These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
a-c is a flowchart illustrating the verification of the response packet;
Common reference numerals are used throughout the drawings and the detailed description to indicate the same elements.
The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiment of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the functions and the sequence of steps for developing and operating the invention in connection with the illustrated embodiment. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention. It is further understood that the use of relational terms such as first and second, and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship or order between such entities.
With reference to
The computers 12, 14 are connected to a wide area network such as the Internet 22 via network connections 24. Requests from the client computers 12 and requested data from the server computers 14 are delivered through the network connections 24. According to an embodiment of the present invention, the server computers 14 are web servers, and the client computers 12 include web browsing applications such as Microsoft Internet Explorer that visually renders documents provided by the server computers 14 on the display unit 18. It will be appreciated that the network topology shown in
As a further example, a first server computer 14a may be an electronic banking web server that provides account information and funds transfer functionality. Additional uses are also contemplated, where the first server computer 14a hosts a mail server, an online shopping site, or a Microsoft .NET application. A user on the first client computer 12a may log on to first server computer 14a to retrieve the account balance and transfer funds to a separate account using a web browser. In this exemplary context, one of the considerations of information security includes ensuring that the user on the first client computer 12a is who he asserts to be. For example, a malicious user on a second client computer 12b may have all of the credentials of the user on the first client computer 12a to log on to the first server computer 14a without recognizing that such access is fraudulent. Another consideration is ensuring that the first server computer 14a is under the control of a bank of which the user on the first client computer 12a is a customer. It may be possible that the second server computer 14b is masquerading as the first server computer 14a in a phishing attempt, and the first client computer 12a may have been misdirected to the second server computer 14b. Additionally, all legitimate data transfers between the first client computer 12a and the first server computer 14a must not be intercepted by any of the other computers, including a third client computer 12c, the second client computer 12b, and the second server computer 14b.
As indicated above, instead of a specific server computer 14a, the clients 12 may access a VPN 15. The VPN 15 may be connected to the Internet 22 via a VPN router 17 for permitting remote access to the clients 12. It is understood that the VPN router 17 is the only modality through which outside clients 12 may access a server 14c on a local network 19. The same security concerns noted above are equally applicable to the VPN 15, and thus it is contemplated that the methods and systems of the present invention may be implemented therefor, as will be described in further detail below.
An aspect of the present invention relates to a method of mutually authenticating the client computer 12 and the server computer 14. With reference to the flowchart of
Thereafter, according to step 210, a secure data transfer link 30 is initiated by the client computer 12 utilizing a full requested Uniform Resource Locator (URL) 32. In accordance with a preferred embodiment, the secure data transfer link 30 is a symmetric TLS link. In further detail with reference to the sequence diagram of
Upon establishing a TCP connection between the client computer 12 and the server computer 14, a CLIENT_HELLO command 40 is sent from the client computer 12 to the server computer 14. This packet includes the highest version of TLS supported by the client computer 12, the ciphers and data compression methods supported by the client computer 12, a session identifier, and random data. Upon receipt of the CLIENT_HELLO command 40, the server computer 14 transmits a SERVER_HELLO command 42. The SERVER_HELLO command 42 includes the version of TLS, cipher, and data compression method that has been selected. Additionally, the previously set session identifier is included, as well as additional random data. Thereafter, the server computer 14 transmits the CERTIFICATE command 44, which includes a server certificate 46, and a SERVER_DONE command 48, which indicates that the server computer 14 has completed this handshaking phase.
