Embodiments of the disclosure relate to the field of data security. More specifically, one embodiment of the disclosure relates to a run-time classification of malicious objects, including advanced persistent threats (APTs).
Over the last decade, malicious software (malware) has become a pervasive problem for Internet users. In some situations, malware is a program or file that is embedded within downloadable content and designed to adversely influence or attack normal operations of a computer. Examples of different types of malware may include bots, computer viruses, worms, Trojan horses, spyware, adware, or any other programming that operates within an electronic device (e.g., computer, smartphone, server, router, wearable technology, or other types of electronics with data processing capabilities) without permission by the user or an administrator.
In general, an advanced persistent threat (APT) is malware that targets an entity and may be configured to exfiltrate (send out) information that is accessible to that entity. The targeted entity may include an individual or organization with high value information (e.g., classified or sensitive defense secrets, trade secrets, intellectual property, or the like). Currently, the classification of different types of malware, such as APTs for example, is quite resource intensive. For APTs, classification may require off-line system and workforce training.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
I. Overview
Unlike conventional Advanced Persistent Threat (APT) detection systems, a first embodiment of the disclosure are directed to an APT detection system that is capable of automatically and quickly identifying a suspect object based on previously classified APT families in order to enable a network administrator or user to more easily understand the severity, origin, or tendencies of the recently detected APT.
A second embodiment of the disclosure is directed to a networked security appliance that is deployed with logic (e.g. run-time classifier) to accelerate detection of APT and non-APT malicious objects based on anomalous behaviors uncovered during virtual processing of the suspect object and anomalous behaviors that uniquely identify both known APT families and other malware type families.
As generally stated, an “APT” is a type of malware that is directed at a targeted entity and seeks to surveil, extract, and/or manipulate data to which the targeted entity would have access. In some instances, in lieu of data gathering, APTs may seek to perform nation state attacks for the purposes of political terrorism or cyber/industrial espionage. Hence, APTs are generally viewed as more serious threats because these attacks target a specific person or persons to acquire information (normally for nefarious reasons) and are persistent. Herein, a number of benefits may be realized through classification of APT and malware families for subsequent analysis, such as the following: (1) faster detection of APTs; (2) more accurate detection of APTs, including APTs that are morphing within a family; and/or (3) faster responsiveness to attacks that may be realized by reporting the names of recognized APT and other malware attacks.
More specifically, according to a first embodiment of the disclosure, an electronic device may be implemented with a run-time classifier, which is logic that is capable of accelerating the detection of malware, especially advanced persistent threats (APTs). The run-time classifier is configured to perform, during run-time (e.g., generally contemporaneously with virtual execution operations), an analysis based on (i) anomalous behaviors that are detected during virtual processing of a suspect object within a virtual execution environment and (ii) pre-stored family identifiers. A “family identifier” (also referred to as a “template”) is a collection of data (samples) associated with anomalous behaviors that uniquely identify a particular (APT and/or non-APT) malware family. These anomalous behaviors may constitute (1) unexpected or undesired operations and/or (2) statistically significant usages/accesses of logical components (e.g., files, registry keys, etc.).
The framework for run-time APT analysis comprises one or more databases including family identifiers for APT families and/or malware (non-APT) families. Initially, it is contemplated that the database(s) may be pre-loaded with identifiers associated with currently known APT and non-APT malware families. Thereafter, the database(s) may be updated via one or more external sources and/or in real-time based on results of the APT analysis as described below.
More specifically, as stated above, each family identifier is a collection of data (samples) of anomalous behaviors that uniquely identify a given malware family, namely a collection of related APT malware (referred to as “APT family”) and/or a collection of related malware other than APT malware (referred to as a “non-APT family”. According to one embodiment of the disclosure, the samples of anomalous behaviors may be made generic by removal of the actual arguments (e.g., variable parameters) associated with these behaviors. Hence, this anomalous behavior data (referred to herein as common indicators of compromise “Common IOCs”) may be selected based, at least in part, on the counts maintained for each type of anomalous behavior (IOC) that is associated with the malware forming an entire malware family, namely the related APTs forming a particular APT family or the related malware forming the non-APT family.
For instance, the Common IOCs may be a subset of all samples of anomalous behaviors (IOCs) associated with a particular APT family, where each Common IOC may be generally generated or selected based on (a) removal of actual arguments (parameter values) to make the IOCs generic, and/or (b) filtering out IOCs that would not provide sufficient distinction from other APT families.
The filtering involves removing IOCs (1) with a low occurrence rate with the particular APT family (e.g., less than a first count threshold) and (2) with a high occurrence rate across other known APT families (e.g., greater than a second count threshold). The same technique may be used to generate Common IOCs (family identifiers) for non-APT malware. As a result, Common IOCs are a collection of anomalous behaviors (IOCs) that may be used to uniquely define a given malware family, namely an APT family or a non-APT family.
Stated differently, an APT family identifier for a first APT family, for example, may be generated by obtaining a count of each type of anomalous behavior (IOC) associated with the APTs forming the first APT family, where the count represents the number of occurrences for that anomalous behavior (e.g., IOC). This produces a set of IOCs (e.g., collection of samples of anomalous behaviors) where each IOC may be associated with one or likely more APTs within the first APT family.
Thereafter, the set of IOCs is filtered to remove (i) any IOC from the set of IOCs having a low occurrence rate within the first APT family (e.g., less than the first count threshold) and (ii) any IOC from the set of IOCs having a high occurrence rate across other APT families (e.g., greater than the second count threshold). The later condition ensures entropy among the different APT families to provide sufficient distinctiveness between the APT families. Thereafter, the remaining IOCs, which form a subset of the set of IOCs, are referred to as “Common IOCs” and are used as the “APT family identifier” for the first APT family. A similar process may be conducted to produce a “malware family identifier,” namely a family identifier for a particular (non-APT) malware family.
