System and method for saving and restoring a processor state without executing any instructions from a first instruction set

Abstract
A CPU (1) automatically preserves the CPU context in a computer memory (5) that remains powered-up when the CPU is powered down in sleep mode. By means of the preserved CPU context, the CPU is able to instantly and transparently resume program execution at the instruction of the program that was asserted for execution when the CPU was powered down. The CPU is permitted to power down frequently, even during execution of a program, and results in reduced average overall power consumption.
Description
FIELD OF THE INVENTION

This invention relates to sleep modes for digital computers and, more particularly, to a novel method and apparatus for reducing battery power drain in portable computers during periods in which the computer is left idle for a time, even momentarily, while restoring CPU operation instantaneously once processing is to resume.


BACKGROUND

Portable digital computers rely on rechargeable DC batteries to provide the electrical power necessary for operation. When the computer is powered on for processing operation, but allowed to remain idle, the battery continues nonetheless to supply current to all the components of the computer, including the central processing unit (CPU), memory, the chipset (e.g. the Southbridge) and the display of the computer. If the user fails to turn off the computer, the battery continues to supply full current and, eventually, becomes drained of the stored electrical power. The foregoing action leads to more frequent charging of the battery, and reduces the utility and usability of the computer system.


To reduce battery drain under such circumstances, a power management technique was previously introduced for portable computers, called the “sleep” mode. Typically, portable computers based on the INTEL X86 CPU and associated chip set, referred to as “PC's”, include multiple sleep modes (e.g. states of sleep mode). The multiple sleep modes enable the portable computer, when left idle, to selectively power down the components and devices of the computer in stages, although the main power remains on. With the computer spending an increasing amount of time idling, the computer progresses through increasingly deeper and deeper stages of sleep mode (and hence, greater reductions in power consumption). One of the deepest of those modes is characterized by all of the devices, including the CPU, but excepting the main memory (RAM) and the Southbridge chip, being powered down. This latter mode is typically referred to as “Suspend to RAM” (“STR”) or as “Power-on-Suspend” (“POS”) or like terms. In the STR condition power consumption is dramatically reduced and offers the greatest power reduction short of that power reduction obtained by turning off every component of the computer, the latter being referred to as “suspend to disk”, essentially completely shutting down the computer.


The sleep modes in the PC are defined and controlled by the operating system software, such as familiar Windows 9X, Unix, Linux and the like, in conjunction with the system BIOS of the computer. When in STR, the Southbridge portion of the chip set, which is responsible for power management of the PC, continues to monitor the keyboard and mouse (and/or resume key) of the PC for any user activity, signifying an end to the computer idle condition.


When the user later returns to perform computing and observes the computer is in a sleep mode, the user operates a “resume” key (or any key of the keyboard) or the like. That action initiates a chain of events in the computer transparent to the user, that restores full power to the CPU; and the computer recovers quickly. Return from the upper stages of the sleep mode recovers more quickly than recovery from the STR stage, the deepest stage after the Suspend to Disk stage, the latter recovery procedure being referred to as a “resume from STR”.


Of particular convenience, the user may immediately resume computing at the precise location in any application program that was active in the computer at the time the computer entered the sleep mode. To reach that point from the STR stage of sleep mode, the CPU processes a number of steps of the “boot-up” routine for the computer; steps that typically occur in a manner transparent to the user. The computer is able to resume where it left off, because, prior to entering STR, the computer preserved the complete state of all software applications and of all components and devices, including the CPU, in a memory that remained powered up during the “sleep”.


For the power management technique of sleep mode, the CPU and the external memory (DRAM) are independently supplied with power, that is, are located in separate power domains. In the deepest sleep mode, STR, power is removed from the CPU (and other electronic components of the computer, such as the display), while maintaining the DRAM memory and the Southbridge chip under power. The application programs and the state of those application programs (e.g. the CPU “context”) is preserved by transferring the state information to the DRAM.


In processing operation, the CPU executes application programs by continuously modifying both its internal state and memory contents according to the instructions of the program. The internal CPU memory of the X86 system resides in the same power domain as the CPU. Thus, whenever the CPU is powered down, such as for an STR procedure, the internal memory is also powered down, and normally results in the loss of that CPU context. In order for the CPU of the X86 system to resume processing of an application program on Resume from STR, the processor must at that time at least “know” the state of the program on entering STR. Before entering STR, the CPU executes an instruction (of the power management software) that saves the CPU context at a well defined location in external memory, such as the DRAM memory. That context information subsumes the state of the operating system and the state of the application program. By maintaining power to the DRAM during STR, the state information of the program is preserved, and is available for use later upon a Resume from STR.


Once the resume button is pressed and is detected by the Southbridge chip, power is reapplied to the CPU, which commences its start-up routines. The CPU processes the normal boot-up routine stored in the ROM of the BIOS chip. That boot up procedure initializes the internal registers of the CPU and flushes its caches, thereby establishing a baseline state for the CPU. The process takes a noticeable time in which to complete. However, prior to loading the operating system, such as Windows 9x, the routine checks to determine if the boot-up procedure is a “power up reset” as occurs upon initially powering up the computer, or instead is a Resume from STR. When the routine detects the latter condition, the computer “knows” that the state of the operating system software, any application program, and the corresponding CPU context already resides in the external memory (DRAM). The CPU then completes the boot-up procedure by restoring the device states, and, with a special instruction, finally restores the CPU context from the external memory. Thereafter, the CPU is able to simply proceed with executing the next application program instruction exactly where the CPU left off when entering STR.


In a stage of sleep mode that lies one stage above the STR stage, the penultimate stage (e.g. the pre-STR stage) referred to as “deep sleep”, existing operating systems issue an instruction to remove the system clock from the CPU, but to maintain the CPU powered up, continuing to consume battery power. The removal of the system clock reduces power consumption also, but that is not as great a reduction as when power is removed from the CPU, such as during STR. Without clock signals being applied, the CPU is no longer able to process (as would consume additional current), but maintains system context in the associated internal registers of the CPU. That context is not lost and is not required to be saved to external memory as is the case in entering the STR stage. As an advantage, the invention powers down the CPU in all sleep modes and preserves the CPU context, saving additional power.


Accordingly, an object of the invention is to reduce the power consumption of a computer during periods in which the computer is idle, providing a more effective sleep mode.


Another object of the invention is to promote the pre-STR stage of sleep mode in existing power management systems to the STR stage, creating an “Instant STR”, and reduce the time required by the computer system to return from that stage, ideally providing a Resume from STR that appears instantaneous.


And, a related object of the invention is to replace on-the-fly a CPU context maintaining sleep mode of existing computer systems that is governed by the operating system with a substitute sleep mode that affords a lower power consumption and remains transparent to the software.


SUMMARY OF THE INVENTION

In accordance with the foregoing objects and advantages, the present invention provides for saving the internal context of the CPU (which includes the state of the application software) and powering down the CPU not only for an STR condition but for any pre-STR stage of sleep mode, and for restoring the state, including such internal context, on the Resume from STR condition, whereby the processor system is quickly restored for operation ready to execute the next instruction of the application program. With the invention, any stage of sleep mode can be promoted to an STR condition to completely power down the CPU in a manner that is transparent to the operating system.


