Nov 2004 | B1 |
6827722 | Schoenefeld | Dec 2004 | B1 |
6860902 | Reiley | Mar 2005 | B2 |
6884246 | Sonnabend et al. | Apr 2005 | B1 |
6884621 | Liao et al. | Apr 2005 | B2 |
6893467 | Bercovy | May 2005 | B1 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6926739 | OConnor | Aug 2005 | B1 |
6962577 | Tallarida et al. | Nov 2005 | B2 |
6969393 | Pinczewski et al. | Nov 2005 | B2 |
6984248 | Hyde, Jr. | Jan 2006 | B2 |
6989016 | Tallarida et al. | Jan 2006 | B2 |
7029479 | Tallarida | Apr 2006 | B2 |
7048767 | Namavar | May 2006 | B2 |
7063717 | St. Pierre et al. | Jun 2006 | B2 |
7112205 | Carrison | Sep 2006 | B2 |
7115131 | Engh et al. | Oct 2006 | B2 |
7118578 | West, Jr. et al. | Oct 2006 | B2 |
7156880 | Evans et al. | Jan 2007 | B2 |
7160305 | Schmieding | Jan 2007 | B2 |
7163541 | Ek | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7192431 | Hangody et al. | Mar 2007 | B2 |
7192432 | Wetzler et al. | Mar 2007 | B2 |
7204839 | Dreyfuss et al. | Apr 2007 | B2 |
7204854 | Guederian et al. | Apr 2007 | B2 |
7235107 | Evans et al. | Jun 2007 | B2 |
7238189 | Schmieding et al. | Jul 2007 | B2 |
7241316 | Evans et al. | Jul 2007 | B2 |
7264634 | Schmieding | Sep 2007 | B2 |
7290347 | Augostino et al. | Nov 2007 | B2 |
7303577 | Dean | Dec 2007 | B1 |
7311702 | Tallarida et al. | Dec 2007 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7368065 | Yang et al. | May 2008 | B2 |
7371260 | Malinin | May 2008 | B2 |
7462199 | Justin et al. | Dec 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7476250 | Mansmann | Jan 2009 | B1 |
7491235 | Fell | Feb 2009 | B2 |
7501073 | Wen et al. | Mar 2009 | B2 |
7510558 | Tallarida | Mar 2009 | B2 |
7531000 | Hodorek | May 2009 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7569059 | Cerundolo | Aug 2009 | B2 |
7572291 | Gil et al. | Aug 2009 | B2 |
7575578 | Wetzler et al. | Aug 2009 | B2 |
7578824 | Justin et al. | Aug 2009 | B2 |
7604641 | Tallarida et al. | Oct 2009 | B2 |
7611653 | Elsner et al. | Nov 2009 | B1 |
7618451 | Berez et al. | Nov 2009 | B2 |
7618462 | Ek | Nov 2009 | B2 |
7632294 | Milbodker et al. | Dec 2009 | B2 |
7641658 | Shaolian et al. | Jan 2010 | B2 |
7641689 | Fell et al. | Jan 2010 | B2 |
7670381 | Schwartz | Mar 2010 | B2 |
7678151 | Ek | Mar 2010 | B2 |
7682540 | Boyan et al. | Mar 2010 | B2 |
7687462 | Ting et al. | Mar 2010 | B2 |
7708741 | Bonutti | May 2010 | B1 |
7713305 | Ek | May 2010 | B2 |
7722676 | Hanson et al. | May 2010 | B2 |
7731720 | Sand et al. | Jun 2010 | B2 |
7758643 | Stone et al. | Jul 2010 | B2 |
7806872 | Ponzi | Oct 2010 | B2 |
7815645 | Haines | Oct 2010 | B2 |
7828853 | Ek et al. | Nov 2010 | B2 |
7842042 | Reay-Young et al. | Nov 2010 | B2 |
7857817 | Tallarida et al. | Dec 2010 | B2 |
7896883 | Ek et al. | Mar 2011 | B2 |
7896885 | Miniaci et al. | Mar 2011 | B2 |
7901408 | Ek et al. | Mar 2011 | B2 |
7914545 | Ek | Mar 2011 | B2 |
7931683 | Weber et al. | Apr 2011 | B2 |
7951163 | Ek | May 2011 | B2 |
7955382 | Flanagan et al. | Jun 2011 | B2 |
7959636 | Schmieding | Jun 2011 | B2 |
7967823 | Ammann et al. | Jun 2011 | B2 |
7993360 | Hacker et al. | Aug 2011 | B2 |
7993369 | Dreyfuss | Aug 2011 | B2 |
7998206 | Shepard | Aug 2011 | B2 |
8012206 | Schmieding | Sep 2011 | B2 |
8021367 | Bourke et al. | Sep 2011 | B2 |
8038652 | Morrison et al. | Oct 2011 | B2 |
8038678 | Schmieding et al. | Oct 2011 | B2 |
8043315 | Shepard | Oct 2011 | B2 |
8043319 | Lyon et al. | Oct 2011 | B2 |
8048079 | Iannarone | Nov 2011 | B2 |
8048157 | Albertorio | Nov 2011 | B2 |
8057478 | Kuczynski et al. | Nov 2011 | B2 |
8062301 | Ammann et al. | Nov 2011 | B2 |
8062319 | O'Quinn et al. | Nov 2011 | B2 |
8083746 | Novak | Dec 2011 | B2 |
8083749 | Taber | Dec 2011 | B2 |
8083803 | Albertorio et al. | Dec 2011 | B2 |
8097040 | Russo et al. | Jan 2012 | B2 |
8137406 | Novak et al. | Mar 2012 | B2 |
8142502 | Stone et al. | Mar 2012 | B2 |
8147559 | Tallarida et al. | Apr 2012 | B2 |
8152847 | Strzepa et al. | Apr 2012 | B2 |
8162947 | Dreyfuss | Apr 2012 | B2 |
8167951 | Ammann et al. | May 2012 | B2 |
8177738 | Schmieding et al. | May 2012 | B2 |
8177841 | Ek | May 2012 | B2 |
8182489 | Horacek | May 2012 | B2 |
8202282 | Schmieding et al. | Jun 2012 | B2 |
8202296 | Burkhart | Jun 2012 | B2 |
8202297 | Burkhart | Jun 2012 | B2 |
8202298 | Cook et al. | Jun 2012 | B2 |
8202306 | Dreyfuss | Jun 2012 | B2 |
8202318 | Willobee | Jun 2012 | B2 |
8211112 | Novak et al. | Jul 2012 | B2 |
8221455 | Shurnas et al. | Jul 2012 | B2 |
8231653 | Dreyfuss | Jul 2012 | B2 |
8231674 | Albertorio et al. | Jul 2012 | B2 |
8236000 | Ammann et al. | Aug 2012 | B2 |
8298247 | Sterrett et al. | Oct 2012 | B2 |
8298284 | Cassani | Oct 2012 | B2 |
8308662 | Lo | Nov 2012 | B2 |
8308732 | Millett et al. | Nov 2012 | B2 |
8323347 | Guederian et al. | Dec 2012 | B2 |
8328716 | Schmieding et al. | Dec 2012 | B2 |
8333774 | Morrison | Dec 2012 | B2 |
8343186 | Dreyfuss et al. | Jan 2013 | B2 |
8348960 | Michel et al. | Jan 2013 | B2 |
8348975 | Dreyfuss | Jan 2013 | B2 |
8353915 | Helenbolt et al. | Jan 2013 | B2 |
8361159 | Ek | Jan 2013 | B2 |
8377068 | Aker et al. | Feb 2013 | B2 |
8382789 | Weber et al. | Feb 2013 | B2 |
8382810 | Peterson et al. | Feb 2013 | B2 |
8388624 | Ek et al. | Mar 2013 | B2 |
8398678 | Baker et al. | Mar 2013 | B2 |
8409209 | Ammann et al. | Apr 2013 | B2 |
8409250 | Schmieding et al. | Apr 2013 | B2 |
8419794 | ElAttrache et al. | Apr 2013 | B2 |
8425554 | Denove et al. | Apr 2013 | B2 |
8430909 | Dreyfuss | Apr 2013 | B2 |
8435272 | Dougherty et al. | May 2013 | B2 |
8439976 | Albertorio et al. | May 2013 | B2 |
8444680 | Dooney, Jr. et al. | May 2013 | B2 |
8460317 | Merves | Jun 2013 | B2 |
8460318 | Murray et al. | Jun 2013 | B2 |
8460350 | Albertorio et al. | Jun 2013 | B2 |
8460379 | Albertorio et al. | Jun 2013 | B2 |
20010010023 | Schwartz et al. | Jul 2001 | A1 |
20010012967 | Mosseri | Aug 2001 | A1 |
20010034526 | Kuslich et al. | Oct 2001 | A1 |
20010039455 | Simon et al. | Nov 2001 | A1 |
20010053914 | Landry et al. | Dec 2001 | A1 |
20010056266 | Tallarida et al. | Dec 2001 | A1 |
20020022847 | Ray, III et al. | Feb 2002 | A1 |
20020022889 | Chibrac et al. | Feb 2002 | A1 |
20020049444 | Knox | Apr 2002 | A1 |