According to one embodiment of the disclosure, when deployed within an APT detection system, a run-time classifier is configured to initially determine whether anomalous behaviors (IOCs) monitored during virtual processing of a received suspect object within a virtual execution environment statistically matches any (non-APT) malware family identifiers. In other words, the monitored IOCs are compared to the Common IOCs associated with every malware family identifier. Upon detecting a statistical match (e.g. IOCs match 90% or more of the Common IOCs), the analysis for confirming whether the suspect object is an APT is discontinued as the suspect object has now been identified as non-APT malware.
However, if no statistical match is detected, the monitored IOCs are compared with each of the APT family identifiers (e.g. Common IOCs representing each of the APT families). If a statistical match is detected for any of these APT family identifiers (e.g. IOCs match 90% or more of the Common IOCs for a previously classified APT family identifier), the suspect object is considered to be an APT that is part of that previously classified APT family. The family name and/or other stored information associated with the classified APT may be reported to the source submitting the suspect object and/or another electronic device (e.g., network administrator, etc.). This comparison of monitored IOCs with APT family identifiers is performed to provide faster detection of APT malware, as described below.
If no statistical match is detected again, a secondary analysis of the IOCs associated with the suspect object is performed in order to determine whether the suspect object may be classified as some unknown APT (that is not a member of a classified APT family) or malware that is not associated with a classified malware family. This secondary analysis is directed to analyzing the substantive nature of the anomalous behaviors to determine whether these behaviors constitute an APT. For instance, the secondary analysis may review anomalous behaviors involving data theft, statistically significant usages/access of certain logical components such as registry keys), or the like.
After the run-time classifier has completed its analysis, the results may be reported to a targeted destination (e.g., a user of the client device(s), network administrator, etc.) and/or stored in a database. The results may include an identifier for the APT family (hereinafter referred to as the “APT family identifier”), the name of the APT family, monitored behaviors characteristics of the APT family, or the like.
According to a second embodiment, APT family identifiers and/or malware family identifiers may be supplied to an electronic device (e.g., firewall, client device, a threat detection and prevention “TDP” system, etc.) for use in automated detection and prevention of future APT or other malicious attacks. When deployed within the electronic device, a run-time classifier is configured to determine whether anomalous behaviors (IOCs) monitored during virtual processing of a suspect object within a virtual execution environment of the electronic device statistically matches any pre-stored family identifiers such as APT or malware family identifiers. If so, the run-time classifier generates a measurement (referred to as a “score”) and provides the score to a logic unit within the electronic device. The logic unit may use the score, in whole or in part, to determine and signify (to a user, administrator or other entity associated with the source of the suspect object) whether the suspect object is malicious or not. If malicious, based on the finding of the run-time classifier, a name associated with the potential APT or malware family to which the suspect object belongs may be provided.
As an illustrative example, the run-time classifier may be configured to generate a score whose value may be highly correlated to the type of family identifier detected. This score may contribute to the classification of the suspect object as malicious, where the amount of contribution may be based on the weighting applied to this score in determining whether a suspect object is malicious. For instance, the score from the run-time classifier may be aggregated with scores produced from other threat detection processes to produce an overall score that identifies if the suspect object appears to be benign or malware such as APT malware. Alternatively, the score may be utilized in a different manner to potentially influence the overall score.
For instance, when determining that the IOCs suggest that the suspect object is an APT, the run-time classifier may output a first score value. Depending on the weight assigned to scores provided by the run-time classifier (as compared to other scores provided by the other threat detection processes), the first score value may significantly (and perhaps definitely) cause the overall score to represent that the suspect object is malicious. While some embodiments may only use the first score value to signify (perhaps definitively) that the suspect object as malicious, other embodiments may use the first score value to signify (and perhaps definitively) that the suspect object is not only malicious but is an APT.
Also, when determining that the IOCs suggest that the suspect object is not any known malware family, the run-time classifier may output a second score value. Again, depending on the weight assigned, the second score value may have an impact in classifying the suspect object as benign or may have little impact on the classification of the suspect object as malicious.
It is contemplated that the scores output from the run-time classifier may be static for each type of family (e.g. each APT or malware family assigned the same score) or may vary between different types of families (APT, malware) as well as between different types of malware families, between different types of APT families, and between different malware or APTs within their corresponding malware or APT families.
In accordance with another specific implementation, IOCs are stored within a run-time log (e.g., maintained by behavior monitoring logic) of behaviors detected (monitored) during virtual processing of a suspect object within a virtual execution environment and are made generic (prior to storage or thereafter) by removal of actual arguments (parameter values). These monitored behaviors may be used to generate a template (CIOC) as described above. In one embodiment, the logged behaviors may be time-stamped so as to preserve their chronological order during processing and the CIOC is generated to reflect the processing sequence of the CIOC.
II. Terminology
In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but is not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.
Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.
The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. The objects may be associated with network traffic. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence malware and allow the object to be classified as at least “malicious” and perhaps classified as an advanced persistent threat (APT), when warranted.
Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet broadly refers to a series of bits or bytes having a prescribed format, which may include packets, frames, or cells. A “message” may be broadly referred to as any series of bits or bytes having a prescribed format as well.
As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g., Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file (such as a document or a dynamically link library), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, a document (for example, a Microsoft Office® document), an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.
As noted above, an APT is a type of sophisticated network attack that is directed at a particular target and seeks to surveil, extract, and/or manipulate data to which a targeted entity would have access. APTs may seek to maintain a persistent attack on a targeted electronic device and may initially lay dormant (prior to activation) for a prolonged period of time in comparison with traditional malware.
For example, a self-contained element of a flow, such as an APT-latent email message for example, may be specifically directed to a particular individual at a company (e.g., an officer of the company) in an attempt to extract sensitive data accessible by that individual. Sometimes, the APT-latent email message may include text/greetings that are personalized for the targeted entity along with an attachment (e.g., a Portable Document Format (PDF) document). The attachment may contain malicious content such that, upon opening or otherwise activating the attachment, the malicious content attempts to extract and/or manipulate targeted data accessible to the defined target.