When applied to directly to existing X86 applications and operating systems, the present invention intercepts (or converts) an instruction that calls for an X86 type computer system to enter a CPU context-maintaining sleep mode, a pre-STR stage of sleep mode, and “promotes” or converts that instruction into an instruction to enter the STR stage, and thereafter perform all of the actions described for entering STR. Whereas the X86 operating system of the CPU may “think” that the context of the application program has been saved in one way, the present system actually saves that program context and the CPU context in a different manner, transparent to the X86 operating system. When Resuming from STR, the context is restored, and the X86 operating system is none the wiser.


In accordance with a more specific aspect, the present invention provides a private memory within the processor system, a memory external to the CPU, that is accessible only to the CPU and is powered independently of the CPU to store the CPU context when the CPU is powered down in a sleep mode. The private memory may constitute a logical portion of the external memory, DRAM, in the X86 system, or may be physically separate therefrom or may constitute a logical partition of the CPU internal memory, such as a cache or subset of such cache. Like the existing DRAM, a key characteristic of the foregoing memory is that such memory is independently powered from the CPU core. In the Transmeta processing system, hereafter noted, that memory may be commandeered to serve as private memory for code morphing software (e.g. “CMS memory”). The power clown routine for sleep mode includes reading the internal CPU context from the internal memory of the CPU, caches and registers, and writing that context within the private memory. When powered up, either initially or on return from STR, the processor determines whether to perform a normal power up operation, called a power on reset, or a context-restoring operation.


On entering into the Instant STR condition, before concomitant powering down of the CPU of the computer, the CPU preserves the entire CPU context in the independently powered private external memory of the CPU. So long as the private memory remains powered up, the CPU context is preserved despite the fact that the CPU is powered down. Upon Resume from Instant STR to resume processing, power is restored to the CPU. During the boot-up process, the CPU detects that the condition is a resume from Instant STR and, in response, restores its entire internal state from the preserved CPU context located in the private memory. Thereafter the CPU may perform an internal resume to the instruction of the application program that follows the last completed instruction of that program.


As an advantage the CPU is able to automatically and transparently recover from a sleep mode that powers down the CPU and continue execution of any arbitrary computer program after lapses of arbitrary duration in the sleep mode without any assistance being required of the operating system, BIOS or the like.


The present invention is particularly adaptable to incorporation within and enhances a newly disclosed processor system that is found to already contain a private memory that is powered separately from the processor, but is used to store, among other things, only a part of the internal context of the CPU. That processor system is the very long instruction word (VLIW) processor described, for one, in U.S. Pat. No. 6,031,992, granted Feb. 29, 2000, entitled Combining Hardware and Software to provide an Improved Microprocessor, assigned to Transmeta Corporation, (referred to as the 992 Transmeta patent), which is incorporated herein by reference.


The processor of the 992 Transmeta patent is formed by a combination of a hardware processing portion (called a “morph host”), and an emulating software portion, referred to therein as code morphing software. Among other things, the code morphing software carries out a significant portion of the functions of processors in software, reducing the hardware required for processing and the greater electrical power that such hardware requires. The Transmeta processor serves as the host processor system capable of executing software programs (the “target application”) designed with an instruction set intended to run on a processor system of different design, the target processor, one that contains an instruction set unique to the target processor, but foreign to the host system, such as the X86 type processor.


That processor translates instructions that comprise a target software program “on-the-fly” into instructions of the host instruction set (the host instructions); and then executes the latter instructions. In so doing, the morph host processor executes the code morphing software which, functioning as either a software “interpreter” or “translator” of target application programs into host processor instructions, which are able to accomplish the purpose of the original application software. For translation, the code morphing software defines a translator, which converts the target instructions to host instructions, and a translation process that translates the target application programs dynamically and optimizes the latter host instructions to provide an optimized translation.


The foregoing Transmeta processing system, hereafter referred to as the Transmeta processor, necessarily keeps track of its state or CPU context during processing operation. It is found that the Transmeta processor places a considerable portion of its CPU context on memory external of the CPU, such as DRAM. Conceptually, that external memory is herein referred to as “private” CPU memory, because that memory is not visible to (and cannot be accessed by) external application programs; and only the code morphing software of the CPU is able to access the private memory. Further the CPU private memory resides in a different power domain than the CPU, and, therefore, may be powered up or down independently of the CPU. Consequently, the private memory is able to maintain a portion of the internal state of the CPU when the CPU is powered down.


Other portions of the CPU context are saved in memory (caches) internal to the CPU, apart from the private memory. Normally that portion of the CPU context (information) would disappear whenever the Transmeta processor is powered down. In accordance with the present invention, the entire CPU context of the Transmeta processor is stored in the private memory in the Instant STR process. Accordingly, a further object of the invention is to provide a portable computer constructed in accordance with the Transmeta processing system with an improved power saving sleep mode.


When powered up, either initially or on return from Instant STR, the processor determines whether it is to perform a normal power up operation (a power on reset) or a context-restoring operation. Traditional processors typically employ external circuitry to make that decision. The Transmeta processor deposits the corresponding persistent information in the private memory. The presence of that information in the private memory is called an “STR signature”.


As an advantage, the Transmeta CPU is able to automatically and transparently recover from a sleep mode in which the CPU is powered down and continue execution of any arbitrary application program, including target applications, after time lapses of arbitrary duration in the sleep mode without any assistance required of the application program. Upon resume from such a sleep mode, the Transmeta processor is able to continue with execution of a target application program. The Transmeta processor is capable of suspending arbitrary X86 computer programs to private memory (e.g. CMS memory) and automatically and transparently resume executing the next instruction of the program without any assistance of the target application.


The foregoing and additional objects and advantages of the invention together with the structure characteristic thereof, which was only briefly summarized in the foregoing passages, will become more apparent to those skilled in the art upon reading the detailed description of a preferred embodiment of the invention, which follows in this specification, taken together with the illustrations thereof presented in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a high-level block diagram of a digital processor which incorporates the invention;



FIG. 2 is a flow chart defining the operation of the processor of FIG. 1; and



FIG. 3 is a block diagram of a digital processor according to another embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is preferably implemented within the improved 992 Transmeta processor system earlier described, which implements software-enhanced execution (eg. dynamic translation), and is best explained in connection with that processor. The principal elements of that processing system as modified to incorporate the invention are symbolically illustrated in FIG. 1, to which reference is made. The processing system contains a computer processing unit (“CPU”) 1, a memory 3 for the X86 program, the target machine code that the processor is to translate, its data, and a memory 5 with the private runtime support for the computer, the latter memory herein referred to as private memory. Memory 3 may encompass the entire memory hierarchy, including disk, RAM, 2nd level cache and 1st level cache. ROM memory, which is used by the processor, is considered as being separate from the processor, and for purposes of this description is not considered as part of the memory hierarchy of the processor. The foregoing illustration also excludes the memory that is regarded as internal to the CPU (“internal” memory).


The foregoing architecture is recognized as different from the traditional processor systems, such as the X86 system, which does not contain memory 5. As represented by the power arrows P1, the private memory 5 resides in a separate power domain than CPU 1 (and memory 3). Hence, electrical power to each component of the system may be separately and independently controlled, more specifically, CPU 1 may be powered down, while private memory 5 remains powered.


During processing operation, the Transmeta CPU 1 keeps track of its state or context. Since the Transmeta computer “virtualizes” the target processor, such as the X86 processor system, the computer must also keep track of the state of the X86 processor system, possibly including part of the chipset and the target (X86) application program for that processor, which is being translated and executed by the code morphing software. Hence, the context of the Transmeta processor constitutes a super-set of and subsumes the state of the X86 processor system.