20020055783 | Tallarida et al. | May 2002 | A1 |
20020106393 | Bianchi et al. | Aug 2002 | A1 |
20020138150 | Leclercq | Sep 2002 | A1 |
20020143342 | Hangody et al. | Oct 2002 | A1 |
20020147498 | Tallarida et al. | Oct 2002 | A1 |
20020155144 | Troczynski et al. | Oct 2002 | A1 |
20020156480 | Overes et al. | Oct 2002 | A1 |
20020173797 | Van Zile et al. | Nov 2002 | A1 |
20030028196 | Bonutti | Feb 2003 | A1 |
20030060887 | Ek | Mar 2003 | A1 |
20030065391 | Re et al. | Apr 2003 | A1 |
20030100953 | Rosa et al. | May 2003 | A1 |
20030105465 | Schmieding et al. | Jun 2003 | A1 |
20030120276 | Tallarida et al. | Jun 2003 | A1 |
20030120278 | Morgan et al. | Jun 2003 | A1 |
20030130741 | McMinn | Jul 2003 | A1 |
20030144736 | Sennett | Jul 2003 | A1 |
20030171756 | Fallin et al. | Sep 2003 | A1 |
20030181878 | Tallarida et al. | Sep 2003 | A1 |
20030195470 | Ponzi | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030204267 | Hazebrouck et al. | Oct 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030216742 | Wetzler et al. | Nov 2003 | A1 |
20030225456 | Ek | Dec 2003 | A1 |
20030225457 | Justin et al. | Dec 2003 | A1 |
20030229352 | Penenberg | Dec 2003 | A1 |
20040015170 | Tallarida et al. | Jan 2004 | A1 |
20040033212 | Thomson et al. | Feb 2004 | A1 |
20040034359 | Schmieding et al. | Feb 2004 | A1 |
20040034437 | Schmieding | Feb 2004 | A1 |
20040039389 | West, Jr. et al. | Feb 2004 | A1 |
20040082906 | Tallarida et al. | Apr 2004 | A1 |
20040092946 | Bagga et al. | May 2004 | A1 |
20040106928 | Ek | Jun 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040138758 | Evans et al. | Jul 2004 | A1 |
20040148030 | Ek | Jul 2004 | A1 |
20040153087 | Sanford et al. | Aug 2004 | A1 |
20040167632 | Wen et al. | Aug 2004 | A1 |
20040167633 | Wen et al. | Aug 2004 | A1 |
20040176775 | Burkus et al. | Sep 2004 | A1 |
20040193172 | Ross et al. | Sep 2004 | A1 |
20040193267 | Jones et al. | Sep 2004 | A1 |
20040193268 | Hazebrouck | Sep 2004 | A1 |
20040193281 | Grimes | Sep 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040210309 | Denzer et al. | Oct 2004 | A1 |
20040220574 | Pelo et al. | Nov 2004 | A1 |
20040230315 | Ek | Nov 2004 | A1 |
20040260303 | Carrison | Dec 2004 | A1 |
20050015153 | Goble et al. | Jan 2005 | A1 |
20050038520 | Binette et al. | Feb 2005 | A1 |
20050043805 | Chudik | Feb 2005 | A1 |
20050043808 | Felt et al. | Feb 2005 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20050075642 | Felt | Apr 2005 | A1 |
20050143731 | Justin et al. | Jun 2005 | A1 |
20050143745 | Hodorek et al. | Jun 2005 | A1 |
20050143831 | Justin et al. | Jun 2005 | A1 |
20050149044 | Justin et al. | Jul 2005 | A1 |
20050154398 | Miniaci et al. | Jul 2005 | A1 |
20050177171 | Wetzler et al. | Aug 2005 | A1 |
20050209705 | Niederauer et al. | Sep 2005 | A1 |
20050222687 | Vunjak-Novakovic et al. | Oct 2005 | A1 |
20050229323 | Mills et al. | Oct 2005 | A1 |
20050251268 | Truncale | Nov 2005 | A1 |
20050287187 | Mansmann | Dec 2005 | A1 |
20060004461 | Justin et al. | Jan 2006 | A1 |
20060009774 | Goble et al. | Jan 2006 | A1 |
20060020343 | Ek | Jan 2006 | A1 |
20060052878 | Schmieding | Mar 2006 | A1 |
20060058744 | Tallarida et al. | Mar 2006 | A1 |
20060058809 | Zink et al. | Mar 2006 | A1 |
20060058883 | Aram et al. | Mar 2006 | A1 |
20060069394 | Weiler et al. | Mar 2006 | A1 |
20060074430 | Deffenbaugh et al. | Apr 2006 | A1 |
20060085006 | Ek | Apr 2006 | A1 |
20060085077 | Cook et al. | Apr 2006 | A1 |
20060149370 | Schmieding et al. | Jul 2006 | A1 |
20060167560 | Heck et al. | Jul 2006 | A1 |
20060184187 | Surti | Aug 2006 | A1 |
20060190002 | Tallarida | Aug 2006 | A1 |
20060195112 | Ek | Aug 2006 | A1 |
20060229726 | Ek | Oct 2006 | A1 |
20060271059 | Reay-Young et al. | Nov 2006 | A1 |
20070005143 | Ek | Jan 2007 | A1 |
20070038302 | Shultz et al. | Feb 2007 | A1 |
20070038307 | Webster et al. | Feb 2007 | A1 |
20070073394 | Seedhom et al. | Mar 2007 | A1 |
20070093842 | Schmieding | Apr 2007 | A1 |
20070093848 | Harris et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070093896 | Malinin | Apr 2007 | A1 |
20070118136 | Ek | May 2007 | A1 |
20070118224 | Shah et al. | May 2007 | A1 |
20070123921 | Ek | May 2007 | A1 |
20070134291 | Ting et al. | Jun 2007 | A1 |
20070179608 | Ek | Aug 2007 | A1 |
20070233128 | Schmieding et al. | Oct 2007 | A1 |
20070244484 | Luginbuehl | Oct 2007 | A1 |
20070250067 | Schmieding et al. | Oct 2007 | A1 |
20070255399 | Eliasen et al. | Nov 2007 | A1 |
20070255412 | Hajaj et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070270873 | Flickinger et al. | Nov 2007 | A1 |
20070282455 | Luginbuehl et al. | Dec 2007 | A1 |
20070288031 | Dreyfuss et al. | Dec 2007 | A1 |
20070299519 | Schmieding | Dec 2007 | A1 |
20080004659 | Burkhart et al. | Jan 2008 | A1 |
20080015709 | Evans et al. | Jan 2008 | A1 |
20080027430 | Montgomery et al. | Jan 2008 | A1 |
20080033443 | Sikora et al. | Feb 2008 | A1 |
20080033447 | Sand | Feb 2008 | A1 |
20080046084 | Sledge | Feb 2008 | A1 |
20080086139 | Bourke et al. | Apr 2008 | A1 |
20080097618 | Baker et al. | Apr 2008 | A1 |
20080103506 | Volpi et al. | May 2008 | A1 |
20080154271 | Berberich et al. | Jun 2008 | A1 |
20080172125 | Ek | Jul 2008 | A1 |
20080183290 | Baird et al. | Jul 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080195113 | Sikora | Aug 2008 | A1 |
20080208201 | Moindreau et al. | Aug 2008 | A1 |
20080262625 | Spriano et al. | Oct 2008 | A1 |
20080275512 | Albertorio et al. | Nov 2008 | A1 |
20080306483 | Iannarone | Dec 2008 | A1 |
20080317807 | Lu et al. | Dec 2008 | A1 |
20090018543 | Ammann et al. | Jan 2009 | A1 |
20090054899 | Ammann et al. | Feb 2009 | A1 |
20090069816 | Sasing et al. | Mar 2009 | A1 |
20090076512 | Ammann et al. | Mar 2009 | A1 |
20090112211 | Johnstone | Apr 2009 | A1 |
20090138077 | Weber et al. | May 2009 | A1 |
20090143783 | Dower | Jun 2009 | A1 |
20090143784 | Petersen et al. | Jun 2009 | A1 |
20090149860 | Scribner et al. | Jun 2009 | A1 |
20090198288 | Hoof et al. | Aug 2009 | A1 |
20090210057 | Liao et al. | Aug 2009 | A1 |
20090216285 | Ek et al. | Aug 2009 | A1 |
20090222012 | Karnes et al. | Sep 2009 | A1 |
20090228105 | Son et al. | Sep 2009 | A1 |
20090234452 | Steiner et al. | Sep 2009 | A1 |