Malware may be construed broadly as software that, upon execution, is designed to take advantage of a vulnerability, for example, to harm or co-opt operation of an electronic device or misappropriate, modify or delete data as for APT malware. Conventionally, malware is often said to be designed with malicious intent. An object may constitute or contain malware, whether APT malware or non-APT malware.
The term “transmission medium” is a physical or logical communication path between two or more electronic devices (e.g., any devices with data processing and network connectivity such as, for example, a security appliance, a server, a mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.). For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.
In general, a “virtual machine” (VM) is a simulation of an electronic device (abstract or real) that is usually different from the electronic device conducting the simulation. A VM may be used to provide a sandbox or safe runtime environment to enable detection of APTs and/or other types of malware in a safe environment. The VM may be based on specifications of a hypothetical computer or emulate the computer architecture and functions of a real world computer.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the term “compare” or “comparison” generally means determining if a statistical match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular family identifier, as described below in detail.
Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” The phrase “(A, B, . . . , etc.)” has a similar connotation. An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
The invention may be utilized for detection, verification and/or prioritization of malicious content such as exploits. As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
III. General Operation Flow of Run-Time Malware Classification
Referring to
According to one embodiment of the disclosure, the run-time classifier 150 is configured to initially determine whether the anomalous behaviors 140 (sometimes referred to as “indicators of compromise” or “IOCs), being part of the monitored behaviors during virtual processing of an object, statistically match one of a plurality of preconfigured family identifiers stored in database 160. For this embodiment, a family identifier may be either (i) an APT family identifier directed to a particular APT family or (ii) a malware family identifier directed to a non-APT malware family.
Herein, according to one embodiment of the disclosure, the family identifier database 160 may follow a relational, object, hierarchical, or any other type of database model. In one embodiment, the family identifier database 160 is spread across one or more persistent data stores. The persistent data stores may be integrated within the electronic device 100 (e.g., APT detection system 200 or TDP system 9101 described below) or within a separate host electronic device. For example, the family identifier database 160 may be located at a remote or even geographically remote location that is communicatively coupled (e.g., by a dedicated communication link or a network) to the electronic device 100.
As stated above, each family identifier is a collection of samples of anomalous behaviors, also referred to herein as common indicators of compromise (“Common IOCs”). The Common IOCs may be selected based, at least in part, on the counts maintained for each type of anomalous behavior (IOC) that is associated with the APTs (or malware) forming a particular family (e.g., APT family, malware family, etc.).
Therefore, if the IOCs associated with the suspect object statistically match any Common IOCs corresponding to the family identifiers, the run-time classifier 150 determines that the suspect object is part of that particular (APT or malware) family. Depending on the deployment for the run-time classifier, a number of actions may be undertaken by the electronic device when the IOCs statistically match any Common IOCs representing a family identifier. For instance, as an example, the particulars associated with the uncovered family may be reported, as represented by output 170. As another example, further analysis in determining whether the suspect object is an APT may be discontinued or may be continued to obtain further analytical information. As yet another example, a score associated with the uncovered family may be provided to logic within the electronic device that is responsible for deciding whether the incoming suspect object is malicious or not, as represented by output 180. The determination logic can rely solely on the determination or weigh other considerations when making the decision.
If no statistical match is detected, a secondary analysis of the IOCs associated with the suspect object may be performed to determine whether the suspect object still may be classified as an APT (e.g., the suspect object is an APT that does not belong to any classified APT or malware families, as represented by output 190.
Hence, the run-time classifier 150 is useful to more quickly detect APTs and other types of non-APT malware. This may enable network administrators to address malicious attacks before serious security issues may arise.
IV. APT Detection System Deployment of Run-Time Classifier
Referring to
Herein, the incoming objects 220 may be captured and filtered from some or all of the incoming objects associated with network traffic. For instance, as an illustrative example, before receipt of an incoming object (e.g., one of incoming objects 220) by virtual execution logic 230, it is contemplated that intrusion protection system (IPS) logic or heuristic logic (not shown) may be deployed to filter incoming objects 220 from a larger set of objects (not shown). Such filtering may be conducted through signature checks or other static analysis processes, where the incoming objects 220 are tagged for more in-depth analysis. Given that the source (not shown) may be an electronic device that has already determined that some or all of the incoming objects 220 may be malicious, the operations of the IPS logic and/or heuristic logic may be suspended or the amount of filtering realized may be de minimis. In fact, for some deployments, the IPS/heuristic logic is unnecessary and may not be implemented.
Herein, the virtual execution logic 230 comprises one or more virtual machines 2351-235N (N≧1), which virtually processes (sometimes referred to as “detonate”) each of the incoming objects 220 and monitors for anomalous behaviors during such virtual processing, as described below. These anomalous behaviors 240 are provided to the run-time classifier 150 for analysis.
According to one embodiment of the disclosure, the run-time classifier 150 is configured to initially determine whether the anomalous behaviors 240 (IOCs) statistically match any malware family identifiers. According to this embodiment of the disclosure, the malware family identifiers may be retrieved from malware family identifier database 162, which along with an APT family identifier database 164 forms the family identifier database 160. Family identifier database 160 may be located within the APT detection system 200 or may be located at remote or even geographically remote location that is communicatively coupled (e.g., by a dedicated communication link or via network 210) to the APT detection system 200 (e.g., cloud services; dedicated external server; etc.). Both the malware family identifiers and the APT family identifiers may be updated in a periodic or aperiodic manner, based on data downloaded from an external server (not shown) or data from suspect objects 220 detected as APTs or other malware by run-time classifier 150.