The context of the Transmeta processing system is reflected in the contents of the general purpose registers, including core special registers (“CSR's”), peripheral special registers (“PSR's”), and the Northbridge registers, the D-cache, the 1-cache, local program memory (“LPM”), and local data memory (“LDM”). Some of that con text is stored in private memory 5. However, the internal context of CPU 1 is stored in internal memory, represented in the clotted block 6 within CPU 1.


The Transmeta computer includes a start up procedure to initialize and configure (“set up”) the computer and begin processing, a procedure defined by software or in firmware, such as ROM code, which is included. That start-up procedure (“boot-up”) is initiated once power to the computer is switched on to apply power (P1, P2, and P3) to both the CPU 1 and memories 3 and 5, a “boot-up” procedure referred to as “power-on reset”.


The processor commences the start up procedure, as represented by operation 11 in FIG. 2 to which reference is made. Both the code morphing software and the CMS boot loader software of the Transmeta processing system are stored in compressed form in flash ROM (not illustrated) of the computer.


The CPU locates the CMS boot loader routine in the flash ROM and installs that routine in internal memory 6, as represented at block 13. As represented by operation 15, the CMS boot loader continues with configuring the cache, the private memory 5, and, possibly, the other memory.


At this juncture, and in accordance with the invention, the boot loader looks for an “STR signature”, operation 19, which is later described herein in greater detail in connection with a Resume from STR condition. However, since the initial power on reset of the computer is presently being described, the STR signature is not present, and the decision at decisional block 21 is negative. A discussion of the operation that occurs when the STR signature is found is reserved to a later point in this description. The normal power on reset process continues, represented at operation 23, with the boot loader program requiring CPU 1 to locate the compressed CMS in the flash ROM, decompress the CMS and load that software in the private memory 5 where stored for use in processing. Depending upon the design of the computer, the program may also set up a debugging environment for the processor, prior to decompressing the code morphing software.


Once stored in private memory 5, the boot loader routine “jumps” into the code morphing software at its “reset” vector in private memory 5, as represented at block 25 and begins executing (e.g. starts) the CMS. On starting, the CMS resets the CPU registers and establishes the CPU context, as represented by block 27A, configures other memory, block 27B, and then commences normal processing, the details of which are not relevant or material to the present invention.


Continuing with right side of FIG. 2, during normal processor operation, which in accordance with the present invention includes the sleep mode, the power management sub-routine of the BIOS or operating system periodically checks for activity on the processor keyboard and other user input devices, and, as represented by block 10, checks to determine if instructions of an application program are being executed by the processor. The routine also records and stores the time of the last such activity and compares that time to the time of the present check to determine if the interval is greater than a predetermined time, Tmax, represented by decisional block 12. If not, the determination is negative and normal processing activity of the processor continues, as represented at block 14, including periodically repeating the activity check operation indicated by the dotted line to block 10.


Should the period of inactivity continue until the comparison determination results in an interval of greater than Tmax, a flag is set, represented by an affirmative decision at block 12. On finding that flag, the CPU program branches from the main routine to retrieve and execute the Instant STR routine, as represented at block 16


An initial step in the Instant STR routine is to retrieve the part of the CPU context and Northbridge registers that is stored in the CPU's internal memory, and save that context in private memory 5. As represented at block 18, the foregoing state information is stored in the private memory along with the normal X86 execution state information, which the Transmeta processor normally saves in that memory.


Thereafter, the processor initiates the chipset to shut down power to CPU 1 (and other components of the processor), excepting the private memory 5, after a defined short time interval and sets the STR signature, as represented by operation 20. The chipset withdraws the power P1 to the CPU, which ceases operation at this point. Any information in the internal memories of the CPU disappears. Since private memory 5 remains powered up, that is, P2 (FIG. 1) continues, the entire context information is preserved. At this stage the CMS of the Transmeta processor is retained private memory 5.


While shutting down (i.e. before removing the power), CMS detects the Instant STR event and sets a corresponding flag (e.g. the “STR signature”) in non-volatile memory. This enables the code morphing software to detect the Instant STR condition upon a power-on-reset, as later herein described. The foregoing flag may be implemented by writing the STR signature into private memory 5 Concurrently additional hardware, such as the Southbridge chip, serves to monitor the user input device 7 (FIG. 1) represented at block 24. If a negative determination is made, the checking continues as indicated at decisional block 26. If, however, any user activity is detected, such as the user's manipulation of any user input device 7, such as keyboard or mouse or the like, then an affirmative determination is made at decisional operation 26 and the computer initiates the operation, represented at block 28 to restore power to the CPU and execute the power up sequence. The latter operation returns the flow to operational block 11, which was earlier described.


The sequence of operation proceeds through the operations represented by operational blocks 13, 15 and 19, earlier described and not here repeated. When the boot loader checks for an STR signature this time as represented at block 19, an affirmative determination is made at decisional block 21. The processor clears the STR signature, 30, skips decompressing CMS as the software resides in the private memory, and, as represented in block 32 directly jumps into the CMS “resume from STR” routine vector in private memory 5. The CMS commences by restoring the internal CPU context and Northbridge registers from the private memory into the appropriate registers of the CPU as represented at operation 34 and configures other memory 36. With internal CPU context restored, all memories configured, and program state present in the private memory, the processor is restored to the state existing at the time of initiation of the sleep mode procedure at which juncture the processor may then retrieve the next instruction of the X86 target application for execution, as represented at block 38. As one appreciates, the foregoing method completes rapidly.


An alternative embodiment of the sleep mode invention would employ faster memory still, but would require modification to the structure of the Transmeta computer. Specifically, where it is practicable to modify the integrated circuit chip that contains the processor of the Transmeta computer so as to permit the on-chip caches to be powered up or down separately from the remaining elements of the processor, then it is possible to retain the internal context of the CPU within the processor during the sleep mode, avoiding the necessity for transferring the internal context to the private memory and back again during resume from the Instant STR procedure. Such a configuration is illustrated in FIG. 3, in which the internal memory and cache 8 are powered by power domain P4, separate from the power domain P1 of the other CPU elements. In as much as the memory employed for cache application is typically the fastest memory available, and the location is physically closer to the principal elements of the processor, propagation time is reduced. Further, the processing time to transfer the information is eliminated. In this embodiment, the memory serves both the function of cache and of the private memory found in the initial embodiment, earlier described.


The foregoing invention may be incorporated within target processing systems that currently employ a sleep mode, such as the X86 system, but requires some modification to the target system's operating software. Since a memory of the X86 system is already powered separately from the CPU of the processing system and for sleep mode operation that memory is already used to store the state of the operating system and the application program, an extra portion of that external memory may be used to also store the internal context of the X86 CPU.


Assume two levels of “sleep” for the X86 type computer: A first level in which the central processing unit (CPU) of the processor maintains the CPU context and a second level, more deep than the first, in which the context of the CPU is not maintained. In the first level, the Southbridge circuit of the processor shuts off (sic “kills”) the input clocks to the CPU, but maintains power to the CPU. The BIOS and operating system (“OS”) of the computer typically uses the the second level, the Southbridge circuit kills the CPU input clocks, as before, and then also removes electrical power to the CPU and other devices of the processor. As a result of the removal of electrical power, the context information of the CPU state is lost. The BIOS and OS of the computer uses this second state less frequently than the first because the state is high overhead.


The present invention permits transparent power cycling of the CPU, turning the CPU off and then turning the CPU on, repeatedly at will, with low overhead (e.g. virtually maintaining the CPU context). Two embodiments of the invention are thus possible. The invention may replace the STR process found in the X86 processor system. In such an embodiment, the resume process restores the processor more quickly than the existing STR procedure although no savings is made in power consumption.


