This invention is directed to lighting systems, and in particular, to light emitting diodes (LED) pump light with multiple phosphors.
Solid state lighting is known. Solid state lighting relies upon semiconductor materials to produce light, e.g., by light emitting diodes. Red LEDs are known and use Aluminum Indium Gallium Phosphide or AlInGaP semiconductor materials, among others. Most recently, Shuji Nakamura pioneered the use of InGaN materials to produce LEDs emitting blue light. The blue LEDs led to other innovations such as solid state white lighting and the blue laser diode.
High intensity UV, blue, and green LEDs based upon the InGaN material system have been proposed and demonstrated. Efficiencies have typically been highest in the UV-violet, but drop off as the emission wavelength is increased to blue or green, Unfortunately, achieving high intensity, high-efficiency InGaN-based green LEDs has been problematic. Additionally, InGaN-based LEDs have been costly and difficult to produce on a wide-scale in an efficient manner, Although successful, solid state lighting techniques must be improved for full exploitation of their potential.
This invention provides pump LED light of selected wavelengths with multiple phosphors. In various embodiments, LEDs emitting radiation at violet and/or ultraviolet wavelengths are used to pump phosphor materials that emit light of a different frequency. The pump LEDs are characterized by having a peak emission wavelength of about 405 to 430 nm under normal operation. They are employed in conjunction with at least a blue phosphor with strong absorption at wavelengths beyond about 405 nm. In certain embodiments, LEDs operating in different wavelength ranges are arranged in a combination to reduce radiation re-absorption and improve light-output efficiency.
This invention provides an optical device which includes a mounting member and at least one light emitting diode overlying a portion of the mounting member. The LED includes a gallium and nitrogen containing substrate having a surface region and a gallium and nitrogen containing buffer layer overlying the surface region. An active region emits electromagnetic radiation with peak wavelengths in a range from about 405 nm to about 430 nm. The LED includes electrical contacts to supply the junction region electrical current. The device additionally includes a mixture of three phosphor materials within a binder material. The mixture of phosphor materials is disposed within a vicinity of the LED interacts with the electromagnetic radiation from the LED to convert the electromagnetic radiation to a wavelength range between about 440 to 650 nanometers. In another embodiment the device includes blue phosphor material within a vicinity of the LED device with strong absorption at wavelengths longer than about 405 nm. The active region is configured to emit electromagnetic radiation whose peak is in the range of about 405 to 430 nanometers while maintaining an internal quantum efficiency of about 70% and greater at a current density of at least 100 A/cm2 in an operating temperature range from about 100° C. to about 150° C.
This invention is directed to lighting systems and to the provision of LED pump light with multiple phosphors. LEDs emitting radiation at violet and/or ultraviolet wavelengths are used to pump phosphor materials that emit different colors. Preferably the pump LEDs have a peak emission wavelength of about 405 to 430 nm under normal operating conditions.
As mentioned above, conventional LED lights sources are often inadequate. For example, one of the most-common approaches to generating high-CRI white LED light consists of LED devices emitting in the 440-470 nm range (often referred to as pump LEDs), which excite two phosphors: a yellow/green phosphor and a red phosphor. This approach is convenient because some yellow/green phosphors, such as Ce:YAG, exhibit high quantum efficiency.
Unfortunately, this approach is also constraining. YAG-based phosphors can only be efficiently excited in a narrow spectral range around 460 nm, limiting the wavelength range of the pump LEDs that can be employed. While high internal quantum efficiency (IQE) LED devices can be created at such wavelengths at low current density, their IQE falls rapidly at high current density. This is due to two effects: (a) the presence of large piezoelectric fields which reduce the carrier overlap and therefore increase the carrier lifetime, shifting the IQE curve to lower current density (ref); and (b) the challenges associated with thick active regions emitting around 445 nm (due to both strain-related growth limitations with thick InGaN layers and the difficulty with carrier spreading in a multi-quantum-well system).
The blue light from the pump LED contributes to the white spectrum. Therefore, the amount of blue light that is transmitted by the phosphors needs to be well-controlled to achieve a given CCT. Variations in the wavelength of the pump LED need to be accounted for in the phosphor composition/loading. Accounting for the differences in wavelength can be a challenging task when manufacturing white LEDs.