20090264889 | Long et al. | Oct 2009 | A1 |
20090264928 | Blain | Oct 2009 | A1 |
20090275950 | Sterrett et al. | Nov 2009 | A1 |
20090276052 | Regala et al. | Nov 2009 | A1 |
20100003638 | Collins et al. | Jan 2010 | A1 |
20100015244 | Jain et al. | Jan 2010 | A1 |
20100028387 | Balasundaram et al. | Feb 2010 | A1 |
20100028999 | Nain | Feb 2010 | A1 |
20100036381 | Vanleeuwen et al. | Feb 2010 | A1 |
20100092535 | Cook et al. | Apr 2010 | A1 |
20100112519 | Hall et al. | May 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100256645 | Zajac et al. | Oct 2010 | A1 |
20100256758 | Gordon et al. | Oct 2010 | A1 |
20100268227 | Tong et al. | Oct 2010 | A1 |
20100268346 | Tong et al. | Oct 2010 | A1 |
20110009964 | Schwartz et al. | Jan 2011 | A1 |
20110059312 | Howling et al. | Mar 2011 | A1 |
20110066242 | Lu et al. | Mar 2011 | A1 |
20110106271 | Regala et al. | May 2011 | A1 |
20110125263 | Webster et al. | May 2011 | A1 |
20110152869 | Ek et al. | Jun 2011 | A1 |
20110196367 | Gallo | Aug 2011 | A1 |
20110238069 | Zajac et al. | Sep 2011 | A1 |
20110251621 | Sluss et al. | Oct 2011 | A1 |
20110257753 | Gordon et al. | Oct 2011 | A1 |
20110300186 | Hellstrom et al. | Dec 2011 | A1 |
20110301716 | Sirivisoot et al. | Dec 2011 | A1 |
20120027837 | DeMuth et al. | Feb 2012 | A1 |
20120109136 | Bourque et al. | May 2012 | A1 |
20120116502 | Su et al. | May 2012 | A1 |
20120123474 | Zajac et al. | May 2012 | A1 |
20120123541 | Albertorio et al. | May 2012 | A1 |
20120150225 | Burkhart et al. | Jun 2012 | A1 |
20120150286 | Weber et al. | Jun 2012 | A1 |
20120165868 | Burkhart et al. | Jun 2012 | A1 |
20120183799 | Steele et al. | Jul 2012 | A1 |
20120185058 | Albertorio et al. | Jul 2012 | A1 |
20120189833 | Suchanek et al. | Jul 2012 | A1 |
20120189844 | Jain et al. | Jul 2012 | A1 |
20120209278 | Ries et al. | Aug 2012 | A1 |
20120265298 | Schmieding et al. | Oct 2012 | A1 |
20130023907 | Sterrett et al. | Jan 2013 | A1 |
20130023927 | Cassani | Jan 2013 | A1 |
20130046312 | Millett et al. | Feb 2013 | A1 |
20130096563 | Meade et al. | Apr 2013 | A1 |
20130096612 | Zajac et al. | Apr 2013 | A1 |
20130103104 | Krupp et al. | Apr 2013 | A1 |
20130110165 | Burkhart et al. | May 2013 | A1 |
20130138108 | Dreyfuss et al. | May 2013 | A1 |
20130138150 | Baker et al. | May 2013 | A1 |
20130150885 | Dreyfuss | Jun 2013 | A1 |
20130165954 | Dreyfuss et al. | Jun 2013 | A1 |
20130165972 | Sullivan | Jun 2013 | A1 |
20130178871 | Koogle, Jr. et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2001262308 | Dec 2001 | AU |
2001259327 | Feb 2005 | AU |
2002248198 | May 2007 | AU |
2005202099 | Jun 2007 | AU |
2002357284 | Aug 2007 | AU |
2006202337 | May 2008 | AU |
2003262428 | Aug 2009 | AU |
2007216648 | Nov 2009 | AU |
2004216106 | Jun 2010 | AU |
2008207536 | Mar 2011 | AU |
2470194 | Feb 2011 | CA |
2933174 | Apr 1980 | DE |
3516743 | Nov 1986 | DE |
3840466 | Jun 1990 | DE |
19505083 | Nov 1995 | DE |
0241240 | Oct 1987 | EP |
0350780 | Jan 1990 | EP |
0485678 | May 1992 | EP |
0327387 | Sep 1992 | EP |
0505634 | Sep 1992 | EP |
0736292 | Oct 1996 | EP |
0903125 | Mar 1999 | EP |
0903127 | Mar 1999 | EP |
0993812 | Apr 2000 | EP |
0661023 | Aug 2001 | EP |
1426013 | Sep 2004 | EP |
1278460 | Apr 2009 | EP |
2314257 | Feb 2013 | EP |
2242068 | Mar 1975 | FR |
2642301 | Mar 1990 | FR |
2676917 | Dec 1992 | FR |
2693650 | Jan 1994 | FR |
2718014 | Oct 1995 | FR |
2733904 | Nov 1996 | FR |
2739151 | Mar 1997 | FR |
2281577 | Mar 1995 | GB |
2372707 | Sep 2002 | GB |
61502029 | Sep 1986 | JP |
63300758 | Dec 1988 | JP |
3504932 | Oct 1991 | JP |
H03-092328 | Nov 1992 | JP |
518511 | Mar 1993 | JP |
06339490 | Dec 1994 | JP |
11244315 | Sep 1999 | JP |
2001525210 | Dec 2001 | JP |
2002291779 | Oct 2002 | JP |
2003534096 | Nov 2003 | JP |
8803781 | Jun 1988 | WO |
8909578 | Oct 1989 | WO |
9427507 | Dec 1994 | WO |
9624304 | Aug 1996 | WO |
9722306 | Jun 1997 | WO |
9920192 | Apr 1999 | WO |
0013597 | Mar 2000 | WO |
0105336 | Jan 2001 | WO |
0166021 | Sep 2001 | WO |
0166022 | Sep 2001 | WO |
0182677 | Nov 2001 | WO |
0191648 | Dec 2001 | WO |
0191672 | Dec 2001 | WO |
0217821 | Mar 2002 | WO |
02086180 | Oct 2002 | WO |
03047470 | Jun 2003 | WO |
03051210 | Jun 2003 | WO |
03051211 | Jun 2003 | WO |
03061516 | Jul 2003 | WO |
03065909 | Aug 2003 | WO |
2004014261 | Feb 2004 | WO |
2004026170 | Apr 2004 | WO |
2004052216 | Jun 2004 | WO |
2004075777 | Sep 2004 | WO |
2005051231 | Jun 2005 | WO |
2006004885 | Jan 2006 | WO |
2006091686 | Aug 2006 | WO |
Entry |
---|
Sullivan, “Hallux Rigidus: MTP Implant Arthroplasty,” Foot Ankle Clin. N. Am. 14 (2009) pp. 33-42. |
Cook, et al., “Meta-analysis of First Metatarsophalangeal Joint Implant Arthroplasty,” Journal of Foot and Ankle Surgery, vol. 48, Issue 2, pp. 180-190 (2009). |
Derner, “Complications and Salvage of Elective Central Metatarsal Osteotomies,” Clin. Podiatr. Med. Surg. 26 (2009) 23-35. |
Kirker-Head, et al., “Safety of, and Biological Functional Response to, a Novel Metallic Implant for the Management of Focal Full-Thickness Cartilage Defects: Preliminary Assessment in an Animal Model Out to 1 year,” Journal of Orthopedic Research, May 2006 pp. 1095-1108. |
Becher, et al. “Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study,” Knee Surg Sports Traumatol Arthrosc. Jan. 2008; 16(1): 56-63. |
United States Office Action dated May 13, 2009 issued in related U.S. Appl. No. 11/359,892. |
United States Office Action dated May 18, 2009 issued in related U.S. Appl. No. 11/209,170. |
United States Office Action dated May 1, 2009 issued in related U.S. Appl. No. 11/461,240. |
Australian Office Action dated Jan. 29, 2009 issued in related Australian Patent Application No. 2004216106. |
European Search Report dated Apr. 22, 2009 issued in related European Patent Application No. 09002088.4. |
U.S. Office Action dated Aug. 30, 2006 issued in related U.S. Appl. No. 10/618,887. |
U.S. Office Action dated Jan. 15, 2008 issued in related U.S. Appl. No. 10/618,887. |
U.S. Office Action dated May 28, 2009 issued in related U.S. Appl. No. 11/359,891. |
International Search Report and Written Opinion dated Jun. 1, 2009 issued in related International Patent Application No. PCT/US2009/035889. |