In a preferred embodiment, the invention replaces the CPU context-maintaining sleep state of the X86 system (e.g. “deep sleep” which is the deepest CPU context maintaining sleep mode) and the invention “tricks” the BIOS and/or OS to “think” that the CPU is placed in the sleep mode, deep sleep, when, in fact, once the BIOS and OS initiates the “deep sleep” action, all electrical power is removed from the CPU and the CPU enters the Instant STR condition. The advantage is that less power is consumed over time than when the CPU is placed in sleep mode. And with the benefit of the very rapid resume from STR action available with the invention the computer user never knows that the CPU had been turned off.


The foregoing second embodiment is possible of accomplishment in two different species. In the first specie of the preferred embodiment the code morphing software of the Transmeta processor intercepts the command issued by the operating system, such as Windows 9X, to shut down the CPU clock input to the CPU. Then the code morphing software issues a command to power down the CPU completely, that is, disable the CPU clock input and also remove electrical power from the CPU. Thus while the operating system “thinks” that the CPU remains powered, in fact, the CPU is completely powered down. In that sense the action is transparent to the X86 OS software and to the BIOS. In existing computers the context of the CPU is lost in this power saving mode. In the present invention the CPU context is saved in private memory 5.


The second species of the preferred embodiment requires the BIOS and/or the OS software to be modified to explicitly invoke an Instant STR operation. It may not be possible to accomplish this in computers that use a “closed” operating system, such as WINDOWS 9X, that can only be modified by the copyright owner, but can be readily accomplished in “open” operating systems, such as the familiar LINUX operating system. In new generations of BIOS and OS software, such a command may be easily incorporated, if timely suggested to the designers of such software.


By powering down the CPU additional power savings may be achieved when the computer is left idle. In the case of present CPU's operating at 600 MHz, the power saving is about sixty milliwatts. That savings would increase for computers in the future that contain future versions of CPU's containing process technology advances that typically allow higher operating frequencies, but result in greater power consumption in sleep mode.


It is believed that the foregoing description of the preferred embodiments of the invention is sufficient in detail to enable one skilled in the art to make and use the invention. However, it is expressly understood that the detail of the elements presented for the foregoing purpose is not intended to limit the scope of the invention, in as much as equivalents to those elements and other modifications thereof, all of which come within the scope of the invention, will become apparent to those skilled in the art upon reading this specification. Thus, the invention is to be broadly construed within the full scope of the appended claims.

