1. The Field of the Invention
The invention is in the field of electronic controllers for exercise equipment. More specifically, this invention relates to a method and system for selective adjustment of an exercise apparatus to simulate movement along a desired pathway.
2. The Relevant Technology
The desire to improve health and enhance cardiovascular efficiency has increased in recent years. This desire has been coupled with the desire to exercise in locations that are compatible with working out within a limited space such as within an individual's home or exercise gym. This trend has led to an increased desire for the production of exercise equipment. Furthermore, in modern urban society, it has become more and more difficult for the average individual to experience the exhilaration of exercising in nature. To compensate for this difficulty, athletic sports gyms and exercise facilities featuring treadmills, bicycles or exercise bicycles, weights, and stair stepper machines, have been developed in great abundance.
Climbing devices have also become very popular in recent years. Climbing requires a user to raise the user's knees in continual, strenuous strides. Climbing typically requires more exertion than mere walking on a flat surface. Consequently, the exercise of climbing can provide a more intense, challenging workout. Climbing exercise apparatuses typically feature an endless moving assembly, which is set on a significant angle and has a series of foot supports or steps. This configuration allows the exerciser to simulate the movements of climbing, walking, or running up a steep incline. Angled, moving staircase-type devices are typical examples of such climbing apparatuses.
Unfortunately, typical climbing devices within the art are tall and often require more ceiling height than is available in an exerciser's home. Thus, such climbing devices generally require a gym or warehouse, or at least a vaulted ceiling. Treadmill devices that fit into a user's home generally incline from a neutral position to an inclined position, then decline back to the neutral position. However, typical treadmill devices fail to adequately provide a user with the kind of terrain experience encountered when ambulating over rocky, rough, and natural terrain. For example, a hiker traversing a hiking trail typically exhibits greater lateral movement than most treadmill belts presently allow. Furthermore, beginning at around a 15% grade, a hiker exercising on a treadmill can start producing more energy than is necessary to drive the treadmill belt, such that a braking system is desirably employed. These structural, systematic requirements are presently not considered in the design of modern treadmills.
What is needed is a controller on an exercise apparatus that simulates the dynamics of natural terrain with its accompanying slopes and inclines and can fit into a user's home or another location with a limited ceiling height. Unfortunately, controllers presently associated with these exercise devices are only capable of creating an artificial time based environment. Generally, these exercise devices use an indicator to demonstrate the increase in workout difficulty as a treadmill increases its inclination or a stair stepper becomes more difficult to climb. These devices are exclusively time based, meaning that no matter how slowly an individual is walking, after a certain amount of time, an artificial hill displayed will pass. Unfortunately, time based regulation does not accurately simulate the environment that exists in a real hike or a real walk, depriving the individual of the substantial health benefits associated with a cardiovascular workout based substantially on a natural setting.
Exercise devices that utilize artificial mountain profiles typically create mountains of speed or of incline. Usually, these artificial profiles are time based workouts, where at a preprogrammed time in the workout, the exercise apparatus moves a little faster or increases the resistance, and then during the next workout segment the device alters its operating parameters again. Eventually, the device works its way up to a maximum speed, maximum incline, or maximum workout. Accordingly, the artificial profile adjusts the exercise apparatus so that the next segment becomes less difficult or more difficult by changing the resistance, inclination, or speed. As such, the typical exercise device goes through pre-set profiles. However, the artificial mountain or hill segments are simply time-based alterations of resistance, speed or inclination. Thus, typical workouts lack the natural diversity provided by a mountain trail.
The natural diversity provided by mountain trails yields additional incentives for a user to complete a workout. Representative exercise devices lack these incentives when their workouts are based purely on artificial workout profiles.
Finally, users of existing climbing exercise devices are increasingly faced with the difficulty of interpreting multiple monitoring panels with a single glance during the workout, resulting in sensory overload for the user. Most controllers contain separate indicators for distance traveled, vertical feet traversed, remaining workout length, and relative grade or incline adjustments to be made. It is difficult for a user to interpret and understand all of these gauges with one glance.
It is therefore an object of this invention to provide a method and system that electronically simulates a mountain hike.