As stated above, each family identifier is a collection of data (samples) associated with anomalous behaviors that uniquely identify a given APT (or malware) family. This collection of anomalous behavior data (Common IOCs) may be selected based, at least in part, on the counts maintained for each type of anomalous behavior that is associated with the APTs (or malware) forming a particular APT (or malware) family. For instance, the Common IOCs (S1, S2, S4, S8 and S18) representing a first APT family identifier for a first APT family may be a subset of samples S1-S20 of anomalous behaviors for the first APT family. Each Common IOC (S1, S2, S4, S8 and S18) may be selected based on (1) a high occurrence rate of an IOC (e.g., greater than a first count threshold) for the first APT family and (2) a lower occurrence rate of this behavior (e.g., less than a second count threshold) across other APT families stored in APT family identifier database 164. Similarly, the Common IOCs (S3-S4, S10 and S28) representing a second APT family identifier may be a subset of samples (S1-S5, S10-S12 and S21-S30) of anomalous behaviors for the second APT family. It is noted that some Common IOCs may be shared between different APT family identifiers, provided that the Common IOCs in their entirety are collectively distinct and unique.
Therefore, if the IOCs associated with the suspect object statistically match any of the malware family identifiers retrieved from malware family identifier database 162, the run-time classifier 150 determines that the suspect object is not an APT and discontinues its analysis.
If no statistical match is detected, the monitored IOCs from the suspect object are compared with each of the APT family identifiers retrieved from APT family identifier database 164. If a statistical match is detected, the suspect object is considered to be an APT that is part of a previously classified APT family. Information 250 associated with the classified APT family (e.g., family name, suspect object, Common IOCs used, etc.) may be received by reporting logic 260 and forwarded to the source submitting the object or to another electronic device (e.g., administrator, etc.), as denoted by flow 265.
If no statistical match is detected, a secondary analysis of the IOCs associated with the suspect object may be performed by a secondary classifier 280 that receives at least the anomalous behaviors 270 to determine whether the suspect object may be classified as an APT or not. This secondary analysis may involve substantive review for anomalous behaviors directed to data theft, statistically significant usages/access of certain logical components such as registry keys, or the like. Hence, the run-time APT analysis is used prior to this analysis to achieve faster detection of APTs associated with APT families that have already been classified, as further described below.
Referring now to
More specifically, according to this embodiment, the APT detection system 200 comprises an APT analysis system 330, an APT server 360, and the family identifier database 160. In particular, the APT server 360 operates in combination with the family identifier database 160 and/or APT analysis system 330 to automatically determine whether an incoming suspect object 320 is an APT belonging to a previously classified APT family.
According to one embodiment of the disclosure, the suspect object 320 is provided to the APT analysis system 330, in particular the virtual execution logic 230 within the APT analysis system 330. The virtual execution logic 230 comprises a run-time virtual execution environment 340 that comprises one or more virtual machines (VMs) 3451-345M (M≧1), where one or more of the VMs 3451-345M may be configured for virtual processing the suspect object 320 which may cause anomalous behaviors to occur.
Although not shown, VMs 3451-345M may be configured based on the results of the signature checks conducted prior to routing the subject object 320 to the APT analysis system 330. Alternatively, metadata associated with the subject object 320 may be used, at least in part, to determine protocols, application types and other information that may be used to determine particular software profile(s). The software profile(s) are used for selecting corresponding software images within a data store 335 for use in configuring a run-time environment in the one or more virtual machines 3451-345M. These software profile(s) may be directed to different versions of the same software application for fetching corresponding software image(s) from data store 370.
During virtual execution of the subject object by one or more of the VMs 3451-345M, the behaviors exhibited during virtual processing are monitored by a behavior monitoring logic 350. Of these monitored behaviors, a count may be maintained by behavior counter 365 (deployed in APT analysis system 330 or APT server 360 as shown) for at least each type of monitored anomalous behavior 352. The anomalous behaviors 352 are provided from APT analysis system 330 to the run-time classifier 150 of the APT server 360. The dropped object extractor 355 performs operations to detect, extract, and pass dropped objects during virtual processing by the suspect object 320 by VM(s) 3451, . . . and/or 345M.
As illustrated in
Referring to
Thereafter, the family filter generator performs a second filtering operation on the first subset of IOCs by eliminating any IOC having a second occurrence rate within APT families other than the particular APT family (operation 420). The second filter operation produces a second subset of IOCs. Herein, the second occurrence rate may represent a second count threshold, which may be greater (and perhaps substantially greater by a few factors) than the first count threshold. Similarly, the second count threshold may be a static value or a dynamic value. Of course, it is contemplated that the second filtering operation may be conducted prior to the first filtering operation as the ordering of these operations may be changed providing both filtering operations are performed.
After performing the first and second filtering operations, the second subset of IOCS may constitute the Common IOCs that represent the APT family identifier for the particular APT family (operation 430). Of course, based on the number of IOCs forming the second subset of IOCs, it is contemplated that only some of the second subset of IOCs may be used as the APT family identifier.
Referring back to
Upon failing to detect a statistical match between the IOCs associated with the subject object 320 and the malware family identifiers, the run-time classifier 150 analyzes these IOCs in connection with the APT family identifiers, which may be retrieved from APT family identifier database 164. Upon comparing the IOCs with some or all of APT family identifiers and detecting a statistical match, the run-time classifier 150 has identified the suspect object 320 as an APT that is part of the classified APT family. It is contemplated that, for testing purposes, the suspect object 320 may be an APT from a known APT family in order to better define APT family boundaries.
In response to detecting that object 320 is an APT of a classified APT family, the warning generator 380 of the APT server 360 generates and transmits a warning message 385 to the source 310 (e.g., a corresponding client device 310A). The warning message 385 may indicate to a targeted recipient (e.g., client, IT personnel, etc.) that the suspect object 320 is an APT, perhaps along with its determined APT family name; the APT family identifier for use in detecting future attacks, namely the Common IOCs representing the APT family (e.g., anomalous behaviors such as data theft, statistically significant usages/access of certain logical components such as registry keys); or the like. Alternatively, the warning message 385 may be routed to another electronic device (e.g., administrator, etc.).