International Preliminary Report and Patentability dated May 7, 2009 issued in related International Patent Application No. PCT/US2007/082262. |
Supplemental European Search Report dated May 28, 2009 issued in related International European Patent Application No. 01997077.1. |
Supplemental European Search Report dated May 11, 2009 issued in related International European Patent Application No. 02805182.9. |
Notice of Allowance dated Feb. 20, 2009 issued in related U.S. Appl. No. 10/618,887. |
Notice of Reasons for Rejection issued in related Japanese Patent Application No. 2003-394702 mailed Jul. 21, 2009. |
Notice of Reasons for Rejection issued in related Japanese Patent Application No. 20-541615 mailed May 26, 2009. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2007/025284 dated Jun. 25, 2009. |
Office Action issued in related Australian Patent Application No. 2007216648 dated Jul. 28, 2009. |
European Search Report dated Jul. 10, 2009 issued in related European Patent Application No. 09002088.4. |
International Preliminary Report on Patentability dated Aug. 20, 2009 issued in related International Patent Application No. 2008053194. |
Notice of Allowance dated Aug. 25, 2009 issued in related U.S. Appl. No. 11/379,151. |
Notice of Allowance dated Aug. 27, 2009 issued in related U.S. Appl. No. 10/760,965. |
U.S. Office Action dated Sep. 2, 2009 issued in relation U.S. Appl. No. 10/994,453. |
U.S. Office Action dated Oct. 5, 2009 issued in relation U.S. Appl. No. 10/789,545. |
U.S. Office Action dated Oct. 15, 2009 issued in relation U.S. Appl. No. 11/551,912. |
U.S. Office Action dated Oct. 14, 2009 issued in relation U.S. Appl. No. 11/461,240. |
Australian Notice of Allowance dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007216648. |
Notice of Allowance dated Oct. 9, 2009 issued in related U.S. Appl. No. 10/373,463. |
Australian Office Action dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007203623. |
Japanese Notice of Reasons for Rejection dated Sep. 8, 2009 issued in related Japanese Patent Application No. 2003552147. |
Notice of Reasons for Rejection dated Nov. 17, 2009 issued in Japanese Patent Application No. 2007-519417. |
European Search Report dated Dec. 3, 2009 issued in related European Patent Application No. 06735827.5. |
Office Action dated Dec. 24, 2009 issued in related U.S. Appl. No. 10/994,453. |
Supplemental Notice of Allowance dated Nov. 25, 2009 issued in related U.S. Appl. No. 10/373,463. |
European Office Action dated Jan. 11, 2010 issued in related European Patent Application No. 2005218302. |
U.S. Office Action dated Jan. 25, 2010 issued in related U.S. Appl. No. 11/326,133. |
Australian Office Action dated Apr. 9, 2010 issued in related Australian Patent Application No. 2005260590. |
U.S. Office Action dated Mar. 2, 2010 issued in related U.S. Appl. No. 11/169,326. |
U.S. Office Action dated Mar. 9, 2010 issued in related U.S. Appl. No. 11/359,892. |
Australian Office Action dated Feb. 26, 2010 issued in related Australian Patent Application No. 2008207536. |
Supplemental Notice of Allowance dated Feb. 2, 2010 issued in related U.S. Appl. No. 10/373,463. |
European office communication dated Feb. 10, 2010 issued in European Patent Application No. 09002088.4-2310. |
International Search Report and Written Opinion dated Apr. 21, 2010 issued in related International Patent Application No. PCT/US2010/025095. |
International Search Report and Written Opinion dated May 3, 2010 issued in related International Patent Application No. PCT/US2010/025464. |
European Office Action dated Apr. 13, 2010 issued in related European Patent Application No. 02805182.9-2310. |
European Office Action dated Mar. 25, 2010 issued in related European Patent Application No. 01997077.1-2310. |
U.S. Office Action dated May 18, 2010 issued in related U.S. Appl. No. 12/415,503. |
Japanese Notice of Reasons for Rejection dated Jun. 1, 2010 issued in related Japanese Patent Application No. 2003394702. |
European Office Action dated Jun. 1, 2010 issued in related European Patent Application No. 04811836.8-2310. |
Japanese Notice of Reasons for Rejection dated Jun. 29, 2010 issued in related Japanese Patent Application No. 2007519417. |
Australian Office Action dated Jun. 11, 2010 issued in related Australian Patent Application No. 2005277078. |
International Search Report dated Jun. 9, 2010 issued in related International Patent Application No. PCT/US2010/031594. |
European Office Action dated May 7, 2010 issued in related European Patent Application No. 06733631.3-2310. |
International Search Report dated Jun. 18, 2010 issued in related International Patent Application No. PCT/US2010/031602. |
U.S. Office Action dated Jun. 8, 2010 issued in related U.S. Appl. No. 11/209,170. |
Office Action dated Sep. 2, 2010 issued in related U.S. Appl. No. 12/415,503. |
Office Action dated Aug. 30, 2010 issued in related U.S. Appl. No. 12/397,095. |
Office Action dated Jul. 21, 2010 issued in related U.S. Appl. No. 11/551,912. |
Office Action dated Aug. 5, 2010 issued in related U.S. Appl. No. 11/325,133. |
Notice of Allowance dated Aug. 6, 2010 issued in related U.S. Appl. No. 11/359,892. |
Canadian Office Action dated Jul. 29, 2010 issued in related Canadian Patent Application No. 2470936. |
Supplemental European Search Report dated Aug. 9, 2010 issued in related European Patent Application No. 04714211.2-2300. |
Australian Office Action dated Aug. 23, 2010 issued in related Australian Patent Application No. 2006203909. |
Notice of Allowance dated Sep. 9, 2010 issued in related U.S. Appl. No. 10/994,453. |
Office Action dated Sep. 21, 2010 issued in related U.S. Appl. No. 11/169,326. |
Office Action dated Sep. 29, 2010 issued in related U.S. Appl. No. 11/461,240. |
Office Action dated Oct. 11, 2010 issued in related Australian Patent Application No. 2006216725. |
International Preliminary Report on Patentability dated Sep. 16, 2010 issued in related International Patent Application No. PCT/US2009/035889. |
Supplemental Notice of Allowance dated Oct. 13, 2010 issued in related U.S. Appl. No. 10/994,453. |
Supplemental Notice of Allowance dated Oct. 6, 2010 issued in related U.S. Appl. No. 12/415,503. |