It is another object of this invention to provide a method and system for converting a topographical map to an actual exercise workout for use with an exercise device that can vary between a variety of grades.
It is a further object of the invention to allow the user direct adjustment control of grade and speed, as well as tracking vertical feet hiked and the overall distance and speed.
It is a further object of the invention to provide exercise devices such as hiking apparatuses, climbers, treadmills, exercise bicycles, skiers, aerobic ellipticals, rowing devices, steppers and other devices that can simulate mountain trails, mountain streams, or rough terrain through an adjustment in resistance, incline, or speed.
It is another object of the invention to provide a controller which controls a workout that is both time and distance based, thereby allowing an individual to hike at their own pace and ensuring that they adequately follow a realistic mountain trail length.
It is another object of the invention to provide a single glance panel containing graphic representations because the user is only be minimally distracted from a workout.
It is another object of the invention to provide a carefully designed graphical representation panel allowing the user to obtain all of the important information with one glance.
These and other objects of the invention, as will be apparent herein, are accomplished by generating a mountain exercise profile having trail workout segments that are digitally coded to enable a selectively adjustable exercise device. A selectively adjustable exercise system comprises a virtual trail system for use on a selectively adjustable exercise apparatus.
Aside from being electrically coupled to the selectively adjustable exercise device and a display device, a controller of the virtual trail system operates according to software based workout profiles. The software interprets feedback from the exercise device and a user interface console to generate control signals for motors, electronic braking systems, and user monitors associated with the virtual trail system. The control signals for the exercise device components and display device panels are compiled into workout profiles for use by the controller. Other features of the exercise system include the incorporation of direct adjustment keypads on the user interface console for grade and speed settings. These keypads are primarily used when the system is not recalling a preprogrammed workout routine or hiking trail and is under manual control.
These and other objects and features of the present invention will be more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth herein.
In order that the manner in which the above recited and other advantages and objects of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated, in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The invention is described below by using diagrams to illustrate either the structure or processing of embodiments used to implement the systems and methods of the present invention. Using the diagrams in this manner to present the invention should not be construed as limiting of its scope. The present invention contemplates both methods and systems for selective adjustment of exercise equipment.
One embodiment of a virtual trail system of the present invention comprises: (i) an interface means for receiving workout related control inputs from the user of the exercise equipment; (ii) processor means for electronically computing operational information based at least on part on control inputs received from the interface means; (iii) feedback means for conveying information concerning the amount of exercise performed by the user to the processor means; (iv) indicator means for displaying workout information to the user adapted for indexing travel along the length of a workout trail from segment checkpoint to segment checkpoint until the end of the trail; and, preferably, (v) control means associated with the processor means for causing the indicator means in response to information from the feedback means to travel along the workout trail at a rate proportional to the rate of which exercise is performed by the user.
This virtual trail system may be used in a wide variety of selectively adjustable exercise equipment. For example, in one embodiment as depicted in
In addition to treadmills, alternative embodiments include associating the virtual trail system with an exercise cycle, an elliptical aerobic apparatus, a stair stepper, a skiing device, rowing equipment, and other exercise devices, can also simulate mountain trails, mountain streams, or rough terrain. Each of these exercise equipment embodiments would require unique components as previously designated to provide the necessary adjustment in resistance, incline, or speed. However, many of the embodiments contain considerable crossover for their respective applications.
For example, an exercise cycle can very easily use a mountain biking trail to create a similar experience as a hiker might experience on a treadmill or stair stepper. One difference in the hiker and bicycle embodiments would be that the exercise cycle can either increase the resistance or physically move the exercise cycle in an up and down fashion.
An embodiment based on a skiing device can use mountain cross-country ski trails and either adjust actual grade or alter the resistance. A rowing device can simulate mountain streams or rivers by adjusting rowing resistance or restricting the rowing action.
The mountain exercise profile may use topical maps, GPS coordinates, or portable monitors to design the actual exercise program. A trail workout designer can plot a trail over a mountain area on a topographical map and a profile of the incline changes over the terrain will be created. Workout segments can be created which average the slope change for that distance, resulting in multiple grade changes according to the trail segment.
