The invention relates generally to the field of lighting systems and, more particularly, to high-intensity discharge (HID) lamps. Specifically, embodiments of the present technique provide improved sealing features for such lamps.
High-intensity discharge lamps are often formed from a tubular body or arc tube that is sealed to one or more end structures. The tubular body may be made of any ceramic material, including polycrystalline alumina (PCA), sapphire, single crystal yttria aluminum garnet (YAG) and polycrystalline YAG. The end structures are often sealed to this ceramic tubular body using a seal glass, which has physical and mechanical properties matching those of the ceramic components and the end structures. Sealing usually involves heating the assembly of the ceramic tubular body, the end structures and the seal glass, to induce melting of the seal glass and a reaction with the ceramic bodies to form a strong chemical and physical bond. The ceramic tubular body and the end structures are often made of the same material. However, certain applications may require the use of different materials for the ceramic tubular body and the end structures. In either case, various stresses may arise due to the sealing process, the interface between the joined components, and the materials used for the different components. For example, the component materials may have different mechanical and physical properties, such as different coefficients of thermal expansion (CTE), which can lead to residual stresses and sealing cracks. These potential stresses and sealing cracks are particularly problematic for high-pressure lamps.
Additionally, the geometry of the interface between the ceramic tubular body and the end structures also may attribute to the foregoing stresses. For example, the end structures are often shaped as a plug or a pocket, which interfaces both the flat and cylindrical surfaces of the ceramic tubular body. If the components have different coefficients of thermal expansion and elastic properties, then residual stresses arise because of the different strains that prevent relaxation of the materials to stress-free states. For example in the case of the plug type end structure, if the plug has a lower coefficient of thermal expansion than the ceramic tubular body and seal glass, then compressive stresses arise in the ceramic-seal glass region while tensile stresses arise in the plug region.
Typically, the seal glasses used for sealing ceramic lamp components are required to be non-reactive with the different species in the lamp environment and to possess microstructural stability during the life of the lamp, in addition to having a melting temperature and a crystallization temperature above the lamp operating temperature. However, for high temperature lamp applications, these are challenging requirements.
In sealing techniques used currently, the seal glass is generally melted using a furnace cycle, such as a large muffle type furnace, with temperatures up to 1750 degrees centigrade. The seal glass and the ceramic components to be sealed are inserted into a base of the furnace and the furnace is operated through a controlled temperature cycle. The controlled temperature cycle is designed in conjunction with a temperature gradient at the end of the furnace to melt the seal glass (typically a dysprosia-alumina-silica mixture), which then flows through the gap between components to be sealed. The seal length is controlled in part by the temperature gradient.
The above approach may be disadvantageous in several respects. Firstly, the furnace used in the above described technique provides a relatively diffuse heat source with a low temperature gradient. Hence, the technique does not provide a desired control of seal length and seal microstructure. Further, the above technique may not be useful for a wide variety of lamp geometries. For example, in lamps having a short aspect ratio (i.e., ratio of length to diameter), an important consideration while sealing an end of the lamp is to preserve the dosing material inside the lamp. The above technique may prove disadvantageous in such applications, as the diffuse heat produced by the furnace may result in undesirable heating of the dosing material during sealing of one end of the lamp.
Accordingly, a technique is needed to provide a lighting system with improved sealing characteristics for sealing a wide variety of ceramic lamp components having varied geometries.
The present technique provides novel sealing systems and methods designed to respond to such needs. In one aspect, the present technique provides a system for sealing a lamp. The system includes a thermal shield and a thermally susceptible enclosure disposed adjacent the thermal shield. The thermal shield has a first receptacle adapted to receive a first portion of the lamp. The thermally susceptible enclosure includes a wall about a second receptacle adapted to receive a second portion of the lamp. The wall has a varying thickness in a desired sealing region between the first and second portions of the lamp.
In another aspect, the present technique provides a method of sealing a lamp. In accordance with an embodiment of this sealing method, a first portion of the lamp is thermally shielded. In addition, a second portion of the lamp is thermally susceptibly surrounded with a variable geometry along a desired sealing region between the first and second portions, the variable geometry being adapted to provide a variable heat susceptibility along the desired sealing region. The desired sealing region is hermetically enclosed. Heat is transferred radiatively through the variable geometry and into the desired sealing region with a variable heat profile based on the variable heat susceptibility. In yet another aspect, the present technique provides a lamp which is sealed by the above method.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Aspects of the present technique provide unique sealing systems and methods for sealing between a wide variety of lamp components at high temperatures, for example, by providing localized heating and a high temperature gradient in the sealing region. Localized heating and a high temperature gradient minimize thermal stress in the components being sealed and substantially reduce or prevent cracking during heat-up, sealing, and cool-down stages of the sealing operation. Moreover, localized heating also aids retention of a lamp dose during the sealing operation. A high temperature gradient provides desirable microstructure control for both crystalline and glass phases of the seal. The unique features introduced above are described with respect to several exemplary embodiments of the present technique illustrated hereinafter.