U.S. Office Action dated Oct. 15, 2010 received in related U.S. Appl. No. 12/027,121. |
U.S. Supplemental Notice of Allowance dated Oct. 28, 2010 issued in related U.S. Appl. No. 12/415,503. |
European Search Report dated Nov. 4, 2010 issued in related European Patent Application No. 07862736.1-1269. |
Notice of Allowance dated Nov. 26, 2010 issued in related U.S. Appl. No. 11/209,170. |
Supplemental Notice of Allowance dated Dec. 8, 2010 issued in related U.S. Appl. No. 11/209,170. |
Notice of Allowance dated Dec. 13, 2010 issued in related U.S. Appl. No. 12/397,095. |
Notice of Allowance dated Jan. 5, 2011 issued in related U.S. Appl. No. 11/326,133. |
Supplemental Notice of Allowance dated Feb. 14, 2011 issued in related U.S. Appl. No. 11/326,133. |
Canadian Office Action dated Jan. 7, 2011 issued in related Canadian Patent Application No. 2407440. |
European Office Action dated Dec. 23, 2010 issued in related European Patent Application No. 028051882.9-2310. |
European Office Action dated Dec. 30, 2010 issued in related European Patent Application No. 01997077.1-2310. |
Extended Search Report dated Feb. 22, 2011 issued in European Patent Application No. 10012693.7, 8 pages. |
Notice of Allowance dated Mar. 2, 2011 issued in Australian Patent Application No. 2008207536, 3 pages. |
Notice of Allowance dated Mar. 15, 2011 issued in U.S. Appl. No. 11/551,912, 7pages. |
U.S. Office Action dated Apr. 11, 2011 issued in U.S. Appl. No. 11/779,044, 10 pages. |
Notice of Allowance dated Apr. 28, 2011 issued in U.S. Appl. No. 12/027,121, 9 pages. |
USPTO Office action dated Dec. 8, 2005 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Aug. 31, 2005 issued in corresponding U.S. Appl. No. 10/308,718. |
USPTO Office action dated Aug. 16, 2005 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office action dated Jan. 27, 2005 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office action dated Aug. 13, 2004 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Notice of Allowance issued Sep. 26, 2003 in U.S. Appl. No. 10/162,533. |
USPTO Notice of Allowance issued May 12, 2003 in U.S. Appl. No. 10/024,077. |
USPTO Office Action dated Apr. 1, 2003 issued in U.S. Appl. No. 10/162,533. |
USPTO Office action dated Mar. 28, 2003 issued in corresponding U.S. Appl. No. 10/024,077. |
USPTO Notice of Allowance issued Sep. 30, 2002 in U.S. Appl. No. 09/846,657. |
USPTO Office Action dated Apr. 2, 2002 issued in corresponding U.S. Appl. No. 09/846,657. |
USPTO Office Action dated Feb. 27, 2002 issued in corresponding U.S. Appl. No. 09/846,657. |
USPTO Office Action dated Jan. 3, 2002 issued in corresponding U.S. Appl. No. 09/846,657. |
AU Examiners report dated Jan. 18, 2006 issued in corresponding Australian patnet application No. 2005202099. |
AU Examiners report dated Jan. 12, 2007 issued in corresponding Australian patnet application No. 2006202337. |
AU Examiners report dated Feb. 21, 2007 issued in corresponding Australian patnet application No. 2005202099. |
AU Examiners report dated May 23, 2007 issued in corresponding Australian patnet application No. 2005202099. |
AU Notice of Acceptance dated Aug. 6, 2007 in Patent Application No. 20022357284. |
EPO supplementary partial search report dated May 10, 2004 issued in corresponding European application 01932833.5-231-/US0114061. |
EPO supplementary search report dated Aug. 30, 2004 issued in corresponding European application 01932833.5. |
EPO Office Action dated Aug. 23, 2004, received in related EPO application No. 03 026 286.9 (4 pgs). |
EPO Office Action dated Mar. 15, 2005, received in related EPO application No. 03 026 286.9, (3 pgs). |
EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Feb. 26, 2004 (5pgs). |
EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Apr. 27, 2004 (6pgs). |
Examination Report dated Feb. 22, 2005 received in corresponding European Application No. 01932833.5 (3pages). |
EPO Office Action dated Sep. 22, 2005 issued in corresponding European application 01932833.5-2310. |
EPO Office Action dated Sep. 11, 2006 issued in corresponding European application 01932833.5-2310. |
International Preliminary Examination Report dated Nov. 5, 2002 issued in corresponding PCT patent application No. PCT/US01/14061. |
US Office Action issued in related U.S. Appl. No. 10/994,453 dated Feb. 25, 2008. |
International Preliminary Examination Report dated Nov. 12, 2002 issued in corresponding PCT patent application No. PCT/US01/48821. |
International Preliminary Examination Report dated Sep. 12, 2003 issued in corresponding PCT patent application No. PCT/US02/40310. |
International Preliminary Examination Report dated Oct. 27, 2003 issued in corresponding PCT patent application No. PCT/US01/48821. |
International Preliminary Examination Report dated Aug. 19, 2004 issued in corresponding PCT patent application No. PCT/US02/40310. |
Notice of Allowance issued in corresponding U.S. Appl. No. 10/618,887 dated Sep. 13, 2007. |
International Preliminary Report on Patentability and Written Opinion dated May 22, 2006 in corresponding PCT patent application No. PCT/US04/039181. |
English language translation of Japanese Office Action dated Aug. 9, 2007 issued in corresponding Japanese application No. 2003-552148. |
Canadian Office Action dated Jan. 2, 2008 issued in corresponding Canadian Application No. 2407440. |
International Preliminary Report on Patentability and Written Opinion dated Mar. 1, 2007 in corresponding PCT patent application No. PCT/US05/030120. |
International Preliminary Report on Patentability and Written Opinion dated Jun. 28, 2007 in corresponding PCT patent application No. PCT/US2005/005980. |
International Preliminary Report on Patentability and Written Opinion dated Jul. 19, 2007 in corresponding PCT patent application No. PCT/US2006/000380. |
International Search Report dated Dec. 27, 2001 issued in corresponding PCT patent application No. PCT/US01/14061. |
Office Action issued in corresponding U.S. Appl. No. 10/741,044 dated Oct. 26, 2005. |
International Search Report dated May 23, 2003 issued in corresponding PCT patent application No. PCT/US02/40310. |
International Search Report and Written Opinion dated Dec. 30, 2004 issued in corresponding PCT patent application No. PCT/US04/05539. |