The server certificate 46 is understood to be in conformance with the X.509 standard. More particularly, with reference to
After verifying the authenticity of the sever certificate 46, the client computer 12 transmits a CERTIFICATE_VERIFY command 66. Additionally, the client computer 12 transmits a first CHANGE_CIPHER SPEC command 68, followed immediately by a first FINISHED command 70. This indicates that the contents of subsequent TLS record data sent by the client computer 12 during the current session will be encrypted. It is understood that the first FINISHED command 70 includes a digest of all handshake commands previously transmitted to ensure that no alteration occurred. Next, the server computer 14 transmits a second CHANGE_CIPHER_SPEC command 72, followed immediately by a second FINISHED command 74. Like the first CHANGE_CIPHER_SPEC command 68, the second CHANGE_CIPHER SPEC command 72 indicates that subsequent TLS record data sent by the server computer 14 during the current session will be encrypted. The second FINISHED command 74 includes all prior handshake commands from the server computer 14 to the client computer 12. The client computer 12 transmits a generated symmetric key that is encrypted with the subject public key 57b in the server certificate 46. The server private key 50 is used to decrypt to the symmetric key upon receipt by the server computer 14, and subsequent transmissions to the client computer 12 will be encrypted therewith.
As indicated above, the client computer 12 securely retrieves the server certificate 46 in accordance with an aspect of the present invention. Specifically, according to the process of establishing the TLS connection 30 between the client computer 12 and the server computer 14, the server certificate 46 is transmitted. In one embodiment, the client computer 12 stores the server certificate 46 for use outside the context of the TLS connection 30, as will be detailed further below.
Referring back to
According to step 230, the method further includes validating the contents of the response packet 76. First, the authenticity of the response packet 76 itself is verified. As indicated above, the response packet 76 includes the cryptographic hash 77 that has been signed with the client private key 80. With reference to the flowchart of
Such further verification includes comparing the constituent parts of the response packet 76 with known copies thereof. First, the signature of the client certificate 78 is validated per step 320, where the subject public key information 57b is verified. Thereafter, the certificate signature 59 and the issuer identifier 54 are examined to confirm that a properly recognized CA has signed the client certificate 78 per step 330. The subject identifier 56 is also examined to confirm that the client certificate 78 was issued to a properly recognized organization according to step 340. According to one embodiment, a properly recognized organization refers to a legitimate organization having control over the server computer 14. Additionally, the client certificate 78 is confirmed to be valid and unexpired by comparing the validity identifier 55 of the client certificate 78 against the current date per step 350. If any of the foregoing validation step fails, the client certificate 78 is deemed to have been tampered with, and drops the connection per step 315.
The remaining components in the response packet 76 is also verified, including the full requested URL 32, the token 26, and the server certificate 46. As described above, the token 26, or the certificate request identifier is stored in the server computer 14. Per step 360, such stored value of the token 26 is compared against value of the token 26 in the response packet 76. It is understood that matching values confirms that no replay attacks are taking place. With respect to the full requested URL 32 in step 370 the value thereof is verified against the actual URL of the server computer 14. This is understood to verify that no phishing attacks are taking place that redirect the client computer 12 to a malicious server. With respect to the server certificate 46 included in the response packet 76, per step 380 it is compared against the server certificate 46 residing on the server computer 14. This prevents man-in-the-middle attacks, as a different server certificate 46 from the one stored on the server computer 14 as opposed to the one being returned via the response packet 76. Along these lines, if any of the foregoing verifications fails, the connection between the server computer 14 and the client computer 12 is immediately broken, and no further access to the server computer 14 is permitted. If there are no anomalies, however, the client computer 12 is authenticated and continues to access the server computer 14. As will be appreciated, the foregoing verifications discover one or more security breaches.
With reference to
In the context of SSL VPNs as shown in
Referring to
Upon supplying the correct response, the server authentication module 84 directs the certificate server 86 to generate the client private key 80 and the corresponding client certificate 78, and store it on the client computer 12. The client certificate 78 may contain both identification and authorization information. In order to identify the particular user, the User ID, first name, last name, and employee identification information such as employee number may be incorporated into the client certificate 78. Further, authorization data such as enterprise name, organization name, workgroup, and other group-based permission system data may be incorporated into the client certificate 78. Additional authentication information may be stored in an enterprise database 90 for later retrieval and use by the server authentication module 84. It is understood that the foregoing procedure “registers” the browser on the client computer system 12 with the server computer 14, effectively making such browser a second authentication factor (“Something the user has”).