Turning now to the drawings,
Regarding the geometry of the lamp 10, certain embodiments of the arc envelope 12 comprise a hollow cylinder, a hollow oval shape, a hollow sphere, a bulb shape, a rectangular shaped tube, or another suitable hollow transparent body. Moreover, the end structures 14 and 16 may have a variety of geometries. In the illustrated embodiment the end structures 14 and 16 have a plug-shaped geometry that at least partially extends into the arc envelope 12. Alternatively, some embodiments of the end structures may have a substantially flat mating surface, which butt-seals against the opposite ends 18 and 20 (i.e., end-to-end) without extending into the arc envelope 12. The illustrated end structures 14 and 16 comprise outer seal structures 22 and 24 and inner seal structures 26 and 28. The outer seal structures 22 and 24 of the end structure 14 and 16 abut and seal against the opposite ends 18 and 20 of the arc envelope 12. The inner seal structures 26 and 28 plug into the opposite ends 18 and 20 and seal with inner surfaces of the arc envelope 12 adjacent the opposite ends 18 and 20.
The lamp 10 is filled with a dosing material through one or more dosing tubes 30 and 32. The dosing tubes 30 and 32 are disposed within dosing passageways 34 and 36 extending through the end structures 16 and 18. In certain embodiments, these dosing tubes 30 and 32 are diffusion bonded or co-sintered to the end structures 16 and 18 within the dosing passageways 34 and 36. Alternatively, embodiments of the dosing tubes 30 and 32 are bonded within the dosing passageways 34 and 36 using a sealing material, such as sealing materials 35 and 37, respectively. Regarding the material composition, the dosing tubes 30 and 32 may comprise ceramics, such as alumina, sapphire, YAG, yttria, amongst others. As a result, dosing tubes 30 and 32 made of ceramics such as those mentioned above may be diffusion bonded to end structures 16 and 18 made of ceramics such as alumina, sapphire, YAG, etc. Alternatively, certain embodiments of the dosing tubes 30 and 32 may be formed of metals, such as niobium, molybdenum, amongst others. Inside the lamp 10, certain embodiments of the dosing material include a rare gas and mercury. Other embodiments of the dosing material further comprise a halide, such as bromine, or a rare-earth metal halide.
The lamp 10 also includes arc electrodes 38 and 40 having arc tips 42 and 44, respectively. Leading into the arc envelope 12, the lamp 10 includes electrode lead wires 46 and 48, which extend through the dosing tubes 30 and are in physical contact with the arc electrodes 38 and 40, respectively. In alternate embodiments, one or more of the arc electrodes 38 or 40 may be mounted in receptacles (not shown) disposed in respective end structures 14 and 16. In certain embodiments, the electrodes 38 and 40 may be inserted in support structures 50 and 52, such as a coils, which are then mounted inside the dosing tubes 22 and 24. The coils 50 and 52 support the arc electrodes 38 and 40 within the dosing tubes 30 and 32, while also permitting some freedom of movement and stress relaxation of the respective components. The arc electrodes 38 and 40 are mounted such that the arc tips 42 and 44 are separated by a gap 54 to create an arc 56 during the operation of the lamp 10. In certain embodiments, the lead wires 46 and 48 are formed from niobium and welded to the electrodes 38 and 40, which are formed from molybdenum and are, in turn, welded to the arc tips 42 and 44 formed from tungsten. In a different embodiment, both lead wires and electrodes may be formed from molybdenum. Other embodiments of the electrodes 38 and 40, the arc tips 42 and 44, and the lead wires 46 and 48 comprise a variety of other suitable materials, including cermets, such as tungsten cermet, molybdenum cermet, or metals, such as tantalum, rhenium, amongst others.
