The following disclosure relates generally to smoke barrier systems and more particularly to roll down smoke/gas barrier systems.
Smoke and noxious gasses can be very dangerous to occupants during a building fire. As is well known, many fire-related deaths are the result of smoke inhalation. During a fire, or an event where dangerous gases may be present, fumes are likely to travel very quickly through paths that offer little resistance. Paths such as elevator shafts are often well drafted and provide an excellent avenue by which smoke and other dangerous gases can rapidly travel to otherwise unaffected areas of a building. To prevent such a migration of dangerous gases, many devices and assemblies have been designed to limit the dispersal of such fumes by cutting off possible paths or openings. Examples of such devices are smoke screen assemblies disclosed in U.S. Pat. No. 5,383,510, issued Jan. 24, 1995, and U.S. Pat. No. 5,195,594, issued on Mar. 23, 1993, both of which are incorporated herein by reference in their entirety.
Barriers of the types described in the aforementioned patents are often electro-mechanically operated so that a screen is placed in front of an opening upon the detection of smoke, a noxious gas, or dangerous fumes. In normal conditions, power is provided to the barrier system from a main power supply for the deployment of the barrier. In situations that are accompanied by power loss, the barrier system must switch to a back up power supply, such as a battery system or other alternative power source, for deployment of the barrier. The back up power supply adds to the cost and complexity of the barrier system.
In the drawings, the same reference numbers identify identical or substantially similar elements or acts. The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.
Apparatus and corresponding method for sealing various openings in response to smoke, noxious fumes, or contaminated air using a roll-down barrier in accordance with embodiments of the present invention are described in detail herein. In the following description, numerous specific details are provided, such as specific descriptions of mechanical and electro-mechanical components, specific methods for deploying and retrieving a flexible barrier, composition of the barrier, etc. to provide a thorough understanding of, and enabling description for, embodiments of the invention. One skilled in the relevant art, however, will recognize that the invention can be practiced without one or more of the specific details, or with other components, methods, etc. In other instances, well known structures or operations are not shown, or are not described in detail, to avoid obscuring aspects of the invention.
In the stored configuration, the curtain 112 is wrapped around the spindle 142 and raised into the housing 132 by the two respective connecting cords 140. The connecting cords 140 are wound around the spool 250 coupled to the motor 120 via the coupler 122. Once raised inside the housing 132, the curtain 112 and spindle 142 combination is enclosed by closing the door 134 of the housing 132. The door 134 can be held in place by a magnet, latch or other similar fastening device. Upon deployment of the curtain 112 and downward motion of the spindle 142, the curtain/spindle combination contacts the door 134 and the door opens such that the deployment is not impeded.
The curtain 112, in one embodiment, is essentially comprised of 1 mil thick polyamide film reinforced with 100 denier nomex yarn spaced with a ¼ inch matrix. The reinforcing fill yarn is attached to the film and overlaps the reinforcing warp yarn that is not adhered to the film. The bond between the yarn and the film is at least 1 pound per square inch. In another embodiment, the screen material is a fiberglass fabric, which may be reinforced with stainless steel thread and is covered with a polymer coating to provide a higher temperature resistance. This alternate material is connected to the flexible magnets in the same manner as the polymide film. The film is connected along its length to a 2½ inch wide by 0.125 inch thick multi-pole magnet of energized ferrite in a nitrile rubber binder exerting a minimum 1.4 MGOe of force. The multi-poles are orientated along the length and perpendicular to the magnet's width. The film and magnets are aligned relative to each other's neutral axes and connected with a 0.5 inch wide by 0.125 inch thick continuous joint of low-modulus silicone.
One end of each respective cord 140 holding the spindle 142 is attached to the spool 250, such that the cord can be wound onto the spool when the spool is turned by the motor 120. The motor 120 and the coupler 122 are operatively connected to a controller 130 so as to power and control activation of the motor and positive engagement of the coupler 122 with the motor 120. The motor 120 is unidirectional. The motor 120, upon receiving power from the controller 130, winds up the cords 140 attached to the spindle 142 by turning the spool 250. The spool 250 is coupled in one embodiment to an electro-mechanical clutch that, with the power supplied by the controller 130, mechanically couples the spool 250 to the motor 120. As the motor 120 is unidirectional, the absence of power to the motor 120, with the electro-mechanical clutch engage, serves to hold the spool 250 in a fixed non-rotational position thus holding the curtain 112 in the stored position in the housing. The coupler 122 in this embodiment is electro-mechanical but can be electric, mechanical or of a similar design that can achieve the same functionality.