According to another embodiment of the present invention, the procedure described above of issuing the client certificate 78 and the corresponding private key 80 is also performed in the context of the SSL VPN 15 as shown in
The authentication appliance 100 directs the telephony server 88 to deliver a one-time-password or authoritative response to a cellular phone, landline phone, or e-mail address previously known to be under the control of a user of the client 12. As indicated above, the one-time-password is delivered over a communications modality that is independent of, or out-of-band with respect to, the data communication link between the client 12 and the VPN router 17. The telephony sever 88 may be managed by a third party, or by the organization that manages the VPN 15. The authentication appliance 100 directs the user on the client 12 to enter the authoritative response 102. Along these lines, it is understood that the telephony server 88 and the step of transmitting the authoritative response 102 to the client 12 may be omitted, where the authoritative response 102 is an answer to a knowledge-based question. This answer is contemplated as being pre-defined by the user at an earlier time.
Additionally, the authentication appliance 100 may query the server 14c, which is a part of the VPN 15, to ensure that the client 12 has the authorization to access any resources thereon as a secondary authentication modality. It is contemplated that the server 14c has associated therewith its own username/password authentication scheme, and the authentication appliance 100 queries it. The server 14c may be an Active Directory server, a Lightweight Directory Access Protocol (LDAP) server, a database server, and so forth.
Upon successfully authenticating the client 12, the authentication appliance 100 directs the certificate server 86 to generate the client certificate 78 and the client private key 80. The client certificate 78 and the client private key 80 are transmitted first to the authentication appliance 100, which transmits the same to the client 12 for storage thereon. As described above, the certificate server 86 may be hosted by a third party or by the enterprise that manages the VPN 15. According to one embodiment of the present invention, the authentication appliance 100 communicates with the certificate server 86 via a secured WSE 3.0 WebService call.
As indicated above, the issuer identifier 54 is examined to confirm that a properly recognized CA has issued and signed the client certificate 78. According to the embodiment shown in
In addition to the foregoing configurations, it is expressly contemplated that the client authentication module 82 and the server authentication module 84 may be integrated into a wide variety of applications requiring bi-directional authentication. By way of example only and not of limitation, these include .NET forms authentication in .NET applications, Microsoft Outlook Web Access, and Microsoft Sharepoint, as well as any other system with enforcement points that require proper client and server authentication.
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show any more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
This application is a continuation-in-part of U.S. application Ser. No. 11/702,371 filed Feb. 5, 2007 and entitled SYSTEM AND METHOD FOR FACILITATING SECURE ONLINE TRANSACTIONS, which claims the benefit of U.S. Provisional Application No. 60/827,118 filed Sep. 27, 2006 and entitled MULTI-FACTOR AUTHENTICATION INCS PRODUCT SECUREAUTH IS A UNIQUE TECHNOLOGY TO AUTHENTICATE USERS TO ONLINE IT RESOURCES. SECUREAUTH IS UNIQUE IN ITS ABILITY TO UTILIZE X509 CERTIFICATES, IN A NON-PHISHABLE MANNER, TO AUTHENTICATE AND IDENTIFY USERS WITHOUT FORCING AN ENTERPRISE TO HOST A PKI INFRASTRUCTURE. SPECIFICALLY MFAS UNIQUE INTELLECTUAL PROPERTY PROVIDES X509 SECURE AUTHENTICATION WITHOUT REQUIRING THE ENTERPRISE TO DEPLOY CLIENT-SIDE SSL, the disclosures of which are wholly incorporated by reference herein.
| Number | Date | Country | |
|---|---|---|---|
| 60827118 | Sep 2006 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 11702371 | Feb 2007 | US |
| Child | 11880599 | US |