Embodiments of the lamp 10 also have a variety of different lamp configurations and types, such as a high intensity discharge (HID) or an ultra high intensity discharge (UHID) lamp. For example, certain embodiments of the lamp 10 comprise a high-pressure sodium (HPS) lamp, a ceramic metal halide (CMH) lamp, a short arc lamp, a ceramic automotive lamp, an ultra high pressure (UHP) lamp, or a projector lamp. As mentioned above, components of the lamp 10 are uniquely sealed in accordance with aspects of the present technique described hereinafter. In certain embodiments of the present technique, a seal material, also referred to as frit or seal glass, is used between interfacing surfaces of the components to be sealed. The choice of the seal material is dependent on the configuration of the lamp, the operating temperatures and material compositions of the components to be sealed. Accordingly, depending upon the particular application, the seal material may comprise a wide variety of rare-earth oxide based seals such as yttrium aluminum silica (YAS) glass, dysprosia alumina silica seals, amongst others. In alternative embodiments, components having similar composition may be sealed via diffusion bonding of the materials at the interfacing surfaces of the components.
In the desired sealing region 70, the wall 72 has a varying thickness 74 to control the heat profile or temperature gradient in the sealing region 70, as discussed in further detail below. For example, the varying thickness 74 may have a linearly changing geometry, a curved geometry (e.g., concave, convex, exponential, etc.), a stepped geometry, or any other suitable geometry. As illustrated, a radiative heat source 76 emits heat or generally radiatively heats up the thermally susceptible enclosure 60, which then radiates heat into the sealing region 70 with a desired temperature gradient or heat profile based on the varying thickness 74 of the wall 72. For example, embodiments of the heat source 76 include an induction heating device, a laser, a resistance heating device, or a suitable device that radiates an emission that causes heating of the thermally susceptible enclosure 60. In operation, the thermally susceptible enclosure 60 acts as a thermal collection and distribution device, which becomes heated by emissions from the radiative heat source 76 and then focuses the heat according to the varying thickness 74. The heat radiated by the thermally susceptible enclosure 60 melts the frit 68, which flows down through an annular gap 77 between the lead wire 46 and the dosing tube 30 to a depth (d), also referred to as seal length. In certain embodiments, sealing between the lead wire 46 and the dosing tube 30 may be achieved by material diffusion without any sealing material. In such embodiments, the heat radiated by the thermally susceptible enclosure 60 facilitates diffusion bonding of the materials at the interfacing surfaces of the lead wire 46 and the dosing tube 30 to produce a hermetical seal between one another.
The heat radiated by the thermally susceptible enclosure 60 has a varying profile in the sealing region 70 caused by the varying thickness 74 of the susceptor wall 72 in the sealing region 70. In the illustrated embodiment, the thickness of the susceptor wall 72 increases with depth (d) in the sealing region 70. Because of this varying thickness, a greater amount of heat is coupled to the lower portion of the variable geometry than the upper portion when the susceptor is heated by the radiative heat source 76, thereby causing the thermally susceptible enclosure 60 to radiate more heat to the lower portion of the sealing region 70 than to the upper portion of the sealing region 70. This variance establishes a high temperature gradient in the sealing region 70, which aids in controlling the depth (d) of the seal. More specifically, the temperature gradient thus produced results in a low temperature near the base 62, a high temperature in the sealing region 70 adjacent the thick part of the variable geometry, and a relatively lower temperature at the upper portion of the sealing region 70, thereby preventing melting of the lead wire 46. In certain embodiments where the lead wire 46 is formed from niobium, the depth (d) is controlled so as to cover the entire length of the niobium lead wire since niobium is reactive with certain dosing materials disposed inside the lamp 10. Further, the high temperature gradient facilitates high sealing temperatures close to the melting point of the seal material 68 and provides desirable microstructure control of the crystalline and glass phases of the seal 68. The temperature gradient may be measured via an optical pyrometer, a thermal imaging camera, a thermocouple system, and other methods of temperature measurement (such as paints, etc).
In cooperation with this localized temperature gradient in the sealing region 70, the base 62 reduces undesirable heating in the adjacent components of the lamp 10. In the illustrated embodiment, the base 62 includes a receptacle 78 to house a portion 80 of the lamp 10 including the dosing tube 30. The base 62 is adapted to thermally shield or cool the portion 80 of the lamp 10 during the sealing process. This shielding or cooling substantially restricts or further localizes the high temperature to the sealing region 70, rather than the adjacent portion 80 of the lamp 10. This thermal shielding or cooling also reduces thermal stress in the arc envelope 12 and other components, and prevents formation of cracks therein. Further, the localized high temperature gradient, thus established, reduces heating of the dosing substance disposed within the lamp 10. In certain embodiments, the base 62 is formed from a thermally conductive material including copper, copper alloys, molybdenum, tungsten, copper-tungsten alloys, graphite, among others, or combinations thereof. In these embodiments, the base 62 functions to transfer heat away from the portion 80 of the lamp 10. The base 62 also may comprise a variety of cooling mechanisms, such as heat sinks, heat pipes, fans, circulating fluids, and so forth. Certain embodiments of the system 58 may include a thermally insulating layer 81 between the thermally susceptible enclosure 60 and the base 62. The thermally insulating layer 81 substantially blocks heat transfer or radiative heat-generating emissions from the thermally susceptible enclosure 60 into the base 62 and the portion 80 disposed therein. The thermally insulating layer 81 may comprise an air gap, radiation shields, or thermally insulating materials, such as alumina, yttria, yttria stabilized zirconia, amongst other materials.