In this alternate embodiment, the motor 120 is operatively connected to the controllers and the coupler 504 so as to control rotation of the drive shaft 502. The motor 120, upon receiving power from the controller 130, winds up the cords 140 onto the pulleys 508 by turning the drive shaft 502. The motor 120 is a unidirectional motor similar to the motor discussed in the above embodiments. In the presence of power to the motor 120, the coupler 504, such as an electromechanical clutch, will engage the drive shaft 502 so as to hold the drive shaft in a fixed, non-rotational position, thus holding the curtain 112 (not shown) in the stored position in the housing 132. With the drive shaft 502 prevented from rotating, the curtain 112 (not shown) remains in the stored configuration. When power to the coupler 504 is interrupted, the coupler is disengaged so the drive shaft 502 can rotate as the curtain unrolls to the deployed position.
In this alternate embodiment, after the curtain 112 has been deployed and then rolled back up into the stored position in the housing, the door 134 of the housing opens when the curtain 112 (not shown) is released and unwinds to the deployed position. When the curtain is rolled back up into the stored position, the door 134 can be automatically reset to the closed position by a door closure mechanism. The door 134 remains closed until the curtain 112 is deployed again.
The coupler 122 is coupled to a power supply and is configured to positively engage the motor 120 with the spool 250 holding the spool stationary while power is applied to the coupler 122. With the spool 250 prevented from rotating, the spindle 142 or the drive shaft in another embodiment containing the curtain 112 remains in the stored configuration. The controller 130 is configured so that, when a signal is received from the smoke detector or similar sensor that smoke or other gases have been detected, the power to the electromechanical coupler 122 is interrupted, disengaging the coupler 122, releasing the spool 250 from the motor 120. The controller 130, or the weight of the falling spindle 142, simultaneously opens the door. With removal of power from the coupler 122 and the spool 250 released, the cords 140 unwind and the curtain 112 unrolls toward the deployed sealing position. The de-energized coupler 122 allows the spool 250 to freely turn, although the spool remains coupled to the viscous governor 124.
The viscous governor 124 limits the rotation rate of the spool 250 by using the natural friction of a displaced fluid in a confined space. As the coupler 122 releases the spool 250 from the motor 120, the weight of the spindle 142 and the curtain 112 causes the spool 250 to rotate. As the spool 250 rotates, the cord 140 unwinds from the spool, lowering the curtain 112. As the rate of rotation of the spool 250 increases, the dynamic pressure of the displaced fluid within the viscous governor 124 mounts until the force accelerating the rate of rotation of the spool is equally opposed by the dynamic pressure of the displaced fluid within the viscous governor. Once equilibrium of forces has been achieved, the rotation rate of the spool 250 peaks and then decreases until the curtain reaches the. deployed, sealing position. The viscous governor 124 limits the rate at which the spool 124 rotates thus controlling the rate at which the spindle 142 is lowered and the curtain 112 is deployed.
In one embodiment the viscous governor 124 can include a sealed compartment containing a viscous fluid such as oil or the like. The viscous fluid is displaced within the sealed compartment by a paddle or wheel coupled to a shaft extending from the compartment. As the shaft and corresponding wheel are rotated, the fluid in the compartment must be displaced. The resistance to the turning of the wheel or corresponding shaft is directly proportional to the dynamic pressure developed by the fluid's motion. Since the dynamic pressure of a fluid varies according to the velocity of the fluid raised to the second power, the resistance felt by the shaft increases exponentially as the speed of the shaft's rotation increases.
The viscous governor 124 prevents a free fall descent of the spindle 142, so as to deploy the curtain 112 in a controlled manner and to provide proper alignment of the flexible magnets 144 with the ferrous side rails 146. It should be noted that the motor 120 in this embodiment is not used or involved in controlling the deployment of the curtain 112 nor does it act to brake the descent of the curtain. The motor 120 is used solely to raise the curtain 112 and spindle 142 to the stored position. Once in the stored position, the coupler 122 and a gearbox holds the curtain 112 and spindle 142 in the stored position.