State-of-the-art results for 440-nm pump LEDs can be found in the article “White light emitting diodes with super-high luminous efficacy”, Y. Narukawa et al, J. Phys. D 43, 354002 (2010). At room temperature and a current density of about 100 A/cm2, an external quantum efficiency of 65% is reported. Assuming an extraction efficiency of about 90% and a performance drop of about 10% between room temperature and a 100 C junction temperature, this corresponds to an IQE of about 65% at 100 A/cm2 and 100 C.
Another conventional approach consists in using a pump LED whose emission peak is in the 395-405 nm range to pump a system of three or four phosphors. This is advantageous because 400 nm pump LEDs typically retain higher performance at a higher current density than 445 nm pump LEDs, presumably due to the lower piezoelectric fields and to the thick active regions.
Employing an LED emitter whose final spectra is minimally affected (in color or brightness) by the presence or absence of the emitter wavelength in the final spectra allows for very stable performance over drive currents and temperatures. Proper selection of color-stable phosphor materials for the devices range of operation (e.g. a 405 nm emitter's spectral weight) is only 1.5% that of a 450 nm emitter. A 420 nm emitter's spectral weight is still only 10% of that of a 450 nm emitter. Stability in color and flux of a finished phosphor-converted LED is increased dramatically over a traditional blue pump device where as much as 20% of the final spectrum is comprised of the underlying emitter at 450 nm.
The elimination of the need to target a certain amount of emitter light leakage in the final spectra also offers improved color yield in a manufacturing environment. The manufacturing phosphor deposition process for an about 405 nm to 430 nm pump device can accept more process variance without sacrificing large-volume color repeatability. In turn, this allows a manufacturing process to run with higher throughput without loss in repeatability.
Use of three or more component colors (chip emission and at least two phosphors) offers a larger tunable color gamut for a phosphor-converted LED device than does a two-component color system. A large range of tunable colors and color rendering indices become available. A two-color component white LED will only have one possible cross section with the Planckian curve (one point to achieve a balanced white spectrum) whereas a three or more color system allows for infinite tunability along the Planckian curve.
This approach, however, suffers from various limitations:
1. The Stokes loss between the pump wavelengths and the phosphors wavelengths is larger, so more energy is lost in the phosphor down-conversion process. The comparatively larger band gap of a 400 nm pump LED causes a larger operation voltage. The reduced carrier confinement in the active region of a 400 nm pump LED makes it easier for carriers to escape, and therefore decreases the high-temperature performance. Most materials have a significantly larger absorption at 400 nm than at 445 nm (this is the case for high-reflectivity metals such as Al and Ag which are commonly used in LEDs, of silicones, of some substrates such as GaN or SiC, and of Au wirebonds.) which decreases the light-extraction efficiency.
2. There has not been focused development on phosphors for use with 380-430 nm excitation light. This places the performance levels of the available phosphor materials behind the state-of-the-art phosphor performance enjoyed by LED manufacturers employing 450 nm pump LEDs for use with materials such as Y3Al5O12:Ce3+ (YAG-yellow) and CaAlSiN:Eu2+ (red) which have had both time and pressure applied to their improvements.
3. Due to this offset in state-of-the-art phosphor material performance, not all of the available phosphors can be used in high performance LED devices. Prime examples are blue phosphors which are not suitable for use with all chip-emission wavelengths. The absorption characteristics of two blue-emitting phosphors are shown in
This invention provides white LED light sources with high performance. Among other things, the invention provides a new approach to high-CRI white LEDs. For example, the white LED light source comprises pump LED(s) whose peak emission is in the range of about 405 nm to 430 nm and a system of three or more phosphors (such as blue, green, and red). A substantially white spectrum is produced by the phosphor emission.
One advantage of the invention is that a pump LED in the range of about 405 nm to 430 nm can display a very high IQE at high carrier density (similar to a 400 nm pump LED) due to the moderate strain and piezoelectric fields. The carrier confinement in the active region, on the other hand, is significantly improved so that the high-temperature performance is not compromised. The lower band gap compared to a 400 nm LED also enables a lower forward voltage. Therefore, the range of about 405 nm to 430 nm is optimal from the standpoint of pump LED performance. High IQE performance for such LEDs (at a current density of 100 A/cm2 and a junction temperature 100 C) can be better than 70% and even exceed 90%. This is to be compared to about 65% for state-of-the art LEDs emitting at 440 nm as described in the prior art.