In addition to the thermally susceptible enclosure 60 and the base 62, the system 58 is hermetically sealed by an outer enclosure 82 surrounding the thermally susceptible enclosure 60 and disposed over the base 62. The system 58 may include a variety of sealing mechanisms, such as gaskets, O-rings, amongst others. In certain embodiments, the outer enclosure 82 is formed from a material including quartz, glass, Pyrex, steel, stainless steel, aluminum, copper, among others, or combinations thereof. The outer enclosure 82 may be filled with an inert gas, such as xenon, crypton, argon, among others, such that the sealing region 70 is surrounded by the inert gas. In this manner, the inert gas prevents undesirable oxidation of metallic lead wire components, metallic furnace components such as the susceptor, and so forth. Alternatively, the system 58 may create a vacuum inside the hermetically sealed outer enclosure 82. In this manner, the outer enclosure 82 facilitates an air-tight seal for the system 58.
In the illustrated embodiment, the heat source 76 includes a radio frequency (RF) induction coil 84 coupled to a source 86 of radio frequency (RF) power. The RF induction coil 84 is energized by passing an alternating current (AC) through the induction coil 84 via the power source 86. In one embodiment, the alternating current has a frequency of 250 KHz. The choice of frequency of the alternating current depends upon the design of the thermally susceptible enclosure 60. In certain embodiments, the frequency may range from about 50 Hz to about 2 MHz. The alternating current generates an electromagnetic field, which induces a current in the thermally susceptible enclosure 60. The thermally susceptible enclosure 60 is heated in the process and radiates heat to the sealing region 70 as described above.
The power source 86 may be controlled to establish a desired sealing temperature. In one embodiment, the sealing temperature is 1875 degrees centigrade. In certain embodiments of the present technique, the sealing temperature may range from about 1000 degrees centigrade to about 1950 degrees centigrade. The power source 86 may also be controlled to provide a desired time profile of the heating cycle. In one embodiment, the sealing temperature is maintained at 1475 degrees centigrade for approximately one minute of operation. The sealing temperature is then raised from 1475 degrees centigrade to 1875 degrees centigrade over a period of approximately 40 seconds, and is then maintained at 1875 degrees centigrade for about 30 seconds. The sealing region 70 is subsequently cooled or quenched to produce a hermetical seal between the lead wire 46 and the dosing tube 30. The rate of quenching is dependent on the particular components being sealed and the particular sealing material used, if any.
In the embodiment illustrated in
It should be appreciated that other radiative heat sources that provide local heating of the sealing region 70 are also within the scope of the present technique. For example,
As discussed above, various embodiments of the present technique can be employed to seal a wide variety of lamp components. For example, an embodiment of the present technique can be used to seal an end structure to an arc envelope. Referring now to
According to a further embodiment, the present technique can be employed to seal a dosing tube or a leg portion to an end structure.
In certain embodiments, the dosing tube and/or the electrodes are coupled directly into the arc envelope. Embodiments of the present technique can be used to seal the dosing tube to the arc envelope in such lamps.
