1. Field of the Invention
The present invention relates to a system and method for adapting spreading codes to the transmission channel medium in communication networks. Specifically, the present invention relates to a system and method for selecting an optimum spreading code for Direct-Sequence Spread-Spectrum (DSSS) node communication, based upon information gathered about the radio-frequency link between nodes, such that interpath interference is minimized.
2. Description of the Related Art
Many communication systems employ the use of spreading codes to transmit signals, such as voice, data or multimedia signals between transceivers, or nodes, of a network. In such applications, the narrow-band data transmission signal within the single frequency band is multiplied by a spreading code having a broader band than the user data signal and the user data signal is “spread” to fill the entire frequency band used. As discussed in U.S. Pat. No. 5,515,396 issued to Michael D. Kotzin, which is incorporated herein by reference, the modulation of a signal to be transmitted often includes taking a baseband signal (e.g., a voice channel) having a bandwidth of only a few kilohertz, and distributing the signal to be transmitted over a frequency band that may be many megahertz wide. Although spreading the user data signal may be accomplished by several methods, the most common is to modulate each bit of information, generally after appropriate error correction coding, with a spreading code sequence of bits. In doing so, many bits are generated for each coded information bit that is desired to be transmitted. However, transmissions between transceivers are subject to interference from a number of sources, therefore corrections and compensations must be considered when implementing Direct-Sequence Spread-Spectrum (DSSS) systems.
One such source of interference is multipath propagation between transceivers. Signals propagated along different paths, arrive at the receiver at different times due to variations in transmission delays. As discussed in U.S. Pat. No. 5,677,934, issued to Kjell Ostman, which is incorporated herein by reference, multipath propagation profiles are highly dependent upon the environment of the communication link. As pointed out in Ostman, when the signaling period is long, and delayed copies of the transmitted signals are received with a delay that is long in comparison to the signaling period, multipath propagation compensation is required. Furthermore, in mobile networks, the communications receiver sees rapid changes in phase and amplitude of a received signal and is required to track such changes. Several methods exist for addressing these effects, such as the use of RAKE receivers to collectively assemble transmitted signals. Through the use of a RAKE-receiver algorithm, a complete transmission may be derived from the multiple propagated signals within the receiver.
Multipath interference can also be cancelled through the use of spreading codes when carefully selected to ensure that secondary multipath rays are concurrent with the lowest sidelobe values of the selected spreading code's periodic autocorrelation functions. Accordingly, a need exists for a system and method for the selection of spreading codes for communication, based on information gathered between two nodes, in order to minimize and preferably eliminate multipath interference.
An object of the present invention is to provide a system and method for determining the Multipath Delay Profile of the communication channel between two nodes in a communication network.
Another object of the present invention is to determine a fitness function for each spreading code based upon the Multipath Delay Profile of a channel used for communication between two nodes of a communication network.
A further object of the present invention is to determine the spreading code with the lowest fitness function based upon the Multipath Delay Profile of a channel used for communication between two nodes of a network, such as a wireless ad-hoc network, thereby minimizing the adverse effects of multipath during wireless communications.
These and other objects are substantially achieved by a system and method which estimates the hypothetical interference levels for all possible spreading codes and determines which code provides the lowest interference level. The system and method first issues a request-to-send (RTS) data packet between two nodes in a communication network using a high spreading-gain code used by all nodes. The RTS data is used to estimate the Multipath Delay Profile (MDP) of the radio-frequency link between nodes and a fitness evaluation of spreading codes based upon the Multipath Delay Profile reveals the optimum spreading code for use with the radio-frequency link. A clear-to-send (CTS) data packet issued from the receiver node to the transmitting node includes information identifying the optimum spreading code to be used by the transmitting node.
These and other objects, features and characteristics of the present invention will become more apparent to those skilled in the art from a study of the following detailed description in conjunction with the appended claims and drawings, all of which form a part of this specification. In the drawings:
The selection and use of optimum spreading codes in node communication is a successful approach to reducing multipath interference. In the present embodiment of the invention discussed below, individual nodes are employed having the capability to determine optimum spreading codes during communication.
In an embodiment of the present invention shown in
The evaluation of transmission channel factors between nodes uses two or more nodes with task divisions based upon classification as a receiving node, or a sending node (i.e. receiver or transmitter) as will now be described. In
Initiating spreading code selection begins with a transmission of a request-to-send (RTS) data packet from node 102 to node 104 using a high spreading-gain code as shown at 106. The transmission of the RTS data packet occurs via a transmission channel 120 between transceivers. Based on receipt of the RTS data packet, node 104 determines a Multipath Delay Profile of the transmission channel at 108.