If no statistical match is still detected by run-time classifier 150, a secondary classifier 280 is now provided with the IOCs associated with the subject object 320 and analyzes the substantive nature of these IOCs to determine whether the suspect object may be classified as an APT or not.
Referring still to
Herein, the client device(s) 310A/310B may be any type of electronic device, including laptop computers, desktop computers, tablet computers, smartphones, servers, network devices (e.g., firewalls and routers), wearable technology, process controllers, or other types of electronics with data processing capabilities and typically have network connectivity. Furthermore, the client device(s) 310A/310B may include one or more processors with corresponding memory units for processing data. The processors and memory units are generally used herein to refer to any suitable combination of programmable data processing components and data storage that conduct the operations needed to implement the various functions and operations of the client device(s) 120. The processors may be special purpose processors such as an application-specific integrated circuit (ASIC), a general purpose microprocessor, a field-programmable gate array (FPGA), a digital signal controller, or a set of hardware logic structures (e.g., filters, arithmetic logic units, and dedicated state machines) while the memory units may refer to non-volatile memory. An operating system may be stored in the memory units of the client device(s) 310A/310B, along with application programs specific to the various functions of the client device(s) 310A/310B, which are to be run or executed by the processors to perform the various functions of the client device(s) 310A/310B. For example, the memory units of a client device 310A/310B may store email and/or web-browser applications that are run by associated processors to send, receive, and view information associated with the objects.
The one or more processors 500 and the persistent data store 530 are generally used herein to refer to any suitable combination of programmable data processing components and data storage that conduct the operations needed to implement the various functions and operations of the APT server 360. The processor(s) 500 may be one or more special purpose processors such as an application-specific integrated circuit (ASIC), a general purpose microprocessor, a field-programmable gate array (FPGA), a digital signal controller, or a set of hardware logic structures (e.g., filters, arithmetic logic units, and dedicated state machines) while the persistent data store 530 may refer to non-volatile memory. An operating system may be stored in the persistent data store 530, along with application programs specific to the run-time classifier 150 and other various functions of the APT server 360, which are to be run or executed by the processors 500 to perform the various functions of the APT server 360.
In one embodiment, the APT server 360 may include one or more input/output (I/O) interfaces 510 for communicating with various components external to the APT server 360. The I/O interface(s) 510 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, I/O interface 510 may be implemented with one or more radio units for supporting wireless communications with other electronic devices. Hence, the I/O interface(s) 510 enables communications with one or more electronic devices using wireless and/or wired protocols, including the IEEE 802.3 and the IEEE 802.11 suite of standards.
In one embodiment, as shown in
Referring still to
Referring to both
Referring to
Although the APT server 360 is described above to serve the web-interface 700 to a browser of the client device 310A, in other embodiments, a separate web-server may be in communication with the client device 310A and the APT server 360 to provide the web-interface 700 and facilitate transmission of the suspect object to the APT server 360 from the client device 310A.
Referring back to
For example, in one embodiment, the suspect object may be a self-contained element of a flow such as a PDF file. In this embodiment, APT analysis system 330 may configure a VM with Adobe® Reader® or other appropriate document reader to detonate the PDF file (e.g., performs virtual operations on the PDF file). The resultant behaviors performed during virtual processing of the suspect object are monitored by behavior monitoring logic 375, and a count (number of occurrences) for each type of monitored, anomalous behavior may be maintained. Each of these counts may include the number of occurrences of a particular anomalous behavior during virtual processing of the suspect object and/or associated dropped objects (hereinafter referred to as “behavior count value”).
After detonating the suspect object, the APT analysis system 330 monitors and records at least the anomalous behaviors and their aggregated behavior count values. This recorded data describing the suspect object. Use of the APT analysis system 330 ensures that detonation of the suspect object is controlled and will not result in infection of the client device 310A and/or the compromise of sensitive data. According to one embodiment, the APT analysis system 330 conducts heuristic analysis.
According to another embodiment, the APT analysis system 330 includes a plurality of VMs with various profiles, and may, in some cases, simulate the client device 310A during detonation of the suspect object. These profiles may include software to be run by a VM to process a suspect object. For example, the profiles may include an operating system and one or more suitable computer applications that are required to process the objects. In this example, one of the applications may include a document reader (e.g., an Adobe® Reader for PDF documents) and/or a web browser (for web pages) for detonating the suspect object. The APT analysis system 330 may include separate virtual processors and memory units for use in detonating different types of objects.
As noted above, detonation of the suspect object at operation 305 produces data that describes anomalous behaviors of the suspect object. Of course, besides data directed to the anomalous behaviors and their corresponding count values, the data may also include details regarding the origin of the suspect object stored in metadata, data generated by the suspect object during detonation, data attempted to be accessed by the suspect object (both locally and from remote systems) during detonation, etc.
During detonation, in some cases, the suspect object may generate/drop separate objects during detonation. These dropped objects may be new files (e.g., binary files) or other segments of data or executable code created by the original suspect object. In this embodiment, the dropped objects may be uncovered and passed back to operation 605 for detonation by the dropped object extractor (operations 610 and 615). Accordingly, each of the dropped objects is detonated in a similar fashion as described in relation to the suspect object to generate data associated with each dropped object and behavior count values for behaviors detected during analysis of the original suspect object may be augmented to reflect the actual number of occurrences for each particular behavior.
As shown in operation 620, after detonation of the suspect object and any dropped objects produced by the suspect object, anomalous behaviors associated with the suspect and dropped objects may be determined from the data. Additionally, the behavior count values may be tallied or, in the alternative, determined by the run-time classifier 150 in lieu of the APT analysis system 330 performing the behavior count analysis.
As an illustrative example, monitored anomalous behaviors of the objects during detonation along with the number of occurrences of these particular behaviors (behavior count value) are maintained. For instance, a first behavior count value associated with a first anomalous behavior may represent the number of occurrences that a suspect object attempts to make out-bound communications to outside data sources during virtual processing of that object. Outbound communications may seek instructions, for example from a malicious server, as to conduct malicious activity. In another embodiment, a second behavior count value associated with a second anomalous behavior may represent the number of occurrences that a suspect object is attempting to exfiltrate (or send out) data to an external resource. In fact, exfiltration of data alone may indicate that the object is an APT.