Referring now to
Certain embodiments of the present technique provide sealing systems to seal a plurality of lamps in one sealing cycle. Referring to
In a different embodiment of the above technique, a single susceptor having multiple receptacles may be used in place of multiple susceptors. Such an embodiment is illustrated referring generally to
As will be appreciated, various embodiments of the present technique can be used to seal a wide variety of lamp components. Such components may have varied geometries and may include, for example, arc envelopes, dosing tubes or passageways, electrode lead wires, end structures, amongst others. An important advantage of the present technique is that it can be used for arc tubes and other components having a wide variety of material composition.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3363134 | Johnson | Jan 1968 | A |
3385463 | Lange | May 1968 | A |
3659138 | Johnson et al. | Apr 1972 | A |
3662455 | Anderson | May 1972 | A |
3693007 | Kerekes | Sep 1972 | A |
3872341 | Werner et al. | Mar 1975 | A |
3882344 | Knochel et al. | May 1975 | A |
3882346 | McVey | May 1975 | A |
3909736 | Huchital et al. | Sep 1975 | A |
3953177 | Sedlatschek et al. | Apr 1976 | A |
4103200 | Bhalla | Jul 1978 | A |
4291250 | Bhalla | Sep 1981 | A |
4409517 | Van Der Sande et al. | Oct 1983 | A |
4464603 | McVey | Aug 1984 | A |
4507584 | Coaton et al. | Mar 1985 | A |
4545799 | Rhodes et al. | Oct 1985 | A |
4585972 | Hing | Apr 1986 | A |
4707636 | Morris | Nov 1987 | A |
4780646 | Lange | Oct 1988 | A |
4804889 | Reid et al. | Feb 1989 | A |
5057048 | Feuersanger et al. | Oct 1991 | A |
5321335 | Klug et al. | Jun 1994 | A |
5424609 | Geven et al. | Jun 1995 | A |
5426343 | Rhodes et al. | Jun 1995 | A |
5552670 | Heider et al. | Sep 1996 | A |
5725827 | Rhodes et al. | Mar 1998 | A |
5783907 | Suzuki et al. | Jul 1998 | A |
5973453 | Van Viet et al. | Oct 1999 | A |
5994839 | Yamamoto et al. | Nov 1999 | A |
6069456 | Fromm et al. | May 2000 | A |
6126889 | Scott et al. | Oct 2000 | A |
6156079 | Ho et al. | Dec 2000 | A |
6215254 | Honda et al. | Apr 2001 | B1 |
6216889 | Chang | Apr 2001 | B1 |
6265827 | Takahashi et al. | Jul 2001 | B1 |
6294871 | Scott et al. | Sep 2001 | B1 |
6300716 | Honda et al. | Oct 2001 | B1 |
6375533 | Torikai et al. | Apr 2002 | B1 |
6404129 | Hendricx et al. | Jun 2002 | B1 |
6528945 | Kelly et al. | Mar 2003 | B2 |
6583563 | Venkataramani et al. | Jun 2003 | B1 |
6635993 | Niimi | Oct 2003 | B1 |
6642654 | Niimi | Nov 2003 | B2 |
6657388 | Wijenberg et al. | Dec 2003 | B2 |
6750612 | Takagaki et al. | Jun 2004 | B2 |
6781292 | Ishida et al. | Aug 2004 | B2 |
6791267 | Niimi | Sep 2004 | B2 |
6812642 | Niimi | Nov 2004 | B1 |
6815894 | Takagaki et al. | Nov 2004 | B2 |
6873109 | Ishigami et al. | Mar 2005 | B2 |
6891131 | Sakuma et al. | May 2005 | B2 |
20020027421 | Kaneko et al. | Mar 2002 | A1 |
20020117965 | Kotter et al. | Aug 2002 | A1 |
20040108814 | Tsuda et al. | Jun 2004 | A1 |
20040119413 | Kebbede et al. | Jun 2004 | A1 |
20040119414 | Kebbede et al. | Jun 2004 | A1 |
20040124776 | Iorio | Jul 2004 | A1 |
20040135510 | Bewlay et al. | Jul 2004 | A1 |
20040174121 | Tsuda et al. | Sep 2004 | A1 |
20040183446 | Grundmann et al. | Sep 2004 | A1 |
20050007020 | Tsuda et al. | Jan 2005 | A1 |
20060001346 | Vartuli et al. | Jan 2006 | A1 |
20060008677 | Bewlay et al. | Jan 2006 | A1 |
20060012306 | Bewlay et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0935278 | Aug 1999 | EP |
1150337 | Oct 2001 | EP |
1158567 | Nov 2001 | EP |
1172839 | Jan 2002 | EP |
1172840 | Jan 2002 | EP |
1220295 | Jul 2002 | EP |
1253616 | Oct 2002 | EP |
1296355 | Mar 2003 | EP |
1351276 | Oct 2003 | EP |
1363313 | Nov 2003 | EP |
1434247 | Jun 2004 | EP |
2004214194 | Jul 2004 | JP |
WO9825294 | Jun 1998 | WO |
WO03058674 | Jul 2003 | WO |
WO03099741 | Dec 2003 | WO |
WO2004023517 | Mar 2004 | WO |
WO2004049390 | Jun 2004 | WO |
WO2004049391 | Jun 2004 | WO |
WO2004051699 | Jun 2004 | WO |
WO2004051700 | Jun 2004 | WO |
WO2004102614 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060068679 A1 | Mar 2006 | US |