Claims
  • 1. A method of operating a processor having one or more registers and running a program comprising a first instruction and a next instruction from a first instruction set, said method comprising: executing said first instruction;in response to said executing, (i) saving the register context of said registers without executing any instructions from said first instruction set; and (ii) removing power from said processor after said saving;returning power to said processor after said removing;after said returning, restoring said saved register context without executing any instructions from said first instruction set; andresuming said running of said program with said next instruction.
  • 2. The method of claim 1 wherein said saving is performed by an instruction sequence chosen from a second instruction set.
  • 3. The method of claim 2 wherein said restoring is performed by a second instruction sequence chosen from said second instruction set.
  • 4. The method of claim 3 wherein said first instruction set comprises an x86 instruction set.
  • 5. The method of claim 1 wherein said program accesses a first memory and said saving accesses a second memory not accessible by said program.
  • 6. The method of claim 1 wherein said second memory is powered independently of said processor.
  • 7. The method of claim 1 further comprising setting a flag in response to said removing power.
  • 8. The method of claim 1 further comprising: intercepting a command to shut down the clock input to said processor; andin response to said command, disabling said clock input and removing said power from said processor.
  • 9. The method of claim 1 where said removing power comprises removing sufficient power to lose said register context.
  • 10. The method of claim 9 wherein said step of removing sufficient power comprises removing all power.
  • 11. The method of claim 1 wherein said saving comprises storing said register context in a memory.
  • 12. The method of claim 11 wherein said memory and said registers retain state independently of each other.
  • 13. The method of claim 11 wherein said memory is powered independently of said processor.
  • 14. The method of claim 11 wherein said memory and said registers are in separate power domains.
  • 15. The method of claim 11 wherein said memory is not addressable by said first instruction set.
  • 16. The method of claim 11 wherein said memory is not accessible by any instruction from said first instruction set.
  • 17. The method of claim 11 wherein said memory is not visible to any instruction from said first instruction set.
  • 18. The method of claim 11 wherein said memory is private with respect to said first instruction set.
  • 19. The method of claim 11 wherein said memory is internal to said processor.
  • 20. The method of claim 19 wherein said processor is on an integrated circuit and said memory is on said integrated circuit.
  • 21. The method of claim 11 wherein said memory is external to said processor.
  • 22. The method of claim 1 wherein said first instruction set comprises an x86 instruction set.
  • 23. The method of claim 1 wherein instructions from said first instruction set may be executed in a plurality of modes.
  • 24. The method of claim 23 wherein said plurality of modes comprises a real mode and a protected mode.
  • 25. The method of claim 23 wherein said plurality of modes comprises a privileged mode and a non-privileged mode.
  • 26. The method of claim 23 wherein said first instruction set comprises an x86 instruction set and said plurality of modes comprises a real mode, a protected mode and a system management mode.
  • 27. The method of claim 1 wherein said processor has additional context, and said method further comprises: before said removing power, saving at least a portion of said additional context without executing any additional instructions from said first instruction set; andafter said returning power, restoring said saved portion without executing any additional instructions from said first instruction set.
  • 28. The method of claim 27 wherein said portion is in system component registers.
  • 29. The method of claim 28 wherein said system component registers comprise Northbridge registers.
  • 30. The method of claim 27 wherein said portion is in a cache.
  • 31. The method of claim 27 wherein said portion comprises at least a part of the internal state of said processor.
  • 32. The method of claim 1 wherein said saving comprises executing microcode.
  • 33. The method of claim 1 wherein said running comprises interpreting instructions from said first instruction set.
  • 34. The method of claim 33 wherein said running comprises translating instructions from said first instruction set.
  • 35. A computer system comprising: a central processing unit (CPU) comprising a first memory accessible only to said CPU; anda second memory coupled to said CPU, said memory unit containing instructions that when executed implement a computer-implemented method of operating said processor, said method comprising: executing a first instruction of a first instruction set of a program to place said processor into a state;saving said state without executing any instructions from said first instruction set;removing power from said processor after said saving;returning power to said processor after said removing;after said returning, restoring said state without executing any instructions from said first instruction set; andresuming said running of said program with a next instruction of said first instruction set.
  • 36. The computer system of claim 35 wherein said saving is performed by an instruction sequence chosen from a second instruction set.
  • 37. The computer system of claim 36 wherein said restoring is performed by a second instruction sequence chosen from said second instruction set.
  • 38. The computer system of claim 37 wherein said first instruction set comprises an x86 instruction set.
  • 39. The computer system of claim 35 wherein said program accesses a first memory and said saving accesses a second memory not accessible by said program.
  • 40. The computer system of claim 35 wherein said second memory is powered independently of said processor.
  • 41. The computer system of claim 35 wherein said method further comprises setting a flag in response to said removing power.
  • 42. A computer-readable medium embodying instructions that cause a computer to perform a method of operating a processor running a program comprising a first instruction and a next instruction from a first instruction set, said method comprising: executing said first instruction to place said processor into a state;saving said state without executing any instructions from said first instruction set;removing power from said processor after said saving;returning power to said processor after said removing;after said returning, restoring said state without executing any instructions from said first instruction set; andresuming said running of said program with said next instruction.
  • 43. The computer-readable medium of claim 42 wherein said saving is performed by an instruction sequence chosen from a second instruction set.
  • 44. The computer-readable medium of claim 43 wherein said restoring is performed by a second instruction sequence chosen from said second instruction set.
  • 45. The computer-readable medium of claim 44 wherein said first instruction set comprises an x86 instruction set.
  • 46. The computer-readable medium of claim 42 wherein said program accesses a first memory and said saving accesses a second memory not accessible by said program.
  • 47. A method of operating a CPU including one or more registers and running a program comprising a first instruction from a first instruction set, said method comprising: executing said first instruction;in response to said executing, (i) saving the state of said registers without executing any additional instructions from said first instruction set; and (ii) initiating an action that may cause the state of said registers to become undefined; andrestoring said saved state of said registers without executing any additional instructions from said first instruction set.
  • 48. The method of claim 47 wherein said CPU has additional context, and said method further comprises: in response to said executing, saving at least a portion of said additional context without executing any additional instructions from said first instruction set; andrestoring said saved portion without executing any additional instructions from said first instruction set.
  • 49. The method of claim 48 wherein said portion is in system component registers.
  • 50. The method of claim 49 wherein said system component registers comprise Northbridge registers.
  • 51. The method of claim 48 wherein said portion is in a cache.
  • 52. The method of claim 48 wherein said portion comprises at least a part of the internal state of said CPU.
  • 53. The method of claim 48 wherein said portion comprises a register context.
  • 54. The method of claim 47 wherein said action comprises powering down said CPU.
  • 55. The method of claim 47 wherein said action comprises removing sufficient power from said CPU such that said state may become undefined.
  • 56. The method of claim 55 wherein said step of removing sufficient power comprises removing all power.
  • 57. The method of claim 47 wherein said action comprises turning off power to said CPU.
  • 58. The method of claim 47 wherein said program has a second instruction from said first instruction set, said method comprising: after said restoring, continuing said running of said program with said second instruction wherein said second instruction programmatically follows said first instruction.
  • 59. The method of claim 47 wherein said program has a second instruction from said first instruction set, said method comprising: after said restoring, continuing said running of said program with said second instruction wherein said second instruction is the next instruction of said program after said first instruction.
  • 60. The method of claim 47 wherein said saving comprises storing said state in a memory.
  • 61. The method of claim 60 wherein said memory and said registers retain state independently of each other.
  • 62. The method of claim 60 wherein said memory is powered independently of said registers.
  • 63. The method of claim 60 wherein said memory and said registers are in separate power domains.
  • 64. The method of claim 60 wherein said memory is not addressable by said first instruction set.
  • 65. The method of claim 60 wherein said memory is not accessible by any instruction from said first instruction set.
  • 66. The method of claim 60 wherein said memory is not visible to any instruction from said first instruction set.
  • 67. The method of claim 60 wherein said memory is private with respect to said first instruction set.
  • 68. The method of claim 60 wherein said memory is internal to said CPU.
  • 69. The method of claim 68 wherein said CPU is on an integrated circuit and said memory is on said integrated circuit.
  • 70. The method of claim 60 wherein said memory is external to said CPU.
  • 71. The method of claim 47 wherein said first instruction set is an x86 instruction set.
  • 72. The method of claim 47 wherein instructions from said first instruction set may be executed in a plurality of modes.
  • 73. The method of claim 72 wherein said plurality of modes comprises a real mode and a protected mode.
  • 74. The method of claim 72 wherein said first instruction set comprises an x86 instruction set and said plurality of modes comprises a real mode, a protected mode and a system management mode.
  • 75. The method of claim 72 wherein said plurality of modes comprises a privileged mode and a non-privileged mode.
  • 76. The method of claim 47 wherein said saving comprises executing instructions from a second instruction set.
  • 77. The method of claim 47 wherein said saving comprises executing microcode.
  • 78. The method of claim 47 wherein said running comprises interpreting instructions from said first instruction set.
  • 79. The method of claim 78 wherein said running comprising translating instructions from said first instruction set.
  • 80. The method of claim 47 wherein said saving comprises interpreting said first instruction.
  • 81. The method of claim 47 wherein said restoring comprises executing instructions from a second instruction set.
  • 82. The method of claim 47 wherein said restoring comprises executing microcode.
  • 83. The method of claim 47 wherein said saving comprises setting a flag and said restoring comprises checking said flag.