In addition, optical absorption in most materials is significantly reduced between 400 nm and about 405 nm to 430 nm, yielding overall larger light-extraction efficiency. Also, as explained above, the use of three or more phosphors to generate white light is advantageous in terms of color control and process stability. Blue phosphors are available with strong absorption in the range of about 405 nm to 430 nm, and with high quantum efficiency. Some examples of blue-emitting phosphors with strong absorption in this wavelength range are BaMgAl10O17:Eu2+, Sr10 (PO4)6Cl2:E, LaAl(Si6−zAlz)N10−zOz:Ce3+, a-Sialon:Ce3+, (Y,La)—Si—O—N:Ce3+, Gd1−xSr2+xAlO5−xFx:Ce3+. The Stokes loss is also mitigated in comparison to a 400 nm pump LED.
Depending on the application, the encapsulant may include various types of materials. In a preferred embodiment, the encapsulant is specifically configured to improve light-extraction efficiency. For example, the encapsulant material can comprise polymeric species. In a preferred embodiment, the pump LED source emits radiation in the wavelength range from about 405 nm to 430 nm and pumps three phosphors (e.g., a blue, a green, and a red phosphor) that are mixed together, and the phosphor mix converts a substantial fraction of the pump LED source light to longer-wavelength light. Of course, the phosphor mix may contain additional phosphors, e.g. an amber phosphor can be added to increase CRI.
In various embodiments, the wavelength emitted by the LED changes due to changes in temperature. For example, a pump LED emits radiation at a wavelength of about 398 nm at room temperature. When temperature increases to about 120° C., the pump LED emits radiation about 405 nm. Typically, high current and/or high temperature are the main causes of wavelength shift. For example, for each increase of 23° C. in operating temperature, the wavelength of the radiation emitted by the pump LED increases by 1 nm. The encapsulant and the phosphor material used in various embodiments of the invention can compensate for the wavelength shift.
In a preferred embodiment, the LEDs emit radiation in substantially the same color (e.g., about 405 nm to 430 nm in wavelength), and the radiation from the LEDs pumps the single-color phosphor materials that are in different spatial locations. In return, the colored phosphor materials emit colored light. For example, the phosphor materials, as shown in
Depending on the application, the LEDs can be arranged in array geometry using several pump LEDs in combination with blue or red LEDs that are not configured to pump phosphor material. It is to be appreciated that the arrangement of LEDs as shown in
Different arrangements of phosphor materials and LED devices enable different light colors to be obtained. In a preferred embodiment, the LED devices are grown on a non-polar or semi-polar substrate. In certain embodiments, the LED devices can be grown on a low-dislocation-density substrate (<1×107 dislocations/cm2) to enable reliable operation at high current density and high temperature.
Wavelength conversion materials can be ceramic or semiconductor particle phosphors, ceramic or semiconductor plate phosphors, organic or inorganic down converters, up converters (anti-stokes), nano-particles and other materials which provide wavelength conversion. Some examples are listed below
(Srn,Ca1−n)10(PO4)6*B2O3:Eu2+ (wherein 0≤n≤1)
(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu2+,Mn2+