Hence, the anomalous behaviors provide a comprehensive description of an associated object such that a comparison of anomalous behaviors, and analysis of their corresponding count values may be performed. Such comparison/analysis is conducted to determine whether the object is an APT and/or belongs to a particular APT family, as described below.
Optionally, data related to the suspect object and the dropped objects may be further retrieved from external data sources while anomalous behaviors are being monitored during virtual processing of the suspect object. For example, data may be retrieved from the external server 540 through the I/O interface 510. In this embodiment, the external server 540 may be a device on the same local area network as the APT detection system 200 or connected to the APT detection system 200 over a wide area network (e.g., the Internet). For example, as discussed above, the external server 540 may be connected to the APT detection system 200 through the network 210 of
In one embodiment, the data retrieved from the external server 540 may include data related to servers attempted to be accessed by the suspect and dropped objects while being detonated (e.g., internet protocol (IP) address of a server) where APT analysis system 200 physically processes the object in lieu of logical (virtual) processing. In another embodiment, the external data may include data collected by third parties related to the suspect object (e.g., malware classification information). In one embodiment, operation 620 may be performed by the run-time classifier 150.
Following generation of behaviors for the suspect object and/or the dropped objects, as shown in operation 625, the APT classifier 250 may analyze the data to automatically (1) determine whether the suspect object belongs to a known malware (non-APT) family. If not, the APT classifier 250 may determine (i) whether the suspect object is an APT belonging to a previously classified APT family, or (2) whether the suspect object is an APT where a family associated with the suspect object has not been classified.
More specifically, as shown in
Referring now to
In one embodiment, each entry in the APT family identifier database 164 may include the suspect object along with the APT family identifier that uniquely identifies the object in the APT family identifier database. Other information that may be stored within APT family identifier database 164 may include one or more of the monitored anomalous behaviors (e.g., IOCs) for the suspect object, data from external server or other resources, or the like (operation 655).
Upon determining that the suspect object is APT malware and storage of its behaviors (IOCs), the suspect object is flagged as APT malware in the APT family identifier database (operation 660). In one embodiment, flagging the suspect object as APT malware includes setting an APT malware data value associated with the suspect object in the APT family identifier database 164 to a selected value, e.g., “true”. Also, the APT family identifier is stored to identify that the APT malware belongs to a certain APT family from which information associated with the APT family can be accessed for inclusion within the warning message or subsequently accessed by the user or administrator using the APT family identifier.
After flagging the suspect object as APT malware in the APT family identifier database, the warning generator within the APT server generates a warning message to a targeted destination such as a source of the suspect object (e.g., client device 310A or TDP system) or another electronic device (operation 665). The warning message identifies that the suspect object is APT malware and should be discarded, deleted, quarantined or otherwise avoided.
By the warning generator 389 transmitting a warning message or other messages to the source identifying a classification of the suspect object, a user or administrator of the source may be better prepared and less susceptible to APTs and other malicious attacks. For example, upon receiving a warning message from the APT detection system 200 of
In one embodiment, the warning message may be a transmission to a component of the web-interface 700. For example, as shown in
Similarly, upon determining at operation 650 that the suspect object is not APT malware, the run-time classifier stores the suspect object, some or all of the anomalous behaviors (IOCs) associated with the suspect object, and/or data from external sources into the APT family identifier database 164 (operation 670). Thereafter, the secondary classifier is configured to determine whether the suspect object is APT malware or non-APT malware based on comparisons with anomalous behaviors of the suspect object to highly common anomalous behaviors (operation 675). This comparison may be performed using machine learning and statistical analysis.
Upon determining that the suspect object is non-APT malware, the secondary classifier 280 flags the suspect object as non-APT malware (operation 685). In one embodiment, flagging the suspect object as non-APT malware includes setting an APT malware data value associated with the suspect object temporarily stored the APT family identifier database 164 to a selected value, e.g., “false”. However, upon determining that the suspect object is new APT malware, the suspect object is flagged as APT malware in the APT family identifier database 164 (operation 685), where the APT may be assigned to a new APT family identifier or assigned to a “known” classification for now. Thereafter, the analytic data has been generated (operation 690).
V. Threat Detection and Protection System (TDP) System Deployment of Run-Time Classifier
Although described above as transmission of a suspect object, in other embodiments, a suspect object may be analyzed separate from the APT detection system 200, where the monitored APT detection functionality deployed within an electronic device (e.g., firewall, client device, a threat detection and prevention “TDP” system, etc.). According to a second embodiment of the disclosure, as shown in
In contrast to deployment within the APT detection system, when deployed within the electronic device 800, a run-time classifier 850 may be configured to determine whether anomalous behaviors (IOCs) monitored during virtual processing of a suspect object within a virtual execution environment statistically matches any pre-stored APT or malware family identifiers within family identifier database 160. If so, the run-time classifier 850 generates a measurement (referred to as a “score”) that is provided to the score determination logic 860 within the electronic device. The score determination logic 860 may use the score, in whole or in part, in determining whether the suspect object is to be classified malicious or not.
As an illustrative example, received from a source via network 210, incoming objects 805 are captured and subsequently analyzed by static analysis logic 810 to (i) filter a subset of the objects 820 from the incoming objects 805 and/or (ii) generate a score (Score_1) 815 associated with each object that reflects the likelihood of the object being malware (and perhaps the severity of the potential malware).