The determination of the Multipath Delay Profile can be achieved by matched-filtering a reference sequence in the RTS, a process made possible by the higher spreading gain of the sequence used. The determination of a Multipath Delay Profile is discussed in U.S. Pat. No. 6,229,842 issued to Schulin et al., which is incorporated herein by reference. Sufficient provisions should be made to determine all major contributing paths in the Multipath Delay Profile, however minor paths, such as those lower than the direct-path component by 10 or more decibels, will have little or no influence on the performance of the system and may be disregarded.
As shown in
As can be appreciated by one skilled in the art, the amount of interference caused by a secondary path is proportional to the product of the interference level estimated by the Multipath Delay Profile, and the periodic autocorrelation sidelobe value of the spreading sequence at the chip delay corresponding to the secondary path. Therefore, the selection of an optimum spreading code requires the estimate of the hypothetical interference levels for all possible spreading codes. Once the levels are known, the spreading code providing the lowest interference level is chosen.
Each spreading code sequence considered is used to create an “even” and “odd” periodic auto-correlation function (PACF) as shown in
where i is the chip-sequence index and N is the length of the spreading code.
In the previous equation (1), the values for x, defined as being the spreading code for i ε[1,N], are understood to be modulo N where,
x(0)=x(N)
x(−1)=x(N−1)
x(−2)=x(N−2)
and so forth. This defines what is referred to as the “even” PACF because it assumes that the previous and following symbol is identical. However, the previous and following symbol modulating the spreading sequence may take a difference value. In this case it is necessary to define the “odd” PACF where,
x(0)=−x(N)
x(−1)=−x(N−1)
x(−2)=−x(N−2)
and so forth. The two PACF functions can therefore be written as,
where xEVEN and xODD make different assumptions on the way symbols are modulated.
As shown in
where Rxx is the periodic auto-correlation function of the spreading sequence considered, N is the length of the spreading sequence and MDP is the Multipath Delay Profile of the transmission channel.
As shown in Table 1 below, node 104 is used to evaluate the fitness of each spreading code and the code found to have the lowest fitness will minimize the adverse effects of multipath and provide the best performance. The embodiment of the present invention is shown evaluating code sequences of length 8, although the method may be generalized to code sequences of any length. Also, the embodiment of the present invention is shown evaluating three different code sequences, although the method can be generalized to any number of code sequences.
For instance, in row one of Table 1, spreading code sequence (1,−1,1,−1,−1,−1,1,1) as shown in
The system and method presented herein will be effective if the channel information that is estimated by the receiver when the transmission is initiated does not change significantly until the end of the transmission. Thus, the concept of stationarity can be relative to the overall transmission time. A wireless unit, such as a laptop, may be considered stationary or mobile depending on its current utilization, for example, on an office desk or in a vehicle. The decision of whether the unit is stationary or mobile can be made adaptively, for example, with a motion sensor, or repeated channel probes, or a unit can be designated as fixed, such as a base station mounted on a wall, or mobile, such as a personal digital assistant (PDA). However, the embodiment is highly adaptive and can be well suited for units which may be “redeployed” often, such as wireless routers or computers on a desk-devices which may not attain higher data rates because of an adverse multipath environment.
Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4494192 | Lew et al. | Jan 1985 | A |
4617656 | Kobayashi et al. | Oct 1986 | A |
4736371 | Tejima et al. | Apr 1988 | A |
4742357 | Rackley | May 1988 | A |
4747130 | Ho | May 1988 | A |
4910521 | Mellon | Mar 1990 | A |
5034961 | Adams | Jul 1991 | A |
5068916 | Harrison et al. | Nov 1991 | A |
5231634 | Giles et al. | Jul 1993 | A |