(Ba,Sr,Ca)BPO5:Eu2+,Mn2+
Sr2Si3O8*2SrCl2:Eu2+
(Ca,Sr,Ba)3MgSi2O8:Eu2+, Mn2+
BaAl8O13:Eu2+
2SrO*0.84P2O5*0.16B2O3:Eu2+
(Ba,Sr,Ca)MgAl10O17:Eu2+,Mn2+
K2SiF6:Mn4+
(Ba,Sr,Ca)Al2O4:Eu2+
(Y,Gd,Lu,Sc,La)BO3:Ce3+,Tb3+
(Ba,Sr,Ca)2(Mg,Zn)Si2O7:Eu2+
(Mg,Ca,Sr,Ba,Zn)2Si1−xO4−2x:Eu2+ (wherein 0≤x≤0.2)
(Sr,Ca,Ba)(Al,Ga)2S4:Eu2+
(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu2+,Mn2+
Na2Gd2B2O7:Ce3+,Tb3+
(Sr,Ca,Ba,Mg,Zn)2P2O7:Eu2+,Mn2+
(Gd,Y,Lu,La)2O3:Eu3+,Bi3+
(Gd,Y,Lu,La)2O2S:Eu3+,Bi3+
(Gd,Y,Lu,La)VO4:Eu3+,Bi3+
(Ca,Sr)S:Eu2+,Ce3+
(Y,Gd,Tb,La,Sm,Pr,Lu)3(Sc,Al,Ga)5−nO12−3/2n:Ce3+ (wherein 0≤n≤0.5)
ZnS:Cu+,Cl−
(Y,Lu,Th)3Al5O12:Ce3+
ZnS:Cu+,Al3+
ZnS:Ag+,Al3+
ZnS:Ag+,Cl−
(Ca,Sr)Ga2S4:Eu2+
SrY2S4:Eu2+
CaLa2S4:Ce3+
(Ba,Sr,Ca)MgP2O7:Eu2+,Mn2+
(Y,Lu)2WO6:Eu3+,Mo6+
CaWO4
(Y,Gd,La)2O2S:Eu3+
(Y,Gd,La)2O3:Eu3+
(Ba,Sr,Ca)nSinNn:Eu2+ (where 2n+4=3n)
Ca3(SiO4)Cl2:Eu2+
(Y,Lu,Gd)2,CanSi4N6+nC1−n:Ce3+, (wherein 0≤n≤0.5)
(Lu,Ca,Li,Mg,Y) alpha-SiAlON doped with Eu2+ and/or Ce3+
(Ca,Sr,Ba)SiO2N2:Eu2+,Ce3+
(Sr,Ca)AlSiN3:Eu2+
CaAlSi(ON)3:Eu2+
Sr10(PO4)6Cl2:Eu2+
(BaSi)O12N2:Eu2+
SrSi2(O,Cl)2N2:Eu2+
(Ba,Sr)Si2(O,Cl)2N2:Eu2+
LiM2O8:Eu3+ where M=(W or Mo)
In the list above, it is understood that when a phosphor has two or more dopant ions (i.e. those ions following the colon in the above phosphors), this means that the phosphor has at least one (but not necessarily all) of those dopant ions within the material. That is, as understood by those skilled in the art, this type of notation means that the phosphor can include any or all of those specified ions as dopants in the formulation.
In certain embodiments, quantum-dot-based phosphors are used for color conversion purposes. Quantum dot materials are a family of semiconductor and rare earth doped oxide nanocrystals whose size and chemistry determine their luminescent characteristics. Typical chemistries for the semiconductor quantum dots include well known (ZnxCd1-x) Se [x=0..1], (Znx,Cd1-x)Se[x=0..1], Al(AsxP1−x) [x=0..1], (Znx,Cd1-x)Te[x=0..1], Ti(AsxP1-x) [x=0..1], In(AsxP1-x) [x=0..1], (AlxGa1-x)Sb [x=0..1], (Hgx,Cd1-x)Te[x=0..1] zincblende semiconductor crystal structures. Published examples of rare-earth doped oxide nanocrystals include Y2O3:Sm3+, (Y,Gd)2O3:Eu3+, Y2O3:Bi, Y2O3:Tb, Gd2SiO5:Ce, Y2SiO5:Ce, Lu2SiO5:Ce, Y3Al5)12:Ce but should not exclude other simple oxides or orthosilicates.
In certain embodiments, the present invention provides a two-phosphor violet pumped white LED, which can be used for illumination. In a specific embodiment, a cyan phosphor and an orange phosphor are used with violet-pumped LED chips. For example, violet chips emitting radiation at wavelength of about 400-440 nm are provided. In this configuration, the emission of the two phosphors substantially determine the chromaticity and color quality of the white light. For example, color is determined primarily by the mix of two phosphors, and pump light leakage is typically minimal and not very eye-sensitive. This approach combines the advantages of reduced phosphor complexity and cost with the simplified color tuning of a two-phosphor system. Moreover, the low eye sensitivity of the violet pump ensures that color targeting in manufacturing with high yield is provided, unlike the case for blue-pumped systems in which case tight control over blue light leakage is necessary for maintaining tight control over chromaticity spread in high-volume manufacturing.