In particular, as an illustrative example, before receipt of objects 820 by virtual execution logic 825, the static analysis logic 810 (e.g., IPS logic, heuristic logic) may conduct signature checks (e.g., exploit signature checks, vulnerability signature checks, etc.) or other scanning operations on the objects 805, where a subset of objects 820 are tagged for more in-depth analysis. Furthermore, the static analysis logic 810 may be configured to generate a score (Score_1) 815 for each analyzed object, which represents the probability (or level of confidence) that the characteristics of that analyzed object are indicative of malware. In other words, the score represents a value that classifies the threat level of the possible malware characterized by the particular analyzed object.
For instance, as an illustrative example, upon detecting one type of characteristic that suggests an object 820 under analysis is malware, the static analysis logic 810 may generate a score having a first value (e.g., score of 5 out of 20) associated with that object. However, upon detecting multiple characteristics or another type of characteristic that more strongly suggests the object under analysis is malware, a higher score (e.g., score of 13 out of 20) may be generated.
Herein, the virtual execution logic 825 comprises a run-time virtual execution environment 830 that features one or more virtual machines 8351-835N (N≧1), which virtually processes (sometimes referred to as “detonate”) each of the incoming objects 820. Behavior monitoring logic 840 monitors the behaviors produced during virtual processing of a suspect object 820 and determines which the these behaviors are anomalous. These anomalous behaviors 845 are provided to the run-time classifier 850 for analysis.
The run-time classifier 850 may be configured to generate a score (Score_2) 855 whose value may be dependent on whether the suspect object is classified to be part of a known malware (non-APT or APT) family and/or the type of malware family. Score_2 855 may contribute to the classification of the suspect object as malicious, where the amount of contribution may be based on the weighting applied to Score_2 855. For instance, Score_2 855 may be aggregated with scores produced from other threat detection processes (e.g., Score_1 produced by static analysis logic 810) or may be utilized in a different manner to influence the overall score used to identify whether the suspect object is malicious or not. The score determination logic 860 generates the overall score 865 to an object classifier 870 that identifies to reporting logic 880 within electronic device 800 if the suspect object appears to be benign, non-APT malware or APT malware.
For instance, when determining that the anomalous behaviors (IOCs) 845 suggest that the suspect object is an APT, the run-time classifier 850 may output a first score value. Depending on the weight assigned to scores provided by the run-time classifier 850 (as compared to other scores produced by analysis of the anomalous behaviors received from behavior monitoring logic 840 by score determination logic 860 and Score_1 provided by static analysis logic 810), the output first score value may significantly (and perhaps definitely) cause the overall score produced by score determination logic 860 to represent that the suspect object as malicious. Similarly, when determining that the IOCs suggest that the suspect object does not belong to any malware or APT family, the run-time classifier 850 may output a second score value less than the first score value. Again, depending on the weight assigned, the second score value may have little or no impact in assisting the score determination logic 860 to classify the suspect object as malicious.
According to one embodiment, it is contemplated that Score_2 output from the run-time classifier 150 may be based on the particular APT or malware family to which the suspect object belongs, where each classified malware and APT family is assigned as particular score value. Of course, it is contemplated that the score values simply may vary between types of families (APT, malware, etc.).
Referring now to
As shown, the TDP system 9101 is adapted to analyze one or more objects associated with network traffic that may have originated from server device 932 via local network 930 and is now propagating over an enterprise network 934. The TDP system 9101 is shown as being coupled with the local network 930, normally behind a firewall 936, via a network interface 938. The network interface 938 operates as a data capturing device (referred to as a “tap” or “network tap”) that is configured to receive network traffic propagating to/from the client device(s) 310A and provide object(s) from the network traffic to the TDP system 9101.
In general, the network interface 938 is configured to receive and route one or more objects that are received from or targeted to client device 310A, normally without an appreciable decline in network performance. According to one embodiment of the disclosure, the network interface 938 may simply re-route an object for analysis to the TDP system 9101 or, in another embodiment, duplicate the object and provide the same to the TDP system 9101. For instance, the network interface 938 may duplicate one or more files that are part of a data flow or part of the payload contained within certain data packets, metadata, or the like.
It is contemplated that, for any embodiments where the TDP system 9101 is implemented as an dedicated appliance or a dedicated computer system, the network interface 938 may include an assembly integrated into the appliance or computer system that includes network ports, network interface card and related logic (not shown) for connecting to the local network 930 to non-disruptively “tap” network traffic by providing at least a portion or a copy of the network traffic to TDP system 9101. In other embodiments, the network interface 938 can be integrated into an intermediary device in the communication path (e.g., firewall, router, switch or other network device) or can be a standalone component.
Alternatively, the TDP system 9101 may be deployed as an inline security appliance (not shown), which analyzes intercepted objects for malware or other indicators of suspicious content. Upon suspecting a presence of malware in an object under analysis, the suspect object may be forwarded to the dynamic analysis engine 970 for further analysis as described below.
More specifically, as shown in
In one embodiment, the static analysis logic 810 may serve as a filter to permit subsequent malware analysis only on a portion of incoming data, which effectively conserves system resources and provides faster response time in determining the presence of malware within the analyzed object(s). As shown in
For example, the static analysis logic 810 may examine the metadata or attributes of the object under analysis (e.g., portion of an email message, file, document, a binary image of an executable, etc.) to determine whether a certain portion of the object statistically matches (e.g., a prescribed level of correlation with) a predetermined pattern of attributes that is associated with a malicious attack such as an APT attack. According to one embodiment of the disclosure, the static analysis logic 810 tags certain suspect objects within the network traffic as suspicious and supplies a score (Score_1 815) to score determination logic 860 for use in generating an overall score 865 for signaling to object classifier 870 as to whether the suspect object is malicious or not.
Thereafter, according to one embodiment of the invention, the static analysis logic 810 may be adapted to transmit the suspect objects to the dynamic analysis engine 970 and perhaps at least a portion of the metadata of the suspect objects to scheduler 960. The portion of the metadata may identify attributes of the runtime environment in which the suspect object should be processed and, on occasion, attributes of the client device(s) 310A to which the suspect object was targeted. Such metadata or attributes are used to identify a configuration of the VM needed for subsequent malware analysis. As an alternative embodiment, the dynamic analysis engine 970 may be adapted to receive one or more messages (e.g., data packets) from the static analysis logic 810 and analyze the message(s) to identify the software profile information associated with the needed VM and obtain such needed information.
