The invention described in this patent application was not the subject of federally sponsored research and development.
The system and method of the present invention relates to securing cargo to a load bearing surface such as found in a trailer, a railroad car, the inside of an airplane or the deck of a ship; more particularly, the system and method of the present invention relates to a tie down usable with a strap, a rope or a chain which is either attached to or passes over cargo to hold the cargo in place against the load bearing surface during transport.
The transport of cargo by a vehicle on land, in the air or over water typically requires temporarily securing the cargo to a substantially flat load bearing surface. This temporary securing of cargo to a substantially flat load bearing surface prevents the cargo from moving and effectively prevents the cargo from moving with respect to the vehicle. The process of securing cargo to a substantially flat load bearing surface typically involves the use of the straps, the ropes, the chains and the like. The straps, the ropes, the chains and the like are either attached to the cargo, passed over the cargo or passed around the cargo. Once the straps, the ropes, the chains and the like have been attached to, passed over, or passed around the cargo, the end of the strap, the rope or the chain is caused to be connected to a tie down secured to the load bearing surface. A more detailed description of such tie downs appears in MIL-STD-209K as all branches of the military are heavily involved in moving cargo each time military personnel and their equipment are deployed to various parts of the world.
Various different types of tie downs are currently available. U.S. Pat. Nos. 4,907,921; 5,052,869; and 7,134,819 are representative of prior art tie downs.
Makers and users of tie downs are continually looking for stronger, easier to use, easier to manufacture and less expensive tie downs. Accordingly, a need remains in the art for a tie down which is stronger, easier to use, easier to manufacture and less expensive than prior art tie downs.
The disclosed tie down is stronger, easier to use, easier to manufacture and less expensive than prior art tie downs.
The disclosed tie down includes a housing. The housing is effectively a shallow cup-shaped housing with a flange formed around its top or upper edge. The flange around the upper edge of the cup-shaped housing includes mounting holes for attaching the tie down to a load bearing surface. In most applications, when the tie down has been installed on a load bearing surface, the top of the tie down is made to be substantially co-planar with the load bearing surface.
A mounting block is contained within the cup-shaped housing. The mounting block is rotatably mounted to the bottom of the cup-shaped housing.
The mounting block is configured to rotatably secure at least one bail within the cup-shaped housing. When the tie down is not in use, the at least one bail lays within the cup-shaped housing to be substantially co-planar with the load bearing surface. When the tie down is in use, a strap, a rope or a chain is passed under the at least one bail causing the at least one bail to rotate with respect to the mounting block to a position above the plane of the load bearing surface.
In the present invention the at least one bail is connected to the mounting block using a pair of cylindrical fasteners. The cylindrical fasteners pass through hollow bosses formed on either end of the at least one bail and then into openings formed on either end of the mounting block.
A still better understanding of the system and method of the present invention for securing cargo to a load bearing surface may be had by reference to the drawing figures which are to be read with the following DESCRIPTION OF THE EMBODIMENTS, wherein:
As may be seen in
As shown in
Returning to
While two bails 50, 52 are shown in the preferred embodiment, those of ordinary skill in the art will understand that the tie down 10 may be made with a single bail 50. According to the disclosed preferred embodiment, there is a first bail 50 and a second bail 52. The second bail 52 has a substantially flattened portion 54 having a dimension slightly larger than the widest strap anticipated for use in securing cargo to the load bearing surface 100. The first bail 50 has a substantially rounded portion 56 having a radius of curvature less than the radius of curvature of the inside of the cup-shaped housing 30 so that the first bail 50 may lay flat therein. Formed on either end of the bail 50, are two hollow bosses 58, 60. Similarly on bail 52, two hollow bosses 62, 64 are formed. As will be explained below, the hollow bosses 58, 60, 62, 64 are sized to allow the passage of a cylindrical fastener 90 therethrough.
In the center of the tie down 10 is the mounting block 70. The mounting block 70 is rotatably attached to the bottom of the cup-shaped housing 30 with a fastener 72. In the preferred embodiment a threaded fastener is shown; however a rivet or an unthreaded fastener may also be used.
The mounting block 70 includes at least one pair of holes 74, one in either end. In the preferred embodiment a second of holes 76 is included. If a single bail 50 is used, there is one pair of holes. If two bails 50, 52 are used then there are two pairs of holes as shown in
While the present invention has been described in terms of its preferred and alternate embodiments, those of ordinary skill in the art will understand that still other embodiments may be enabled by the disclosure of the system and method for securing cargo to a load bearing surface of the present invention. Such other embodiments shall fall within the scope and meaning of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4907921 | Akright | Mar 1990 | A |
5052869 | Hansen, II | Oct 1991 | A |
6161883 | Pearl | Dec 2000 | A |
7086815 | Bruns | Aug 2006 | B2 |
7134819 | Bulluck | Nov 2006 | B2 |
7201550 | Borrmann et al. | Apr 2007 | B2 |
7214015 | Bruns | May 2007 | B2 |
D624800 | Burns | Oct 2010 | S |
Number | Date | Country | |
---|---|---|---|
20100284758 A1 | Nov 2010 | US |