While the above is a full description of the specific embodiments, various modifications, alternative constructions, and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
This application is a continuation of U.S. Application No. 14,489,261, filed Apr. 17, 2017, which is a continuation of U.S. application Ser. No. 15/077,387 filed Mar. 22, 2016, now U.S. Pat. No. 9,660,152, which is a continuation of U.S. application Ser. No. 13/211,145 filed on Aug. 16, 2011, now U.S. Pat. No. 9,293,667, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Application No. 61/502,212 filed on Jun. 28, 2011, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4727003 | Ohseto | Feb 1988 | A |
4918497 | Edmond | Apr 1990 | A |
4946621 | Fouassier | Aug 1990 | A |
5077161 | Law | Dec 1991 | A |
5110931 | Dietz | May 1992 | A |
5120051 | Greenberg | Jun 1992 | A |
5142387 | Shikama | Aug 1992 | A |
5208462 | O'Connor | May 1993 | A |
5211467 | Seder | May 1993 | A |
5237182 | Kitagawa | Aug 1993 | A |
5369289 | Tamaki | Nov 1994 | A |
5518808 | Bruno | May 1996 | A |
5535230 | Abe | Jul 1996 | A |
5637531 | Porowski | Jun 1997 | A |
5679152 | Tischler | Oct 1997 | A |
5770887 | Tadatomo | Jun 1998 | A |
5959316 | Lowery | Sep 1999 | A |
5962971 | Chen | Oct 1999 | A |
6137217 | Pappalardo | Oct 2000 | A |
6234648 | Boerner | May 2001 | B1 |
6275145 | Rogozinski | Aug 2001 | B1 |
6335771 | Hiraishi | Jan 2002 | B1 |
6413627 | Motoki | Jul 2002 | B1 |
6440823 | Vaudo | Aug 2002 | B1 |
6466135 | Srivastava | Oct 2002 | B1 |
6468347 | Motoki | Oct 2002 | B1 |
6468882 | Motoki | Oct 2002 | B2 |
6488767 | Xu | Dec 2002 | B1 |
6498355 | Harrah | Dec 2002 | B1 |
6504301 | Lowery | Jan 2003 | B1 |
6559075 | Kelly | May 2003 | B1 |
6600175 | Baretz | Jul 2003 | B1 |
6621211 | Srivastava | Sep 2003 | B1 |
6635904 | Goetz | Oct 2003 | B2 |
6642652 | Collins, III | Nov 2003 | B2 |
6853010 | Slater, Jr. | Feb 2005 | B2 |
6956246 | Epler | Oct 2005 | B1 |
6967116 | Negley | Nov 2005 | B2 |
7009199 | Hall | Mar 2006 | B2 |
7033858 | Chai | Apr 2006 | B2 |
7083302 | Chen | Aug 2006 | B2 |
7091661 | Ouderkirk | Aug 2006 | B2 |
7113658 | Ide | Sep 2006 | B2 |
7220324 | Baker | May 2007 | B2 |
7253446 | Sakuma | Aug 2007 | B2 |
7318651 | Chua | Jan 2008 | B2 |
7332746 | Takahashi | Feb 2008 | B1 |
7358543 | Chua | Apr 2008 | B2 |
7361938 | Mueller | Apr 2008 | B2 |
7419281 | Porchia et al. | Sep 2008 | B2 |
7521862 | Mueller | Apr 2009 | B2 |
7615795 | Baretz | Nov 2009 | B2 |
7646033 | Tran | Jan 2010 | B2 |
7737457 | Kolodin | Jun 2010 | B2 |
7791093 | Basin | Sep 2010 | B2 |
7884538 | Mitsuishi | Feb 2011 | B2 |
7902564 | Mueller-Mach | Mar 2011 | B2 |
7906793 | Negley | Mar 2011 | B2 |
7923741 | Zhai | Apr 2011 | B1 |
7943945 | Baretz | May 2011 | B2 |
8044412 | Murphy | Oct 2011 | B2 |
8124996 | Raring | Feb 2012 | B2 |
8203161 | Simonian | Jun 2012 | B2 |
8207554 | Shum | Jun 2012 | B2 |
8269245 | Shum | Sep 2012 | B1 |
8299473 | D Evelyn | Oct 2012 | B1 |
8310143 | Van De Ven | Nov 2012 | B2 |
8362603 | Lim | Jan 2013 | B2 |
8459840 | Ishimori | Jun 2013 | B2 |
8519437 | Chakraborty | Aug 2013 | B2 |
8558265 | Raring | Oct 2013 | B2 |
8576147 | Koyama | Nov 2013 | B2 |
8618560 | D Evelyn | Dec 2013 | B2 |
8704258 | Tasaki | Apr 2014 | B2 |
8740413 | Krames | Jun 2014 | B1 |
8905588 | Krames | Dec 2014 | B2 |
8933644 | David | Jan 2015 | B2 |
9046227 | David | Jun 2015 | B2 |
9293667 | David | Mar 2016 | B2 |
9660152 | David | May 2017 | B2 |
10700244 | David | Jun 2020 | B2 |
20010022495 | Salam | Sep 2001 | A1 |