  • 84. The method of claim 83 wherein said flag comprises a signature.
  • 85. A method of operating a CPU including one or more registers and running a program comprising a first instruction from a first instruction set, said method comprising: executing said first instruction;in response to said executing, saving the state of said registers without executing any additional instructions from said first instruction set; andrestoring said saved state of said registers without executing any additional instructions from said first instruction set if power to the CPU has been lost.
  • 86. The method of claim 85 wherein said CPU has additional context, and said method further comprises: in response to said executing, saving at least a portion of said additional context in a memory without executing any additional instructions from said first instruction set; andrestoring said saved portion without executing any additional instructions from said first instruction set.
  • 87. The method of claim 86 wherein said portion is in system component registers.
  • 88. The method of claim 87 wherein said system component registers comprise Northbridge registers.
  • 89. The method of claim 86 wherein said portion is in a cache.
  • 90. The method of claim 86 wherein said portion comprises at least a part of the internal state of said CPU.
  • 91. A method of operating a CPU including one or more registers and running a program comprising a first instruction from a first instruction set, said method comprising: executing said first instruction;in response to said executing, (i) saving the state of said registers without executing any additional instructions from said first instruction set; and (ii) stopping further execution of instructions; andrestoring said state of said registers without executing any additional instructions from said first instruction set.
  • 92. The method of claim 91 wherein said CPU has additional context, and said method further comprises: in response to said executing, saving at least a portion of said additional context in a memory without executing any additional instructions from said first instruction set; andrestoring said saved portion without executing any additional instructions from said first instruction set.
  • 93. The method of claim 92 wherein said portion is in system component registers.
  • 94. The method of claim 93 wherein said system component registers comprise Northbridge registers.
  • 95. The method of claim 92 wherein said portion is in a cache.
  • 96. The method of claim 92 wherein said portion comprises at least a part of the internal state of said CPU.
  • 97. A method of operating a processor and one or more system components, said processor having registers and running a program comprising a first instruction from a first instruction set, said method comprising: executing said first instruction;in response to said executing, (i) saving the states of said registers and said system components, without executing any additional instructions from said first instruction set; and (ii) initiating an action that may cause the state of said registers or the state of said system components to become undefined; andrestoring said saved state of said registers and said system components without executing any additional instructions from said first instruction set.
  • 98. The method of claim 97 wherein said processor is on an integrated circuit and said system components are on said integrated circuit.
  • 99. The method of claim 97 wherein said system components comprise a Northbridge.
  • 100. The method of claim 97 wherein said CPU has additional context, and said method further comprises: in response to said executing, saving at least a portion of said additional context in a memory without executing any additional instructions from said first instruction set; andrestoring said saved portion without executing any additional instructions from said first instruction set.
  • 101. The method of claim 100 wherein said portion is in a cache.
  • 102. The method of claim 100 wherein said portion comprises at least a part of the internal state of said CPU.
  • 103. A CPU for executing instructions from a first instruction set, said CPU comprising: one or more registers holding a state; whereinsaid CPU is adapted, upon executing a first instruction from said first instruction set, (i) to save said state in a memory without executing any additional instructions from said first instruction set; and (ii) to initiate an action that may cause the state of said registers to become undefined; andsaid CPU is adapted, in response to an event, to restore the saved state of said registers from said memory without executing any additional instructions from said first instruction set.
  • 104. The CPU of claim 103, wherein said CPU is further adapted, after restoring said state, to execute a second instruction from said first instruction set where said second instruction programmatically follows said first instruction.
  • 105. The CPU of claim 103, wherein said CPU is further adapted, after restoring said state, to execute a second instruction where said second instruction is the next instruction in said first instruction set to be executed after said first instruction.
  • 106. The CPU of claim 103 wherein said action comprises powering down said CPU.
  • 107. The CPU of claim 103 wherein said action comprises removing sufficient power from said CPU such that said state may become undefined.
  • 108. The CPU of claim 107 wherein said removing sufficient power comprises removing all power.
  • 109. The CPU of claim 103 wherein said action comprises turning off power to said CPU.
  • 110. The CPU of claim 103 wherein said event comprises detection of activity.
  • 111. The CPU of claim 103 wherein said event comprises restoration of power to said CPU.
  • 112. The CPU of claim 111 wherein said restoration of power comprises restoration of full power.
  • 113. The CPU of claim 103 wherein said memory is not visible to instructions from said first instruction set.
  • 114. The CPU of claim 103 wherein said memory is not addressable by said first instruction set.
  • 115. The CPU of claim 103 wherein said memory is not accessible by instructions from said first instruction set.
  • 116. The CPU of claim 103 wherein said memory is private with respect to said first instruction set.
  • 117. The CPU of claim 103 wherein said memory and said registers retain state independently of each other.
  • 118. The CPU of claim 103 wherein said memory is powered independently of said registers.
  • 119. The CPU of claim 103 wherein said memory and said registers are in separate power domains.
  • 120. The CPU of claim 103 wherein said memory is internal to said CPU.
  • 121. The CPU of claim 120 wherein said CPU is on an integrated circuit and said memory is on said integrated circuit.
  • 122. The CPU of claim 103 wherein said memory is external to said CPU.
  • 123. The CPU of claim 103 wherein said first instruction set is an x86 instruction set.
  • 124. The CPU of claim 103 wherein instructions from said first instruction set may be executed in a plurality of modes.
  • 125. The CPU of claim 124 wherein said plurality of modes comprises a real mode and a protected mode.
  • 126. The CPU of claim 124 wherein said first instruction set comprises an x86 instruction set and said plurality of modes comprises a real mode, a protected mode and a system management mode.
  • 127. The CPU of claim 124 wherein said plurality of modes comprises a privileged mode and a non-privileged mode.
  • 128. The CPU of claim 103 wherein said adaptation to save comprises an adaptation to execute instructions from a second instruction set.
  • 129. The CPU of claim 103 wherein said adaptation to save comprises an adaptation to execute microcode.
  • 130. The CPU of claim 103 wherein said CPU is adapted to interpret instructions from said first instruction set.
  • 131. The CPU of claim 130 wherein said CPU is adapted to translate instructions from said first instruction set.
  • 132. The CPU of claim 103 wherein said adaptation to save comprises interpreting said first instruction.
  • 133. The CPU of claim 103 wherein said adaptation to restore comprises an adaptation to execute instructions from a second instruction set.
  • 134. The CPU of claim 103 wherein said adaptation to restore comprises an adaptation to execute microcode.
  • 135. The CPU of claim 103, further comprising: a flag;wherein said adaptation to save further comprises an adaptation to set said flag; and said adaptation to restore comprises checking said flag.
  • 136. The CPU of claim 135 wherein said flag comprises a signature.
  • 137. The CPU of claim 103 wherein CPU has additional context, and said CPU further comprises: said executing adaptation is further adapted to save at least a portion of said additional context without executing any additional instructions from said first instruction set; andsaid CPU is adapted, in response to said event to restore said saved portion without executing any additional instructions from said first instruction set.
  • 138. The CPU of claim 137 wherein said portion is in system component registers.
  • 139. The CPU of claim 138 wherein said system component registers comprise Northbridge registers.
  • 140. The CPU of claim 137 wherein said portion is in a cache.
  • 141. The CPU of claim 137 wherein said portion comprises at least a part of the internal state of said CPU.
  • 142. A method of operating a CPU running a program comprising a first instruction from a first instruction set and having one or more registers holding program counter information, said method comprising: executing said first instruction;in response to said executing, (i) saving the program counter information without executing any additional instructions from said first instruction set; and (ii) initiating an action that may cause said program counter information to become undefined; andrestoring said saved program counter information without executing any additional instructions from said first instruction set.
  • 143. The method of claim 142 wherein said CPU has additional context, and said method further comprises: in response to said executing, saving at least a portion of said additional context in a memory without executing any additional instructions from said first instruction set; andrestoring said saved portion without executing any additional instructions from said first instruction set.
  • 144. The method of claim 143 wherein said portion is in additional CPU registers.
  • 145. The method of claim 143 wherein said portion is in system component registers.
  • 146. The method of claim 145 wherein said system component registers comprise Northbridge registers.
  • 147. The method of claim 143 wherein said portion is in a cache.
  • 148. The method of claim 143 wherein said portion comprises at least a part of the internal state of said CPU.
  • 149. The method of claim 143 wherein said portion comprises a register context.
  • 150. A CPU for executing instructions from a first instruction set, said CPU comprising: one or more registers holding program counter information; whereinsaid CPU is adapted, upon executing a first instruction from said first instruction set, (i) to save the program counter information without executing any additional instructions from said first instruction set; and (ii) to initiate an action that may cause said program counter information to become undefined; andsaid CPU is adapted, in response to an event, to restore said saved program counter information without executing any additional instructions from said first instruction set.
  • 151. The CPU of claim 150 wherein CPU has additional context, and said CPU further comprises: said executing adaptation is further adapted to save at least a portion of said additional context without executing any additional instructions from said first instruction set; andsaid CPU is adapted, in response to said event to restore said saved portion without executing any additional instructions from said first instruction set.
  • 152. The CPU of claim 151 wherein said portion is in additional CPU registers.
  • 153. The method of claim 151 wherein said portion is in system component registers.
  • 154. The method of claim 153 wherein said system component registers comprise Northbridge registers.
  • 155. The CPU of claim 151 wherein said portion is in a cache.
  • 156. The CPU of claim 151 wherein said portion comprises at least a part of the internal state of said CPU.
  • 157. The CPU of claim 151 wherein said portion comprises a register context.
Parent Case Info

