One aspect of the present invention provides for a method and a system for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history or causative factors like weather and independent external risk factors like vandalism and risk of flooding. The failure risk is combined with location information to generate maintenance schedules which are optimal with reference to failure risk and inspection cost.
There is a need to provide for large scale preventive maintenance in a easy, computerized manner for large assets.
There is a problem in preventive maintenance. Preventive Maintenance is a critical and costly operation in large scale asset based business. Today, preventive maintenance is carried out at regular time intervals on all assets (meaning that, as an example, all 10,000 fire hydrants in Washington, D.C., need to be checked twice a year), irrespective of the risk of failure. Given the magnitude of the task, it is very expensive and by not factoring failure risk into the inspection process it is sub-optimal from the perspective of minimizing outages.
What is needed is a system and method for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history combined with causative factors and independent external risk factors like vandalism and risk of flooding.
Therefore, there exists a need for a solution that solves at least one of the deficiencies of the related art.
The present invention may comprise a system and method for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history combined with causative factors like weather and/or independent external risk factors such as vandalism and risk of flooding. The failure risk estimation is combined with location information to generate maintenance schedules that are optimal with reference to failure risk and inspection cost.
The present invention may further comprise a method for preventative maintenance comprising estimating the risk of failure of an asset, combining the estimation with causative factors, determining a preventative maintenance schedule and storing the preventative maintenance schedule.
The present invention may further comprise a system for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history combined with causative factors such as weather and independent external risk factors like vandalism and risk of flooding, the system comprising a location based asset/service failure risk estimator, an external risk estimates database for feeding, and an integrated failure risk database, the external risk estimates database feeding the integrated failure risk database.
The present invention may further comprise a computer-readable medium storing computer instructions, which, when executed, enables a computer system operating for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history combined with causative factors such as weather and independent external risk factors like vandalism and risk of flooding, the system comprising a location based asset/service failure risk estimator, an external risk estimates database for feeding and an integrated failure risk database, the external risk estimates database feeding the integrated failure risk database for implementing a method for preventative maintenance comprising estimating the risk of failure of an asset, combining the estimation with causative factors, determining a preventative maintenance schedule and storing the preventative maintenance schedule.
The present invention may further include a method for deploying a system for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history combined with causative factors such as weather and independent external risk factors like vandalism and risk of flooding, the system comprising a location based asset/service failure risk estimator, an external risk estimates database for feeding, and an integrated failure risk database, the external risk estimates database feeding the integrated failure risk database, the method comprising estimating the risk of failure of an asset, combining the estimation with causative factors, determining a preventative maintenance schedule and storing the preventative maintenance schedule.
The present invention may further comprise a system for estimating the risk of failure of an asset based upon intrinsic parameters, such as failure history combined with causative factors like weather and independent external risk factors like vandalism and risk of flooding, the system comprising a location based asset/service failure risk estimator, an external risk estimates database for feeding, and an integrated failure risk database, the external risk estimates database feeding the integrated failure risk database.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention.
The present invention, which meets the needs identified above, provides for a method and a system for estimating the risk of failure of an asset based on: 1) intrinsic parameters, such as failure history combined with causative factors such weather; and 2) independent external risk factors like vandalism and risk of flooding.
The asset management software of the present invention provides insight for enterprise assets, their conditions and work processes, for better planning and control.
The present invention may be used in airports, rail and transit, marine, ports and terminals, hospitality such as hotels, casinos and amusement parks, water and waste water management, mining/metals/minerals, oil and gas, aerospace and defense, food and beverage, electronics and industrial, automotive, retail, life sciences, federal (civil and defense) and state, NASA, healthcare, education, banking and securities, media and cable, telecommunications, insurance, and service providers.
System 100, such as Data Processing System 102 shown in
Input/output or I/O devices (External Peripherals 116) (including but not limited to keyboards, displays (Display 120), pointing devices, etc.) can be coupled to System 104 (see
Network adapters (Network Adapter 138 in
Integrated Failure Risk Database 316 is connected to Scheduler 318. Also connected to Scheduler 318 is Scheduling Constraints Database 324 which maintains data such as skills, labor cost, availability; equipment; and contractual limits/regulations. Also feeding Scheduler 318 is Spatial Constraint Generator 320. Work Order Database 322 feeds Spatial Constraint Generator 320. Scheduler 318 loads Risk Optimized, Spatially Sensitive Preventive Maintenance Schedule database 326.