5233604 | Ahmadi et al. | Aug 1993 | A |
5241542 | Natarajan et al. | Aug 1993 | A |
5317566 | Joshi | May 1994 | A |
5317593 | Fulghum et al. | May 1994 | A |
5392450 | Nossen | Feb 1995 | A |
5412654 | Perkins | May 1995 | A |
5424747 | Chazelas et al. | Jun 1995 | A |
5502722 | Fulghum | Mar 1996 | A |
5515396 | Dalekotzin | May 1996 | A |
5517491 | Nanni et al. | May 1996 | A |
5555425 | Zeller et al. | Sep 1996 | A |
5555540 | Radke | Sep 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5615212 | Ruszczyk et al. | Mar 1997 | A |
5618045 | Kagan et al. | Apr 1997 | A |
5621732 | Osawa | Apr 1997 | A |
5623495 | Eng et al. | Apr 1997 | A |
5627976 | McFarland et al. | May 1997 | A |
5631897 | Pacheco et al. | May 1997 | A |
5644576 | Bauchot et al. | Jul 1997 | A |
5652751 | Sharony | Jul 1997 | A |
5677934 | Ostman | Oct 1997 | A |
5680392 | Semaan | Oct 1997 | A |
5684794 | Lopez et al. | Nov 1997 | A |
5687194 | Paneth et al. | Nov 1997 | A |
5696903 | Mahany | Dec 1997 | A |
5701294 | Ward et al. | Dec 1997 | A |
5706428 | Boer et al. | Jan 1998 | A |
5710977 | Nakazawa | Jan 1998 | A |
5717689 | Ayanoglu | Feb 1998 | A |
5745483 | Nakagawa et al. | Apr 1998 | A |
5774876 | Wooley et al. | Jun 1998 | A |
5781540 | Malcolm et al. | Jul 1998 | A |
5787080 | Hulyalkar et al. | Jul 1998 | A |
5794154 | Bar-On et al. | Aug 1998 | A |
5796732 | Mazzola et al. | Aug 1998 | A |
5796741 | Saito et al. | Aug 1998 | A |
5805593 | Busche | Sep 1998 | A |
5805842 | Nagaraj et al. | Sep 1998 | A |
5805977 | Hill et al. | Sep 1998 | A |
5809518 | Lee | Sep 1998 | A |
5822309 | Ayanoglu et al. | Oct 1998 | A |
5844905 | McKay et al. | Dec 1998 | A |
5845097 | Kang et al. | Dec 1998 | A |
5857084 | Klein | Jan 1999 | A |
5870350 | Bertin et al. | Feb 1999 | A |
5877724 | Davis | Mar 1999 | A |
5881095 | Cadd | Mar 1999 | A |
5881372 | Kruys | Mar 1999 | A |
5884171 | Tanabe et al. | Mar 1999 | A |
5886992 | Raatikainen et al. | Mar 1999 | A |
5896561 | Schrader et al. | Apr 1999 | A |
5903559 | Acharya et al. | May 1999 | A |
5909651 | Chander et al. | Jun 1999 | A |
5936953 | Simmons | Aug 1999 | A |
5943322 | Mayor et al. | Aug 1999 | A |
5987011 | Toh | Nov 1999 | A |
5987033 | Boer et al. | Nov 1999 | A |
5991279 | Haugli et al. | Nov 1999 | A |
6028853 | Haartsen | Feb 2000 | A |
6029217 | Arimilli et al. | Feb 2000 | A |
6034542 | Ridgeway | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047330 | Stracke, Jr. | Apr 2000 | A |
6052594 | Chuang et al. | Apr 2000 | A |
6052752 | Kwon | Apr 2000 | A |
6064626 | Stevens | May 2000 | A |
6067291 | Kamerman et al. | May 2000 | A |
6078566 | Kikinis | Jun 2000 | A |
6104712 | Robert et al. | Aug 2000 | A |
6108738 | Chambers et al. | Aug 2000 | A |
6115580 | Chuprun et al. | Sep 2000 | A |
6122690 | Nannetti et al. | Sep 2000 | A |
6130881 | Stiller et al. | Oct 2000 | A |
6132306 | Trompower | Oct 2000 | A |
6147975 | Bowman-Amuah | Nov 2000 | A |
6163699 | Naor et al. | Dec 2000 | A |
6178337 | Spartz et al. | Jan 2001 | B1 |
6192053 | Angelico et al. | Feb 2001 | B1 |
6192230 | van Bokhorst et al. | Feb 2001 | B1 |
6208870 | Lorello et al. | Mar 2001 | B1 |
6223240 | Odenwald et al. | Apr 2001 | B1 |
6229842 | Schulist et al. | May 2001 | B1 |
6240294 | Hamilton et al. | May 2001 | B1 |
6246875 | Seazholtz et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6269075 | Tran | Jul 2001 | B1 |
6275707 | Reed et al. | Aug 2001 | B1 |
6285892 | Hulyalkar | Sep 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6327300 | Souissi et al. | Dec 2001 | B1 |
6349091 | Li | Feb 2002 | B1 |
6349210 | Li | Feb 2002 | B1 |
6577671 | Vimpari | Jun 2003 | B1 |
6731622 | Frank et al. | May 2004 | B1 |
6741550 | Shin | May 2004 | B1 |
20010053699 | McCrady et al. | Dec 2001 | A1 |
20020006121 | George | Jan 2002 | A1 |
20020106002 | Sun et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
2132180 | Mar 1996 | CA |
0513841 | Nov 1992 | EP |
0627827 | Dec 1994 | EP |
0924890 | Jun 1999 | EP |
2683326 | Jul 1993 | FR |
WO 9608884 | Mar 1996 | WO |
WO 9724005 | Jul 1997 | WO |
WO 9839936 | Sep 1998 | WO |
WO 9912302 | Mar 1999 | WO |
WO 0034932 | Jun 2000 | WO |
WO 0110154 | Feb 2001 | WO |
WO 0133770 | May 2001 | WO |
WO 0135567 | May 2001 | WO |
WO 0137481 | May 2001 | WO |
WO 0137482 | May 2001 | WO |
WO 0137483 | May 2001 | WO |
WO 0235253 | May 2002 | WO |