As indicated, once the controller 130 removes power from the coupler 122, the deployment of the curtain 112 occurs without the need of additional power, thereby providing a fail-safe configuration of the barrier assembly 100. In event of inadvertent power loss to the barrier assembly 100 and initiation of curtain deployment by the controller 130, the power loss to the coupler 122 acts to release the spool, deploy the curtain 112, and seal the opening 114 as if it was initiated by the controller 130. In this manner the barrier assembly 100 includes an inherent fail-safe capability. In other words, when power to the barrier assembly 100 fails, the assembly fails to a safe condition, wherein the curtain 112 unrolls and covers the opening 114.
Inadvertent deployment of the curtain 112 due to momentary power failures can be prevented in an alternative embodiment by including a capacitor or other temporary power supply connected to the coupler 122 that provides a suitable time delay until deployment. The capacitor can provide a source of emergency power for a finite period of time preventing the coupler 122 from disengaging the spool 250 from the motor 120 should the primary power source fail. In one case, the capacitor is configured to prevent the deployment of the curtain 112 for up to approximately 10 seconds in situations of complete power loss of the primary power source. After 10 seconds has elapsed and the power in the capacitor has discharged, the coupler 122 releases the spool 250 from the motor 120 and the curtain 112 deploys. Other capacitors of varying capacitance can be used to adjust the time delay to meet operational constraints.
After the curtain 112 has been deployed to cover the opening 114 and power is available to the barrier assembly 100, the controller 130 can activate the coupler 122 to engage the motor 120 to the spool 250, rewinding the cords 140 onto the spool 250 and raising the curtain 112 back into the housing 132. The rate of rotation of the spool 250 by the motor 120 is sufficiently low, such that the motor 120 easily overcomes the friction introduced by the viscous governor 124. As the spindle 142 is raised it rotates, winding the curtain 112 around the spindle 142 and the cord 140 on to the spool 250. Once the curtain 112 reaches the top of the opening, the curtain uncovers an up-limit switch, allowing a switch to become open, signaling that an upper limit has been reached. Power is removed from the motor 120 yet maintained to the coupler 122 to hold the curtain 112 in the raised, stored position. In the stored position, the door 134 can be manually or automatically shut to hide the curtain 112 from view.
The method of deployment of the curtain 112 in at least one embodiment can be summarized as follows. With the curtain 112 in the stored position, and upon detection of noxious fumes, smoke, or contaminated air adjacent to the opening 114, the controller 130 opens a switch disconnecting power to the coupler 122. With power removed from the coupler 122, the coupler disengages the spool 250 from the motor 120, thereby releasing the spool 250 to rotate. As the spool 250 rotates under the weight of the spindle 142 and the curtain 112, the curtain unrolls and the spindle moves downwardly toward the deployed, sealing position. The door 134 of the housing 132 opens and swings away allowing the curtain 112 unwinds from the spindle 142 with the flexible magnets 144 attach to the ferrous side rails 146 forming a nearly air tight seal around the opening 114. Simultaneously to the unrolling of the curtain 112, the cords 140 wind up on the pulleys located at each end of the spindle 142.
When the reinforced curtain 112 reaches the floor, a lower limit of the opening 114, or an established extension limit, the tube around the shaft of the spindle engages the floor forming a seal. As the curtain 112 expands under pressure, the interface between the curtain 112 and the flexible magnetic edge strips 144 stretches a predetermined amount to limit the amount of expansion.
As described herein, the curtain 112 can be returned to its original position in the housing by engaging the spool 250 to the motor 120 via the coupler 122 and rewinding the cord 140 around the spool 250. The cord 140 winding around the spool 250 causes the cord 140 to unwind from the pulley at each end of the spindle 142. The unwinding of the pulleys causes the spindle 142 to rotate, winding up the curtain 112 as the curtain 112 moves from the deployed, sealing position to the upper, stored position. As the curtain 112 retracts and wraps around the spindle 142, it uncovers an up-limit switch that cuts off power to the motor 120 approximately 70-80 ms later. The delay in shutting off the motor 120 ensures the curtain goes well past the up-limit switch and does not trigger the motor to reengage due to oscillations. As the curtain 112 is retracted into the housing, the coupler 122 maintains the spool 250 motor 120 engagement to prevent the curtain's unintentional redeployment. While the motor 120 is switched off after curtain retraction, power remains applied to the coupler 122 keeping the motor 120 engaged with the spool 250 holding the curtain 112 in the stored position.