20010055208 | Kimura | Dec 2001 | A1 |
20020088985 | Komoto | Jul 2002 | A1 |
20020171092 | Goetz | Nov 2002 | A1 |
20030080345 | Motoki | May 2003 | A1 |
20030145783 | Motoki | Aug 2003 | A1 |
20030214616 | Komoto | Nov 2003 | A1 |
20040016938 | Baretz | Jan 2004 | A1 |
20040036079 | Nakada | Feb 2004 | A1 |
20040066140 | Omoto | Apr 2004 | A1 |
20040195598 | Tysoe | Oct 2004 | A1 |
20040201598 | Eliav | Oct 2004 | A1 |
20040207998 | Suehiro | Oct 2004 | A1 |
20040217364 | Tarsa | Nov 2004 | A1 |
20040227149 | Ibbetson | Nov 2004 | A1 |
20050084218 | Ide | Apr 2005 | A1 |
20050109240 | Maeta | May 2005 | A1 |
20050179376 | Fung | Aug 2005 | A1 |
20050199899 | Lin | Sep 2005 | A1 |
20050218780 | Chen | Oct 2005 | A1 |
20050224830 | Blonder | Oct 2005 | A1 |
20050247260 | Shin | Nov 2005 | A1 |
20050285128 | Scherer | Dec 2005 | A1 |
20060038542 | Park | Feb 2006 | A1 |
20060049416 | Baretz | Mar 2006 | A1 |
20060068154 | Parce | Mar 2006 | A1 |
20060097385 | Negley | May 2006 | A1 |
20060138435 | Tarsa | Jun 2006 | A1 |
20060175624 | Sharma | Aug 2006 | A1 |
20060205199 | Baker | Sep 2006 | A1 |
20060208262 | Sakuma | Sep 2006 | A1 |
20070018184 | Beeson | Jan 2007 | A1 |
20070086916 | Leboeuf | Apr 2007 | A1 |
20070120141 | Moustakas | May 2007 | A1 |
20070126023 | Haskell | Jun 2007 | A1 |
20070181895 | Nagai | Aug 2007 | A1 |
20070210074 | Maurer | Sep 2007 | A1 |
20070228404 | Tran | Oct 2007 | A1 |
20070231963 | Doan | Oct 2007 | A1 |
20070272933 | Kim | Nov 2007 | A1 |
20080083741 | Giddings | Apr 2008 | A1 |
20080087919 | Tysoe | Apr 2008 | A1 |
20080106186 | Ishii | May 2008 | A1 |
20080149166 | Beeson | Jun 2008 | A1 |
20080149949 | Nakamura | Jun 2008 | A1 |
20080149959 | Nakamura | Jun 2008 | A1 |
20080192791 | Furukawa | Aug 2008 | A1 |
20080194054 | Lin | Aug 2008 | A1 |
20080210958 | Senda | Sep 2008 | A1 |
20080224597 | Baretz | Sep 2008 | A1 |
20080261341 | Zimmerman | Oct 2008 | A1 |
20080274574 | Yun | Nov 2008 | A1 |
20090050908 | Yuan | Feb 2009 | A1 |
20090087775 | Kunou | Apr 2009 | A1 |
20090140630 | Kijima | Jun 2009 | A1 |
20090146170 | Zhong | Jun 2009 | A1 |
20090173958 | Chakraborty | Jul 2009 | A1 |
20090207873 | Jansen | Aug 2009 | A1 |
20090224652 | Li | Sep 2009 | A1 |
20090250686 | Sato | Oct 2009 | A1 |
20090252191 | Kubota | Oct 2009 | A1 |
20090273005 | Lin | Nov 2009 | A1 |
20090302338 | Nagai | Dec 2009 | A1 |
20090309110 | Raring | Dec 2009 | A1 |
20090315480 | Yan | Dec 2009 | A1 |
20090321776 | Kim | Dec 2009 | A1 |
20090321778 | Chen | Dec 2009 | A1 |
20100001300 | Raring | Jan 2010 | A1 |
20100006873 | Raring | Jan 2010 | A1 |
20100025656 | Raring | Feb 2010 | A1 |
20100044718 | Hanser | Feb 2010 | A1 |
20100104495 | Kawabata | Apr 2010 | A1 |
20100117106 | Trottier | May 2010 | A1 |
20100149814 | Zhai | Jun 2010 | A1 |
20100258830 | Ide | Oct 2010 | A1 |
20100289044 | Krames | Nov 2010 | A1 |
20100290208 | Pickard | Nov 2010 | A1 |
20100291313 | Ling | Nov 2010 | A1 |
20100327291 | Preble | Dec 2010 | A1 |
20110038154 | Chakravarty | Feb 2011 | A1 |
20110069490 | Liu | Mar 2011 | A1 |
20110103064 | Coe-Sullivan | May 2011 | A1 |
20110108865 | Aldaz | May 2011 | A1 |
20110121331 | Simonian | May 2011 | A1 |
20110186874 | Shum | Aug 2011 | A1 |
20110186887 | Trottier | Aug 2011 | A1 |
20110215348 | Trottier | Sep 2011 | A1 |
20110227469 | Yuan | Sep 2011 | A1 |
20110279998 | Su | Nov 2011 | A1 |
20110291548 | Nguyen The | Dec 2011 | A1 |
20110317397 | Trottier | Dec 2011 | A1 |
20120235201 | Shum | Sep 2012 | A1 |