As an illustrative example, a suspicious (suspect) object may constitute an email message that was generated, under control of Windows® 7 Operating System, using a Windows® Outlook 2010, version 1. Upon determining that the email message includes an attachment for example, static analysis logic 810 provides software profile information to the scheduler 960 to identify a particular configuration of VM needed to conduct dynamic analysis of the suspect object and its self-contained elements such as the attachment. According to this illustrative example, the software profile information would include (1) Windows® 7 Operating System (OS); (2) Windows® Outlook 2000, version 1; and perhaps an Adobe® reader if the attachment is a PDF document.
The static analysis logic 810 supplies the software profile information to the scheduler 960, which determines whether any of the VM disk files within storage device 965 feature a software profile supporting the above-identified configuration of OS and one or more applications or a suitable alternative.
The dynamic analysis engine 970 is adapted to execute one or more VMs 8351-835N, to simulate the receipt and execution of content associated with an object under analysis within a run-time virtual execution environment 830 as expected by the type of object. Furthermore, the behavior monitoring logic 840 within the dynamic analysis engine 970 may be configured to (i) monitor behaviors of the content being analyzed by one or more VMs 8351, . . . , and/or 835N, (ii) detect anomalous behaviors 845 associated with the monitored behaviors, and (iii) provide these anomalous behaviors 845 to both score determination logic 860 and run-time classifier 850. The run-time classifier 850 determines, through analysis of the anomalous behaviors (IOCs) and family identifiers (Common IOCs) as to whether there is a statistical match. If so, a score associated with the matched family identifier (Score_2 855) is provided to score determination logic 860.
Thereafter, based in part on Score_1 815, Score_2 855, and the results produced from analysis of the anomalous behaviors 845, the score determination logic 860 route the results (e.g., overall score 865, information associated with the detected anomalous behaviors, and other information associated with the detected malicious activity by the suspect object) to the object classifier 870.
According to one embodiment of the disclosure, the score determination logic 860 comprises one or more software modules that are used to determine a probability (or level of confidence) that the suspect object is malware. Score determination logic 860 is configured to generate the overall score 865 that classifies the threat of the possible malware. Of course, the overall score 865 may be based on a combination of different analysis results.
For instance, according to one embodiment, the overall score 865 may be an aggregation of a score independently generated by the score determination logic 860 along with Score_1 815 and Score_2 855. Alternatively, the overall score 865 may be an aggregation of these scores, with Score_2 855 being weighted more than Score_1 815. As another alternative, the overall score 865 may be weighted heavily on Score_2 855. In yet another embodiment, the overall score 865 may be based on a weighing primarily relying on the score produced by the score determination logic 860 separate and apart from Score_1 815 and Score_2 845, which may be used to assist in the analysis when the score produced by the score determination logic 860 is borderline as to whether the suspect object is malicious or not.
Referring to
If additional analysis is needed, the suspect object undergoes virtual processing to uncover anomalous behaviors associated with the suspect object in a sandboxed environment (operation 1020). Thereafter, a run-time analysis is conducted based on these anomalous behaviors (IOCs) and the family identifiers (Common IOCs), which represent known malware families (operation 1030). For instance, the run-time classifier may perform a statistical comparison between IOCs and Common IOCs).
Based on the analysis, a second score is output (operation 1040). Where the run-time classification determines that the suspect malware belongs to a classified (APT or non-APT) malware family, at least the name of the particular malware (APT or non-APT) family may be provided along with the second score.
Based on the uncovered anomalous behaviors, and taking in account at least the second score and perhaps the first score (along with any weighting applied to either of these scores), a determination is made as to whether the suspect object is malware (operations 1050). If so, the suspect object is identified as malware, and where the suspect object belongs to a known malware family, the name of the malware family (and other information associated with the identified malware family) may be provided (operations 1060-1070). Otherwise, the suspect object is identified as “benign” and the findings are reported.
Of course, it is contemplated that additional embodiments of the invention may be deployed. As a first example, logic components or the method of operation may be configured to determine whether the suspect object is malicious and also determine the type of malware (e.g. collective functionality of
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
This application claims the benefit of priority on U.S. Provisional Application No. 61/921,045, filed Dec. 26, 2013, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5978917 | Chi | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6118382 | Hibbs et al. | Sep 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6417774 | Hibbs et al. | Jul 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6700497 | Hibbs et al. | Mar 2004 | B2 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
6995665 | Appelt et al. | Feb 2006 | B2 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937761 | Benett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dahdia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | Van Der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080032556 | Schreier | Feb 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080181227 | Todd | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | Stahlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
WO-0206928 | Jan 2002 | WO |
WO-0223805 | Mar 2002 | WO |
WO-2007-117636 | Oct 2007 | WO |
WO-2008041950 | Apr 2008 | WO |
WO-2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
WO-2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages. |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238. |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011. |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek- .com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12--final107.pdf [retrieved on Dec. 15, 2014]. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015. |
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015. |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . , (Accessed on Aug. 28, 2009). |
AltaVista Advanced Search Results. “Event Orchestrator”Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009). |
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003). |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) “Sailer”. |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/section1.html (Jan. 6, 2014). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page. |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=990073, (Dec. 7, 2013) |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware” , Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “Extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 “Boubalos” (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Deutsch, P. , ““Zlib compressed data format specification version 3.3” RFC 1950, (1996)”. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)SECURE, Issue 18, (Oct. 2008), pp. 1-100. |
Kaeo, Merike “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”). |
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA. |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003). |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Peter M. Chen, and Brian D. Noble , “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
Thomas H. Ptacek, and Timothy N. Newsham, “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Number | Date | Country | |
---|---|---|---|
61921045 | Dec 2013 | US |