The controller 130 in one embodiment can be set with a retract cycle for approximately 20 seconds or another selected length of time appropriate for the size of the curtain 112 to avoid excess strain on the motor 120 or the controller 130. This allows the motor 120 to shut off if the up-limit switch has not triggered in the selected amount of time. In such conditions the controller 130 can be set to remove power from the coupler 122 in conjunction with a “motor shut-off” command to deploy the curtain 112. This can provide a visible indication of a need to re-set the barrier assembly 100.
In an alternative embodiment, the controller 130 can include an automatic retract feature. The automatic retract feature commands the curtain 112 to retract upon the initial application of power. The curtain 112 retracts and then, as the up-limit switch is triggered, the motor 120 cuts off. If the detector signals to the controller that smoke, noxious fumes or contaminated air is still present, the auto-retract feature can be disabled keeping the curtain 112 in the deployed position. Once the detectors fail to detect the triggering condition, the automatic retract feature will retract the curtain 112 into the housing. If the triggering conditions persists after a retraction is initiated, the controller can cause the curtain 112 to retract into the housing where it will again deploy due to the presence of smoke, noxious fumes, or contaminated air. The automatic retract feature can be disabled or delayed during deployment to prevent triboelectric noise or other noise from triggering a retraction of the curtain 112. In general, alternative embodiments described herein are substantially similar to previously described embodiments, and common elements and functions are identified by the same reference numbers. Only significant differences in construction or operation are described in detail.
In another alternative embodiment, the fail-safe characteristics of the barrier assembly 100 can be increased by setting the curtain 112 to deploy upon an unusual indication from the up-limit switch. If the coupler 122 slips slowly, the up-limit switch will eventually be closed. When this happens the coupler 122 can be de-energized deploying the curtain 112. The voltage across the smoke/fume-detector wires can also be monitored. If the voltage goes beyond a preset limit indicating smoke, or an open circuit in the smoke detector occurs, the screen 112 will deploy. Upon the voltage returning to the proper range, an auto-retract can occur, if enabled. If the voltage is too low, or if there is a phase or other electrical anomaly, then there could be a short or ground fault in the smoke-detector wires. In each of these cases, the screen 112 can deploy after a selected time, e.g., approximately 10-15 seconds. (The 10-15 second delay can be set to prevent a false deploy during a power outage.) Upon correction of the condition, the auto-retract can again occur, if enabled.
Descending in front of the opening 114, the curtain 112 unrolls in such a manner so the flexible magnets strips 144 magnetically adhere to the ferrous rails 146 adjacent to the opening 114 (at block 670). Accordingly, seals are formed along the sides of the opening 114 that block the migration of smoke or other gases past the curtain 112. Upon reaching the lower limit of the opening 114, the curtain 112 and spindle 142 forms a seal (at block 680) at the lower limit of the opening 114, thereby sealing the opening 114 (at block 695) and preventing the passage of smoke, noxious fumes, or contaminated air through the opening. After the curtain 112 has been deployed, and the event or condition requiring the opening 114 to be sealed has ended, the curtain 112 and the spindle 142 are rolled back up to the stored position and retained in the housing as discussed herein.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.”
The above detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recongnize. For example, while steps are presented in a given order, alternative embodiments may perform the same function while having steps in a different order. The teachings of the invention provided herein can be applied to other systems, not necessarily the smoke and fume sealing system described previously. These and other changes can be made to the invention in light of the detailed description. Furthermore, the elements and acts of the various embodiments above can be combined to provide further embodiments beyond those described. All of the above references and U.S. patents and applications are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions and concepts of the various patents and applications described above to provide yet further embodiments of the invention.
While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.
This application claims the benefit of U.S. Provisional Patent Application No. 60/315,303, filed Aug. 27, 2001.
Number | Date | Country | |
---|---|---|---|
60315303 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10172685 | Jun 2002 | US |
Child | 10949686 | Sep 2004 | US |