International Search Report and Written Opinion dated Jan. 30, 2006 issued in corresponding PCT patent application No. PCT/US04/39181. |
International Search Report and Written Opinion dated Aug. 30, 2006 issued in corresponding PCT patent application No. PCT/US06/06323. |
International Search Report and Written Opinion dated Sep. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/30120. |
International Search Report and Written Opinion dated Nov. 27, 2006 issued in corresponding PCT patent application No. PCT/US06/00380. |
International Search Report and Written Opinion dated Nov. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/023200. |
International Search Report and Written Opinion dated May 22, 2007 issued in corresponding PCT patent application No. PCT/US05/05980. |
International Preliminary Report on Patentability dated Sep. 1, 2011 issued in PCT International Patent Application No. PCT/US2010/025095, 8 pages. |
International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031602, 8 pages. |
International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031594, 7 pages. |
U.S. Office Action dated Nov. 1, 2011 issued in U.S. Appl. No. 12/713,135, 10 pages. |
U.S. Notice of Allowance dated Nov. 23, 2011 issued in U.S. Appl. No. 11/623,513, 19 pages. |
U.S. Office Action dated Nov. 28, 2011 issued in U.S. Appl. No. 12/711,039, 6 pages. |
Examination Report dated Dec. 30, 2011 issued in European Patent Application No. 09 002 088.4, 6 pages. |
Intent to Grant dated Feb. 17, 2012 issued in European Patent Application No. 02 805 182.9, 5 pages. |
Notice of Allowance dated Feb. 24, 2012 issued in U.S. Appl. No. 12/027,121, 9 pages. |
Intent to Grant dated Feb. 29, 2012 issued in European Patent Application No. 10 012 693.7, 5 pages. |
Supplemental Notice of Allowance dated Mar. 2, 2012 issued in U.S. Appl. No. 12/027,121, 2 pages. |
Office Action dated Mar. 2, 2012 issued in U.S. Appl. No. 12/713,135, 7 pages. |
Habermeyer, Peter, ATOS News, Oct. 2005, “The Artificial Limb “Eclipse”—A new draft without shank in the implantation of artificial shoulder limbs”, cover page w/pp. 40-41, with English translation dated Jan. 13, 2006 (2 pgs). |
Thermann, et al, ATOS Newsletter, Jun. 2005, Aktuelle Therrien, (16 pages). |
Gray, Henry, Anatomy of the Human Body, 1918, 6d. The Foot 1. The Tarsus, II. Osteology, cover page and 10 pgs, www.Bartleby.com/107/63.html#i268 Oct. 25, 2004. |
Chainsaw, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chainsaw&printable=yes, Jun. 26, 2007 (3 pages). |
APTA | Knee,/http://www.apta.org/AM/PrinerTemplate.cfm?Section=Home&TEMPLATE=/CM/HTMLDisplay.dfg& . . . Jun. 25, 2007 (1page). |
American Machinist, Full-radius milling cutters, http://www.americanmachinist.com/Classes/Article/ArticleDraw—P.aspx, Jun. 26, 2007 (1 page). |
Chuck (engineering),Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chuck—%28engineering%29&printable=yes, Jun. 25, 2007, (4 pages). |
Dovetail Rails, http://www.siskiyou.com/MDRSeries.htm, Jun. 25, 2007 (2 pages). |
Knee Resurfacing, Permedica, GKS, Global Knee System. Cod. 104570 vers 1.0 del Mar. 15, 2006 (8pages). |
Makita Industrial Power Tools, Product Details Print Out, Chain Mortiser, http://www.makita.com/menu.php?pg=product—det—prn&tag=7104L, Jun. 26, 2007 (3pgs). |
Milling machine, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Milling—machine&printable=yes, Jun. 26, 2007 (4 pages). |
Mortise and tenon, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Mortise—and—tenon&printable=yes, Jun. 25, 2007 (3 pages). |
Oka et al, “Development of artificial articular cartilage”, Proc Instn Mech Engrs vol. 214 Part H, 2000 pp. 59-68 (10 pages). |
M. Siguier, MD et al, “Preliminary Results of Partial Surface Replacement of the Femoral Head in Osteonecrosis”, The Jorunal of Arthroplasty, vol. 14, No. 1, 1999, pp. 45-51. |
T. Siguier, MD et al, Partial Resurfacing Arthroplasty of the Femoral Head in Avascular Necrosis, Clinical Orthopaedics and Related Research, No. 386, 2001, pp. 85-92. |
Suganuma, et al—“Arthroscopically Assisted Treatment of Tibial Plateau Fractures”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 20, No. 10, Dec. 2004, pp. 1084-1089 (6 pages). |
The Mini Uni: A New Solution for Arthritic Knee Pain and Disability, AORI, 4 pages, www.aori.org/uniknee.htm Apr. 20, 2004. |
The Stone Clinic, Orthopaedic Surgery Sports Medicine and Rehabilitation, Unicompartmental Replacement (partial knee joint replacement), Aug. 21, 2000, 3 pages, www.stoneclinic.com/unicopartrepl.htm, Apr. 20, 2004. |
Ushio et al, “Partial hemiarthroplasty for the treatment of osteonecrosis of the femoral head”, An Experimantal Study in the Dog, The Journal of Bone and Joint Surgery, vol. 85-B, No. 6, Aug. 2003, pp. 922-930 (9 pages). |
Russell E. Windsor, MD, In-Depth Topic Reviews, Unicompartmental Knee Replacement, Nov. 7, 2002, 9 pages. |
Yaw angle, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Yaw—angle&printable=yes, Jun. 25, 2007 (1 page). |
Bale, MD, Reto J., et al, “Osteochondral Lesions of the Talus: Computer=assisted Retrograde Drilling Feasibility and Accuracy in Initial Experriences”, (Radiology. 2001;218:278-282) © RSNA, 2001. |
Biomet/Copeland, “Aequalis® Resurfacing Head” Tornier, Scientific Vision, Surgical Leadership, SS-401 Jan. 2007. |
Kumai, M.D., Tsukasa, et al Arthroscopic Drilling for the Treatment of Osteochondral Lesions of the Talus*, The Journal of Bone & Joint Surgery, American vol. 81:1229-35(1999). |
Matsusue, M.D., Yoshitaka, et al, “Arthroscopic Osteochondral Autograft Transplantation for Chondral Lesion of the Tibial Plateau of the Knee”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 17, No. 6 (Jul.-Aug.), 2001:pp. 653-659. |
Pill M.S., P.T., Stephan G. et al, “Osteochondritis Dissecans of the Knee: Experiences at the Children's Hospital of Philadelphia and a Review of Literature”, The University of Pennsylvania Orthopaedic Journal 14: 25-33, 2001. |
Schneider, T., et al, “Arthroscopy of the ankle joint. A list of indications and realistic expectations”, Foot and Ankle Surgery 1996 2:189-193, © 1996 Arnette Blackwell SA. |