It should be understood that the present invention is typically computer-implemented via hardware and/or software. As such, client systems and/or servers will include computerized components as known in the art. Such components typically include (among others) a processing unit, a memory, a bus, input/output (I/O) interfaces, external devices, etc.
While shown and described herein as a system and method for estimating the risk of failure of an asset based on: 1) intrinsic parameters—like failure history combined with causative factors like weather; and 2) independent external risk factors like vandalism and risk of flooding. For example, in one embodiment, the invention provides a computer-readable/useable medium that includes computer program code to enable a system for collecting and maintaining historical party reputation data and for using the historical party reputation data to calculate an access decision rating and recalculating the access decision rating when the historical party reputation data has changed has a reputation updater for updating a reputation. To this extent, the computer-readable/useable medium includes program code that implements each of the various process steps of the invention. It is understood that the terms computer-readable medium or computer useable medium comprises one or more of any type of physical embodiment of the program code. In particular, the computer-readable/useable medium can comprise program code embodied on one or more portable storage articles of manufacture (e.g., a compact disc, a magnetic disk, a tape, etc.), on one or more data storage portions of a computing device, such as memory and/or storage system (e.g., a fixed disk, a read-only memory, a random access memory, a cache memory, etc.), and/or as a data signal (e.g., a propagated signal) traveling over a network (e.g., during a wired/wireless electronic distribution of the program code).
In another embodiment, the invention provides a computer-implemented method for estimating the risk of failure of an asset based on: 1) intrinsic parameters—like failure history combined with causative factors like weather; and 2) independent external risk factors like vandalism and risk of flooding. In this case, a computerized infrastructure can be provided and one or more systems for performing the process steps of the invention can be obtained (e.g., created, purchased, used, modified, etc.) and deployed to the computerized infrastructure. To this extent, the deployment of a system can comprise one or more of (1) installing program code on a computing device, such as computer system from a computer-readable medium; (2) adding one or more computing devices to the computer infrastructure; and (3) incorporating and/or modifying one or more existing systems of the computer infrastructure to enable the computerized infrastructure to perform the process steps of the invention.
As used herein, it is understood that the terms “program code” and “computer program code” are synonymous and may mean any expression, in any language, code or notation, of a set of instructions intended to cause a computing device having an information processing capability to perform a particular function either directly before or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form. To this extent, program code can be embodied as one or more of: an application/software program, component software/a library of functions, an operating system, a basic I/O system/driver for a particular computing and/or I/O device, and the like.
In another embodiment, the invention provides a business method that performs the process steps of the invention on a subscription, advertising, and/or fee basis. That is, a service provider, such as a solution integrator, could offer to deploy a computer infrastructure for collecting and maintaining historical party reputation data and for estimating the risk of failure of an asset based on: 1) intrinsic parameters—like failure history combined with causative factors like weather; and 2) independent external risk factors like vandalism and risk of flooding. In this case, the service provider can create, maintain, and support, etc., the computer infrastructure by integrating computer-readable code into a computing system, wherein the code in combination with the computing system is capable of performing the process steps of the invention for one or more customers. In return, the service provider can receive payment from the customer(s) under a subscription and/or fee agreement and/or the service provider can receive payment from the sale of advertising content to one or more third parties.
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.
The present application is related in some aspects to commonly owned and co-pending application entitled “INFRASTRUCTURE ASSET MANAGEMENT”, having Attorney Docket No. END920100156US1, and U.S. patent application Ser. No. [TO BE PROVIDED], filed on [TO BE PROVIDED], and commonly owned and co-pending application entitled “A SYSTEM AND METHOD FOR FAILURE ASSOCIATION ANALYSIS”, having Attorney Docket No. END920100158US1, and U.S. patent application Ser. No. [TO BE PROVIDED], filed on [TO BE PROVIDED].