This application is a continuation application of the U.S. patent application Ser. No. 09/595,198, filed Jun. 16, 2000, by Fleischmann et al., now U.S. Pat. No. 6,968,469 and entitled “Instant Suspend to RAM,” hereby incorporated by reference in its entirety.

US Referenced Citations (304)
Number Name Date Kind
3863228 Taylor Jan 1975 A
4245302 Amdahl Jan 1981 A
4409665 Tubbs Oct 1983 A
4458316 Fry et al. Jul 1984 A
4467411 Fry et al. Aug 1984 A
4481573 Fukunaga et al. Nov 1984 A
4523206 Sasscer Jun 1985 A
4530050 Fukunaga et al. Jul 1985 A
4590549 Burrage et al. May 1986 A
4598402 Matsumoto et al. Jul 1986 A
4607331 Goodrich, Jr. et al. Aug 1986 A
4720811 Yamaguchi et al. Jan 1988 A
4763333 Byrd Aug 1988 A
4825412 Sager et al. Apr 1989 A
4833347 Rabe May 1989 A
4875160 Brown, III Oct 1989 A
4896257 Ikeda et al. Jan 1990 A
4907150 Arroyo et al. Mar 1990 A
4912628 Briggs Mar 1990 A
4914577 Stewart et al. Apr 1990 A
4928225 McCarthy et al. May 1990 A
4937473 Statz et al. Jun 1990 A
4937789 Matsubara Jun 1990 A
4954942 Masuda et al. Sep 1990 A
4992934 Portanova et al. Feb 1991 A
5021950 Nishikawa Jun 1991 A
5041964 Cole et al. Aug 1991 A
5086501 DeLuca et al. Feb 1992 A
5097409 Schwartz et al. Mar 1992 A
5138708 Vosbury Aug 1992 A
5142672 Johnson et al. Aug 1992 A
5142684 Perry et al. Aug 1992 A
5163153 Cole et al. Nov 1992 A
5167024 Smith et al. Nov 1992 A
5175853 Kardach et al. Dec 1992 A
5197144 Edenfield et al. Mar 1993 A
5201059 Nguyen Apr 1993 A
5204863 Saint-Joigny et al. Apr 1993 A
5204963 Noya et al. Apr 1993 A
5218704 Watts, Jr. et al. Jun 1993 A
5222239 Rosch Jun 1993 A
5230055 Katz et al. Jul 1993 A
5239646 Kimura Aug 1993 A
5239652 Seibert et al. Aug 1993 A
5247628 Grohoski Sep 1993 A
5247648 Watkins et al. Sep 1993 A
5257223 Dervisoglu Oct 1993 A
5274815 Trissel et al. Dec 1993 A
5276888 Kardach et al. Jan 1994 A
5280592 Ryba et al. Jan 1994 A
5282274 Liu Jan 1994 A
5291604 Kardach et al. Mar 1994 A
5317720 Stamm et al. May 1994 A
5321845 Sawase et al. Jun 1994 A
5327566 Forsyth Jul 1994 A
5337285 Ware et al. Aug 1994 A
5349658 O'Rourke et al. Sep 1994 A
5355468 Jeppesen, III et al. Oct 1994 A
5361340 Kelly et al. Nov 1994 A
5410658 Sawase et al. Apr 1995 A
5410665 Molnar Apr 1995 A
5410713 White et al. Apr 1995 A
5422806 Chen et al. Jun 1995 A
5437017 Moore et al. Jul 1995 A
5440520 Schutz et al. Aug 1995 A
5442766 Chu et al. Aug 1995 A
5455834 Chang et al. Oct 1995 A
5461266 Koreeda et al. Oct 1995 A
5463767 Joichi et al. Oct 1995 A
5465337 Kong Nov 1995 A
5467473 Kahle et al. Nov 1995 A
5473767 Kardach et al. Dec 1995 A
5481685 Nguyen et al. Jan 1996 A
5481719 Ackerman et al. Jan 1996 A
5493660 DeLano et al. Feb 1996 A
5497494 Combs et al. Mar 1996 A
5502838 Kikinis Mar 1996 A
5507030 Sites Apr 1996 A
5511203 Wisor et al. Apr 1996 A
5517615 Sefidvash et al. May 1996 A
5526510 Akkary et al. Jun 1996 A
5528127 Streit Jun 1996 A
5528755 Beardsley et al. Jun 1996 A
5532958 Jiang et al. Jul 1996 A
5537559 Kane et al. Jul 1996 A
5539885 Ono et al. Jul 1996 A
5542059 Blomgren Jul 1996 A
5546552 Coon et al. Aug 1996 A
5553255 Jain et al. Sep 1996 A
5560020 Nakatani et al. Sep 1996 A
5561814 Glew et al. Oct 1996 A
5563839 Herdt et al. Oct 1996 A
5564014 Yamashita et al. Oct 1996 A
5564018 Flores et al. Oct 1996 A
5564104 Pourfarzaneh Oct 1996 A
5564111 Glew et al. Oct 1996 A
5566298 Boggs et al. Oct 1996 A
5568614 Mendelson et al. Oct 1996 A
5572719 Biesterfeldt Nov 1996 A
5574922 James Nov 1996 A
5574927 Scantlin Nov 1996 A
5577231 Scalzi et al. Nov 1996 A
5581198 Trimberger Dec 1996 A
5581722 Welland Dec 1996 A
5592173 Lau et al. Jan 1997 A
5598546 Blomgren Jan 1997 A
5598560 Benson Jan 1997 A
5600588 Kawashima Feb 1997 A
5604753 Bauer et al. Feb 1997 A
5613083 Glew et al. Mar 1997 A
5613090 Willems Mar 1997 A
5615162 Houston Mar 1997 A
5615327 Magee et al. Mar 1997 A
5617572 Pearce et al. Apr 1997 A
5623628 Brayton et al. Apr 1997 A
5625835 Ebcioglu et al. Apr 1997 A
5628001 Cepuran May 1997 A
5630110 Mote, Jr. May 1997 A
5630143 Maher et al. May 1997 A
5632037 Maher et al. May 1997 A
5634131 Matter et al. May 1997 A
5638525 Hammond et al. Jun 1997 A
5644742 Shen et al. Jul 1997 A
5652890 Foster et al. Jul 1997 A
5657483 Kardach et al. Aug 1997 A
5671229 Harari et al. Sep 1997 A
5675808 Gulick et al. Oct 1997 A
5682093 Kivela Oct 1997 A
5682345 Roohparvar et al. Oct 1997 A
5682351 Han Oct 1997 A
5682471 Billings et al. Oct 1997 A
5687114 Khan Nov 1997 A
5692204 Rawson et al. Nov 1997 A
5701493 Jaggar Dec 1997 A
5701783 Lin Dec 1997 A
5704040 Gunji Dec 1997 A
5710929 Fung Jan 1998 A
5713030 Evoy Jan 1998 A
5717319 Jokinen Feb 1998 A
5719800 Mittal et al. Feb 1998 A
5721927 Baraz et al. Feb 1998 A
5726901 Brown Mar 1998 A
5727208 Brown Mar 1998 A
5732243 McMahan Mar 1998 A
5737615 Tetrick Apr 1998 A
5740391 Hunt Apr 1998 A
5740416 McMahan Apr 1998 A
5745375 Reinhardt et al. Apr 1998 A
5751982 Morley May 1998 A
5752011 Thomas et al. May 1998 A
5752074 Gallup et al. May 1998 A
5754869 Holzhammer et al. May 1998 A
5757171 Babcock May 1998 A
5760636 Noble et al. Jun 1998 A
5761518 Boehling et al. Jun 1998 A
5765001 Clark et al. Jun 1998 A
5765004 Foster et al. Jun 1998 A