Taranow WS, et al, “Retrograde drilling of osteochondral lesions of the medial talar dome”, PubMed, www.pubmed.gov, A service of the National Library of Medicing and the Natinal Institutes of Health, Foot Ankle Int. Aug. 1999; 20(8):474-80. |
Ueblacker, M.D., Peter, et al, “Retrograde Cartilage Transplantation of the Proximal and Distal Tibia”, Arthroscopy: The Journal of Arthroscipic and Related Surgery, vol. 20, No. 1 Jan. 2004: pp. 73-78. |
USPTO Office Action dated Dec. 21, 2007 issued in corresponding U.S. Appl. No. 11/169,326. |
USPTO Office Action dated Dec. 26, 2007 issued in U.S. Appl. No. 11/379,151. |
USPTO Office Action dated Oct. 9, 2007 issued in U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Aug. 29, 2007 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated May 31, 2007 issued in corresponding U.S. Appl. No. 11/326,133. |
USPTO Office Action dated Apr. 26, 2007 issued in U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Apr. 4, 2007 issued in corresponding U.S. Appl. No. 10/789,545. |
USPTO Office Action dated Mar. 15, 2007 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated Feb. 20, 2007 issued in corresponding U.S. Appl. No. 11/326,133. |
USPTO Office Action dated Nov. 6, 2006 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated Oct. 17, 2006 issued in U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Oct. 31, 2006 issued in U.S. Appl. No. 10/760,965. |
USPTO Office Action dated Jul. 25, 2006 issued in U.S. Appl. No. 10/760,965. |
USPTO Office action dated May 10, 2006 issued in corresponding U.S. Appl. No. 10/373,463. |
USPTO Office Action dated Apr. 21, 2006 issued in corresponding U.S. Appl. No. 10/308,718. |
USPTO Office Action dated Nov. 9, 2005 issued in corresponding U.S. Appl. No. 10/308,718. |
International Search Report and Written Opinion dated Aug. 8, 2007 issued in corresponding PCT patent application No. PCT/US06/29875. |
Notice of Allowance issued in corresponding U.S. Appl. No. 10/308,718 dated Sep. 11, 2006. |
Office Action issued in corresponding U.S. Appl. No. 11/326,133 dated Oct. 17, 2007. |
United States Office Action issued is related U.S. Appl. No. 10/760,965 dated Feb. 19, 2008. |
Australian Office Action issued in related Australian Patent Application No. 2003262428 dated Mar. 20, 2008. |
Australian Office Action issued in related Australian Patent Application No. 2004293042 dated Feb. 20, 2008. |
U.S. Office Action issued in related U.S. Appl. No. 11/326,133 dated Jun. 12, 2008. |
International Search Report and Written Opinion dated Jun. 24, 2008 issued in related International Patent Application No. PCT/US07/73685. |
International Search Report and Written Opinion dated Jun. 11, 2008 issued in related International Patent Application No. PCT/US07/25284. |
International Search Report and Written Opinion dated Aug. 8, 2008 issued in related International Patent Application No. PCT/US08/53988. |
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Jun. 5, 2007. |
Japanese Office Action dated Jul. 22, 2008 issued in related Japanese Patent Application No. 2006-501193. |
U.S. Office Action issued in related U.S. Appl. No. 10/373,463 dated Apr. 21, 2008. |
Notice of Allowance received in U.S. Appl. No. 10/618,887 dated Aug. 15, 2008. |
Australia Office Action issued in related Australian Patent Application No. 2007216648 dated May 30, 2008. |
European Office Action issued in related European Patent Application No. 01932833.5-2310 dated Apr. 25, 2008. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jun. 30, 2008. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jul. 27, 2007. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Apr. 17, 2007. |
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Mar. 9, 2007. |
Canadian Office Action issued in related Canadian Patent Application No. 2546582 dated Aug. 21, 2008. |
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Sep. 3, 2008. |
U.S. Office Action dated Oct. 21, 2008 issued in related U.S. Appl. No. 11/461,240. |
U.S. Office Action dated Jun. 25, 2008 issued in related U.S. Appl. No. 11/359,891. |
U.S. Office Action dated Sep. 25, 2008 issued in related U.S. Appl. No. 11/326,133. |
U.S. Office Action dated Jul. 2, 2008 issued in related U.S. Appl. No. 11/379,151. |
European Office Action dated Oct. 6, 2008 issued in related European Patent Application No. 01932833.5-2310. |
U.S. Office Action dated Jun. 27, 2008 issued in related U.S. Appl. No. 10/760,965. |
International Search Report and Written Opinion dated Oct. 1, 2008 issued in related International Patent Application No. PCT/US08/53194. |
International Search Report and Written Opinion dated Oct. 9, 2008 issued in related International Patent Application No. PCT/US07/82262. |
European Search Report dated Nov. 4, 2008 issued in related European Patent Application No. 04811836.8-2310. |
U.S. Office Action dated Jan. 9, 2009 issued in related U.S. Appl. No. 10/373,463. |
Canadian Office Action dated Dec. 9, 2008 issued in related Canadian Patent Application No. 2407440. |
Supplemental European Search Report dated Nov. 6, 2008 issued in related European Patent Application No. 05791453.3-2310. |
Japanese Office Action dated Dec. 19, 2008 issued in Japanese Patent Application No. 2006501193. |
Japanese Office Action dated Jan. 13, 2009 issued in Japanese Patent Application No. 2003552147. |
International Search Report dated Jan. 30, 2006 issued in related International Patent Application No. PCT/US04/39181. |
U.S. Office Action dated Mar. 27, 2009 issued in related U.S. Appl. No. 11/169,326. |
European Office Action dated Feb. 26, 2009 in related European Patent Application No. 05791453.3. |
McCarty, III., et al., “Nonarthoplasty Treatment of Glenohumeral Cartilage Lesions,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 21, No. 9; Sep. 2005 (pp. 1131-1142). |
Bushnell, et al., “Bony Instability of the Shoulder,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 24, No. 9; Sep. 2005 (pp. 1061-1073). |
Scalise, et al., “Resurfacing Arthroplasty of the Humerus: Indications, Surgical Technique, and Clinical Results,” Techniques in Shoulder and Elbow Surgery 8(3):152-160; 2007. |
Davidson, et al., “Focal Anatomic Patellofemoral Inlay Resurfacing: Theoretic Basis, Surgical Technique, and Case Reports,” Orthop. Clin. N. Am., 39 (2008) pp. 337-346. |