20130082292 | Wei | Apr 2013 | A1 |
20140119024 | Yu | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1538534 | Oct 2004 | CN |
1702836 | Nov 2005 | CN |
1874019 | Dec 2006 | CN |
101009347 | Aug 2007 | CN |
101099245 | Jan 2008 | CN |
101171692 | Apr 2008 | CN |
101515700 | Aug 2009 | CN |
100547815 | Oct 2009 | CN |
2267190 | Dec 2010 | EP |
H10319877 | Dec 1998 | JP |
H1140845 | Feb 1999 | JP |
2001501380 | Jan 2001 | JP |
2002217454 | Aug 2002 | JP |
2002252371 | Sep 2002 | JP |
2003101081 | Apr 2003 | JP |
2003141905 | May 2003 | JP |
2004071726 | Mar 2004 | JP |
2004128444 | Apr 2004 | JP |
2004207519 | Jul 2004 | JP |
2004320024 | Nov 2004 | JP |
2005244226 | Sep 2005 | JP |
2006186022 | Jul 2006 | JP |
2006520095 | Aug 2006 | JP |
2006257290 | Sep 2006 | JP |
2006308858 | Nov 2006 | JP |
2006310817 | Nov 2006 | JP |
2007188962 | Jul 2007 | JP |
2007524119 | Aug 2007 | JP |
2007287678 | Nov 2007 | JP |
2008091488 | Apr 2008 | JP |
2008159606 | Jul 2008 | JP |
2008192797 | Aug 2008 | JP |
2008311532 | Dec 2008 | JP |
2009001677 | Jan 2009 | JP |
2009130097 | Jun 2009 | JP |
2009135306 | Jun 2009 | JP |
2009179662 | Aug 2009 | JP |
2009200337 | Sep 2009 | JP |
2009543335 | Dec 2009 | JP |
2010510654 | Apr 2010 | JP |
2010535403 | Nov 2010 | JP |
2013525007 | Jun 2013 | JP |
2013536583 | Sep 2013 | JP |
2015094496 | May 2015 | JP |
2006068141 | Jun 2006 | WO |
2006123259 | Nov 2006 | WO |
2007091920 | Aug 2007 | WO |
2009013695 | Jan 2009 | WO |
2009066430 | May 2009 | WO |
2009130636 | Oct 2009 | WO |
2010017148 | Feb 2010 | WO |
2010150880 | Dec 2010 | WO |
2012024636 | Feb 2012 | WO |
2012127349 | Sep 2012 | WO |
2012164426 | Dec 2012 | WO |
Entry |
---|
Bockowski, ‘Directional crystallization of GaN on high-pressure solution grown substrates by growth from solution and HVPE’, Journal of Crystal Growth, 2002, vol. 246, 3-4, pp. 194-206. |
Chinese Office Action From Chinese Patent Application No. 200980134723.8 dated Nov. 1, 2012, 22 pgs. (With Translation). |
Chinese Office Action dated Dec. 19, 2018, in Chinese Application No. 201710543269.8, including English Translation (19 pages). |
Chinese Office Action dated Jul. 8, 2019, in Chinese Application No. 201710543269.8, including English Translation, 9 pages. |
Communication from the German Patent Office re 11 2011 102 386.3 dated May 14, 2013, 8 pages. |
Communication from the Japanese Patent Office re 2011-522148 dated Mar. 14, 2013, 5 pages. |
Communication from the Japanese Patent Office re 2011-522148, dated Oct. 22, 2013, 6 pages. |
Communication from the Japanese Patent Office re 2013-525007 dated Mar. 28, 2014, (4 pages). |
Dulda et al., “Photoluminescence and morphology of flux grown BAM phosphor using a novel synthesis method”, Journal of Ceramic Processing Research, 2009, vol. 10, No. 6p. 811-816. |
German Office Action mailed Jul. 5, 2018 for Application No. 11 2011 102 386.3, including English translation, (14 pages). |
Hiramatsu et al., ‘Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (Facelo)’, Journal of Crystal Growth, vol. 221, No. 1-4, Dec. 2000, pp. 316-326. |
Iso et al., “High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate,” 2007, Japanese Journal of Applied Physics, vol. 46, No. 40, pp. L960-L962. |
Japanese Office Action dated Jul. 3, 2018, in Japanese Application No. 2017-122984, including English translation (11 pages). |
Japanese Office Action dated Mar. 12, 2019 for Japanese Application No. 2017-122984, including Engliash translation (9 pages). |