5768567 Klein et al. Jun 1998 A
5774703 Weiss et al. Jun 1998 A
5778237 Yamamoto et al. Jul 1998 A
5787294 Evoy Jul 1998 A
5790825 Traut Aug 1998 A
5792970 Mizobata Aug 1998 A
5799188 Manikundalam et al. Aug 1998 A
5799200 Brant et al. Aug 1998 A
5805490 Machida Sep 1998 A
5812860 Horden et al. Sep 1998 A
5815724 Mates Sep 1998 A
5825674 Jackson Oct 1998 A
5828861 Miyayama et al. Oct 1998 A
5832205 Kelly et al. Nov 1998 A
5832284 Michail et al. Nov 1998 A
5835951 McMahan Nov 1998 A
5835967 McMahan Nov 1998 A
5838948 Bunza Nov 1998 A
5842029 Conary et al. Nov 1998 A
5844422 Trimberger et al. Dec 1998 A
5848281 Smalley et al. Dec 1998 A
5852737 Bikowsky Dec 1998 A
5864659 Kini Jan 1999 A
5875340 Quarnstrom et al. Feb 1999 A
5878264 Ebrahim Mar 1999 A
5884049 Atkinson Mar 1999 A
5887152 Tran Mar 1999 A
5894577 MacDonald et al. Apr 1999 A
5898880 Ryu Apr 1999 A
5903766 Walker et al. May 1999 A
5913067 Klein Jun 1999 A
5914996 Huang Jun 1999 A
5915262 Bridgers et al. Jun 1999 A
5919262 Kikinis et al. Jul 1999 A
5923545 Nguyen Jul 1999 A
5930832 Heaslip et al. Jul 1999 A
5933649 Lim et al. Aug 1999 A
5935259 Anderson Aug 1999 A
5939915 Curran Aug 1999 A
5940785 Georgiou et al. Aug 1999 A
5940786 Steeby Aug 1999 A
5951702 Lim et al. Sep 1999 A
5958061 Kelly et al. Sep 1999 A
5963737 Mealey et al. Oct 1999 A
5974557 Thomas et al. Oct 1999 A
5978923 Kou Nov 1999 A
5986962 Bertin et al. Nov 1999 A
5991531 Song et al. Nov 1999 A
5996083 Gupta et al. Nov 1999 A
5996084 Watts Nov 1999 A
6021500 Wang et al. Feb 2000 A
6026018 Herdt et al. Feb 2000 A
6031992 Cmelik et al. Feb 2000 A
6034886 Chan et al. Mar 2000 A
6035407 Gebara et al. Mar 2000 A
6038661 Yoshioka et al. Mar 2000 A
6047248 Georgiou et al. Apr 2000 A
6058063 Jang May 2000 A
6078319 Bril et al. Jun 2000 A
6079003 Witt et al. Jun 2000 A
6081890 Datta Jun 2000 A
6088806 Chee Jul 2000 A
6088807 Maher et al. Jul 2000 A
6094367 Hsu et al. Jul 2000 A
6111806 Shirley et al. Aug 2000 A
6112164 Hobson Aug 2000 A
6118306 Orton et al. Sep 2000 A
6119241 Michail et al. Sep 2000 A
6128243 Chan et al. Oct 2000 A
6128746 Clark et al. Oct 2000 A
6141762 Nicol et al. Oct 2000 A
6157092 Hofmann Dec 2000 A
6173376 Fowler et al. Jan 2001 B1
6182231 Gilgen Jan 2001 B1
6199152 Kelly et al. Mar 2001 B1
6202090 Simone Mar 2001 B1
6202104 Ober Mar 2001 B1
6208127 Doluca Mar 2001 B1
6208543 Tupuri et al. Mar 2001 B1
6216235 Thomas et al. Apr 2001 B1
6231147 Bosshart May 2001 B1
6233293 Myers et al. May 2001 B1
6243831 Mustafa et al. Jun 2001 B1
6246627 Yamauchi et al. Jun 2001 B1
6249473 Lau et al. Jun 2001 B1
6256252 Arimoto Jul 2001 B1
6266752 Witt et al. Jul 2001 B1
6266776 Sakai Jul 2001 B1
6272642 Pole et al. Aug 2001 B2
6279048 Fadavi-Ardekani et al. Aug 2001 B1
6279078 Sicola et al. Aug 2001 B1
6304824 Bausch et al. Oct 2001 B1
6308279 Toll et al. Oct 2001 B1
6308285 Bowers Oct 2001 B1
6311281 Pole, II et al. Oct 2001 B1
6311287 Dischler et al. Oct 2001 B1
6314522 Chu et al. Nov 2001 B1
6343363 Maher et al. Jan 2002 B1
6345363 Levy-Kendler Feb 2002 B1
6347379 Dai et al. Feb 2002 B1
6353552 Sample et al. Mar 2002 B2
6378081 Hammond Apr 2002 B1
6388432 Uchida May 2002 B2
6397242 Devine et al. May 2002 B1
6405320 Lee et al. Jun 2002 B1
6415379 Keppel et al. Jul 2002 B1
6415388 Browning et al. Jul 2002 B1
6425086 Clark et al. Jul 2002 B1
6427211 Watts, Jr. Jul 2002 B2
6437623 Hsu et al. Aug 2002 B1
6442746 James et al. Aug 2002 B1
6457082 Zhang et al. Sep 2002 B1
6457135 Cooper Sep 2002 B1
6477654 Dean et al. Nov 2002 B1
6484265 Borkar et al. Nov 2002 B2
6484274 Lee et al. Nov 2002 B1
6487668 Thomas et al. Nov 2002 B2
6501999 Cai Dec 2002 B1
6510400 Moriyama Jan 2003 B1
6510525 Nookala et al. Jan 2003 B1
6513124 Furuichi et al. Jan 2003 B1
6519706 Ogoro Feb 2003 B1
6564328 Grochowski et al. May 2003 B1
6571316 D'Souza et al. May 2003 B1
6574739 Kung et al. Jun 2003 B1
6577153 Kodama Jun 2003 B2
6580650 Ellis et al. Jun 2003 B2
6615300 Banning et al. Sep 2003 B1
6675304 Pole et al. Jan 2004 B1
6694443 Maher et al. Feb 2004 B1
6704880 Dai et al. Mar 2004 B2
6718457 Tremblay et al. Apr 2004 B2
6775786 Toll et al. Aug 2004 B2
6826682 Rozas et al. Nov 2004 B1
6880152 Torvalds et al. Apr 2005 B1
6910141 Maher et al. Jun 2005 B2
6978390 Maher et al. Dec 2005 B2
7000132 Maher et al. Feb 2006 B2
7062666 Maher et al. Jun 2006 B2
7120810 Maher et al. Oct 2006 B2
20020026597 Dai et al. Feb 2002 A1
20020073348 Tani Jun 2002 A1
20020083356 Dai Jun 2002 A1
20020087896 Cline et al. Jul 2002 A1
20020138778 Cole et al. Sep 2002 A1
20030065960 Rusu et al. Apr 2003 A1
20030074591 McClendon et al. Apr 2003 A1
Foreign Referenced Citations (22)
Number Date Country
5425896 Oct 1996 AU
69614515 Apr 2002 DE
0381021 Aug 1990 EP
0474963 Mar 1992 EP
0504655 Sep 1992 EP
632360 Jan 1995 EP
0651331 May 1995 EP
0742512 Nov 1996 EP
978781 Feb 2000 EP
53-63820 Jun 1978 JP
60-54048 Mar 1985 JP
01100638 Apr 1989 JP
01255933 Oct 1989 JP
02-213942 Aug 1990 JP
03-30022 Feb 1991 JP
03-269628 Feb 1991 JP
03255535 Nov 1991 JP
04-246728 Sep 1992 JP
7-505242 Jun 1995 JP
8314721 Nov 1996 JP
409185589 Jul 1997 JP
WO0127728 Apr 2001 WO
Continuations (1)
Number Date Country
Parent 09595198 Jun 2000 US
Child 11201624 US