Provencher, et al., “Patellofemoral Kinematics After Limited Resurfacing of the Trochlea,” The Journal of Knee Surgery, vol. 22 No. 2 (2008) pp. 1-7. |
Dawson, et al., “The Management of Localized Articular Cartilage Lesions of the Humeral Head in the Athlete,” Operative Techniques in Sports Medicine, vol. 16, Issue 1, pp. 14-20 (2008). |
Uribe, et al., “Partial Humeral Head Resurfacing for Osteonecrosis,” Journal of Shoulder and Elbow Surgery, (2009) 6 pages. |
Burks, “Implant Arthroplasty of the First Metatarsalphalangeal Joint,” Clin. Podiatr. Med. Surg., 23 (2006) pp. 725-731. |
Hasselman, et al., “Resurfacing of the First Metatarsal Head in the Treatment of Hallux Rigidus,” Techniques in Foot & Ankle Surgery 7(1):31-40, 2008. |
Jäger, et al., “Partial hemi-resurfacing of the hip joint—a new approach to treat local osteochondral defects?” Biomed Tech 2006; 51:371-376 (2006). |
Notice of Allowance dated Dec. 12, 2011 issued in U.S. Appl. No. 12/582,345, 19 pages. |
U.S. Office Action dated Dec. 22, 2011 issued in U.S. Appl. No. 11/623,513, 8 pages. |
U.S. Office Action dated Dec. 27, 2011 issued in U.S. Appl. No. 12/620,309, 10 pages. |
U.S. Office Action dated Jan. 4, 2012 issued in U.S. Appl. No. 12/001,473, 19 pages. |
U.S. Office Action dated Jan. 10, 2012 issued in U.S. Appl. No. 12/031,534, 9 pages. |
U.S. Office Action dated Jan. 18, 2012 issued in U.S. Appl. No. 12/778,055, 9 pages. |
European Office Action dated Jan. 23, 2012 issued in European Patent Application No. 01 997 077.1, 3 pages. |
Ascension Orthopedics, Inc., Ascension Orthopedics Announces Market Release of TITAN™ Inset Mini Glenoid, PR Newswire, downloaded from internet Jul. 18, 2011, http://www.orthospinenews.com/ascension-orthopedics-announces-market-release-of-titan™-inset-mini-glenoid, Jul. 6, 2011, 2 pages. |
PCT International Preliminary Report on Patentability dated Sep. 9, 2011 issued in PCT Patent Application No. PCT/US2010/025464, 7 pages. |
U.S. Office Action dated Mar. 29, 2012 issued in U.S. Appl. No. 10/789,545, 7 pages. |
U.S. Office Action dated Apr. 18, 2012 issued in U.S. Appl. No. 12/725,181, 9 pages. |
U.S. Notice of Allowance dated May 31, 2012 issued in U.S. Appl. No. 11/623,513, 5 pages. |
Extended European Search report mailed Dec. 10, 2012 issued in European Patent Application No. 07844549.1, 6 pages. |
Supplementary European Search Report dated Jan. 3, 2013 issued in European Patent Application No. 05763817.3, 3 pages. |
Great Britain Examination Report dated Feb. 6, 2013 issued in Great Britain Patent Application No. 1114417.7, 2 pages. |
Supplementary European Search Report dated Feb. 18, 2013 issued in European Patent Application No. 08729178.7, 10 pages. |
Canadian Office Action dated Dec. 13, 2012 issued in Canadian Patent Application No. 2,407,440, 6 pages. |
International Search Repoort and Written Opinion dated Mar. 8, 2013 issued in PCT Patent Application No. PCT/US12/71199, 13 pages. |
U.S. Office Action dated Apr. 15, 2013 issued in U.S. Appl. No. 13/470,678, 10 pages. |
U.S. Office Action dated Apr. 22, 2013 issued in U.S. Appl. No. 12/001,473, 16 pages. |
U.S. Office Action dated Apr. 23, 2013 issued in U.S. Appl. No. 13/037,998, 8 pages. |
European Intent to Grant dated Apr. 29, 2013 issued in European Patent Application No. 07 862 736.1, 7 pages. |
U.S. Notice of Allowance dated May 9, 2013 issued in U.S. Appl. No. 12/725,181, 6 pages. |
U.S. Office Action dated May 15, 2013 issued in U.S. Appl. 12/762,948, 10 pages. |
Preliminary Report on Patentability dated Sep. 20, 2012 issued in PCT Patent Application No. PCT/US2011/027451, 3 pages. |
Notice of Allowability dated Oct. 9, 2012, issued in U.S. Appl. No. 12/713,135, 5 pages. |
Notice of Allowability dated Oct. 11, 2012, issued in U.S. Appl. No. 11/169,326, 2 pages. |
U.S. Office Action dated Oct. 23, 2012, issued in U.S. Appl. No. 13/042,382, 17 pages. |
U.S. Office Action dated Oct. 24, 2012, issued in U.S. Appl. No. 12/942,923, 9 pages. |
U.S. Office Action dated Oct. 31, 2012, issued in U.S. Appl. No. 13/075,006, 9 pages. |
Notice of Allowance dated Nov. 13, 2012 issued in U.S. Appl. No. 12/725,181, 5 pages. |
Final Office Action dated Aug. 13, 2012 issued in U.S. Appl. No. 12/711,039, 12 pages. |
Office Action dated Aug. 14, 2012 issued in U.S. Appl. No. 12/001,473, 17 pages. |
Office Action dated Aug. 20, 2012 issued in U.S. Appl. No. 13/037,998, 11 pages. |
Office Action dated Aug. 21, 2012 issued in U.S. Appl. No. 13/043,430, 11 pages. |
U.S. Office Action dated Aug. 28, 2012 issued in U.S. Appl. No. 12/762,948, 12 pages. |
U.S. Notice of Allowance dated Sep. 4, 2012 issued in U.S. Appl. No. 11/169,326, 6 pages. |
Extended Search Report dated Jul. 3, 2012 issued in European Patent Application No. 12002103.5, 5 pages. |
Decision to Grant dated Jul. 26, 2012 issued in European Patent Application No. 10012693.7, 1 page. |
U.S. Office Action dated Feb. 25, 2013 issued in U.S. Appl. No. 12/762,920, 8 pages. |
U.S. Applicant Initiated Interview Summary dated May 15, 2013 issued in U.S. Appl. No. 12/762,920, 3 pages. |
U.S. Final Office Action dated Jun. 24, 2013 issued in U.S. Appl. No. 13/042,382, 28 pages. |
European Office Action dated Apr. 16, 2013 issued in European Patent Application No. 12 002 103.5, 5 pages. |
European Office Action dated May 15, 2013 issued in European Patent Application No. 05 763 817.3, 4 pages. |
U.S. Office Action dated Jul. 11, 2013 issued in U.S. Appl. No. 12/711,039, 10 pages. |
U.S. Notice of Allowance dated Jul. 29, 2013 issued in U.S. Appl. No. 12/725,181, 7 pages. |
U.S. Final Office Action dated Jul. 30, 2013 issued in U.S. Appl. No. 13/075,006, 10 pages. |
U.S. Corrected Notice of Allowance dated Jul. 30, 2013 issued in U.S. Appl. No. 11/623,513, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20110196434 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
60603473 | Aug 2004 | US | |
60583549 | Jun 2004 | US | |
60523810 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11209170 | Aug 2005 | US |
Child | 13043430 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11169326 | Jun 2005 | US |
Child | 11209170 | US | |
Parent | 10994453 | Nov 2004 | US |
Child | 11209170 | US | |
Parent | 10308718 | Dec 2002 | US |
Child | 11209170 | US |