Kelly et al., Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitay and Laser-Induced Liftoff, Japanese Journal of Applied Physics, vol. 38, 1999, pp. L217-L219. |
Korean Office Action dated Aug. 14, 2019, in Korean Application No. 10-2019-7011564, including English Translation (14 pages). |
Korean Office Action dated Jul. 2, 2020, in Korean Application No. 10-2019-7011564, including English Translation (13 pages). |
Madelung, ‘III-V Compounds’, Semiconductors: Data Handbook, Springer Verlag, Berlin-Heidelberg, vol. 3, Ch. 2, 2004, pp. 71-172. |
Manh et al., “Effects of Annealing on the Luminescence Properties of BaMgA110017:Eu2+ Blue Emitting Phosphor”, International Journal of Engineering and Innovative Technology (IJEIT), Dec. 2013, vol. 3, Issue 6p. 67-70. |
Notice of Allowance dated Jan. 22, 2019, in Korean Application No. 10-2018-7012715, including English Translation (3 pages). |
Office Action dated Aug. 1, 2018, in Korean Application No. 10-2018-7012715, including English translation (5 pages). |
Porowski et al., ‘Thermodynamical Properties of III-V Nitrides and Crystal Growth of GaN at High N2 Pressure’, Journal of Crystal Growth, 1997, vol. 178, pp. 174-188. |
Ravichandran et al., “Crystal chemistry and luminescence of the EU2+-active alkaline earth aluminate phosphors”, Displays, 1999, p. 197-203. |
Sato et al., “Optical properties of yellow light-emitting diodes grown on semipolar (1122) bulk GaN substrate”, Applied Physics Letters, vol. 92, No. 22, 2008, p. 221110-221110-3. |
Search and Examination report for application PCT/US2011/048499 (dated Feb. 14, 2012), 9 pages. |
Wang et al., “Synthesis of Nanosized Luminescent Materials and Their Photoluminescence under VUV Excitation”, Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications, INTECH, Apr. 2011, Chapter 7, p. 121-154. |
Weaver et al., ‘Optical Properties of Selected Elements’, Handbook of Chemistry and Physics, vol. 94, 2013-2014, pp. 12-126-12-140. |
X. Xu et al., “Growth and Characterization of Low Defect GaN by Hydride Vapor Phase Epitaxy”, J. Cryst. Growth 246, pp. 223-249 (2002). |
Xu et al., Acid Etching for accurate determination of dislocation density in GaN, J. Electronic Materials, 2002, vol. 31, pp. 402-405. |
Chinese Office Action dated Apr. 30, 2021, for Application No. 201710543269.8, including English translation (6 pages). |
German Office Action dated May 3, 2021, for Application No. 11 2011 102 386.3, including English translation, (10 pages). |
Korean Office Action dated May 6, 2021, for Application No. 10-2019-7011564, including English machine translation. |
Notification of Reexamination dated Aug. 30, 2021, in Chinese Application No. 201710543269.8, including English translation. |
Notice to File a Response dated Nov. 11, 2021 in Korean Application No. 10-2021-7024897, including English translation. |
Chinese Office Action From Chinese Patent Application No. 200980134723.8 dated Mar. 2, 2022, 15 pgs. (With Translation). |
Chinese Office Action dated Aug. 8, 2022, in Chinese Application No. 201710543269.8, including English Machine Translation, 11 pages. |
Korean Office Action dated Sep. 23, 2022, for Application No. 10-2021-7024897, including English translation. |
Number | Date | Country | |
---|---|---|---|
20210057615 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
61502212 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15489261 | Apr 2017 | US |
Child | 16915466 | US | |
Parent | 15077387 | Mar 2016 | US |
Child | 15489261 | US | |
Parent | 13211145 | Aug 2011 | US |
Child | 15077387 | US |