In
Monitor devices enable a hiker to carry the monitor on an actual hike and record the distance and inclination walked by the user, and then apply that particular hike to the exercise machine software. This allows the user to exercise on weather prohibitive days (rain, snow, or extreme heat) in which the weather does not allow a user to go outside. The user can hike the same virtual path that they normally would take. Portable monitors also allow a user to record their favorite workout by walking the trail with the monitor on. Upon electrically coupling the monitor to the exercise system, the monitored activity can be downloaded to the virtual trail system attached to the exercise apparatus. The virtual trail system converts the monitored information into a workout for the exercise device. This provides the user with some exciting new benefits. For example, if it rains or snows, a user can follow their favorite hike or mountain bike trail on an exercise bike, even if there is too much rain or snow on the ground.
There are multiple methods of coding the hiking trail or hiking profile. The most prevalent and preferred embodiment is a translation of a topographical map into a workout and onto a hard coded copy of a mountain. The hard coded copy may be stored on an ASIC chip, a programmable ROM, a magnetic disk, PCMCIA card, or Compaq flash card. More specifically, the software is stored in a memory module that may be upgraded with new mountain trails or workouts. This memory module may be constructed from at least one of programmable ROM, Dynamic Memory, EEPROM, flash bios, PCMCIA cards, CD-ROM, RAM, magnetic storage disks, and Compaq flash cards. The exercise system may also provide the memory module through an electrical connection to a general-purpose computer. It may also be downloaded from an Internet site such as www.iFit.com across a communication line connection, for example via the PSTN, DSL, G-Lite, cable modem, wireless or other high-speed data connection. Particularly as the cost of wireless technology drops, a wireless connection to exercise profile sites such as iFit.com is also foreseeable.
Hiking profile coding also provides the additional advantage of recording a hike that a user might not be able to accomplish in one exercise session, especially if it is an all-day or multiple day hike. Since the average workout session lasts between about 15 minutes and 1 hour, a user would not complete longer hikes without positional cursor storage. However, the virtual trail system optionally saves the location of the user, so that upon their return to the exercise system, they are able to begin their workout where they last left off. Thus, a daylong hike of eight hours might take an individual one or two weeks to complete at thirty-minute intervals. However, the individual would have covered the same exact terrain as was covered in the original walk. In this sense, the exercise system is able to provide a user with long-term physical goals and related incentives inspiring follow-up workout sessions. This natural variety and follow-up incentive are important keys to keeping the user on a regular exercise plan.
One of the features in this invention is the interface between the display device, the controller, the adjustable exercise device, and possibly additional software. In a preferred embodiment the software is upgradeable and Internet capable. The display device is conveniently located on the exercise device or is optionally separate therefrom, such as a wall mounted or hand-held display, and provides indicator signals. Thus, the display device may be physically located on the exercise device, but may be separate therefrom in another embodiment. The controller creates codes for the display device and adjustment codes for the exercise device. The exercise device is preferably adjustable. The exercise device may act as a flat treadmill, hiker, or stepper, for example. What distinguishes this exercise system from other systems is that the user has direct control of the speed and grade. In some embodiments the system may control speed and grade during workout routines. The present invention differs from other devices, which feature time-based workouts, whereas this device uses distance-based workouts.
The display device is an example of an indicator means for displaying workout information to the user and should be positioned so that a user may easily interface with the controller and observe their progress in several categories of performance. An adjustable attachment is preferred so that users of varying sizes will have equivalent visual access. In considering construction factors such as reliability, cost, and performance, a liquid crystal display (LCD) provides the greatest flexibility for the display device. Other acceptable indicator means include LED displays, video monitors, color LCD, and flat LCD video screens. Each of these visual indicator means can be varied using colors, brightness, or synchronized pulses to represent various status conditions. Typically, the indicator means is a visual indicator, but auditory and tactile indicators may also be used as indicator means. Audio indicators may generate a full spectrum of audible noises, including music, chirping, beeping, continuous tone, or a specific audible message. Tactile indicators include vibration, texture alteration, electric tingle, generation of specific Braille characters, or the creation of a temperature variation.
The controller may be a microcontroller, a central processing unit (CPU), a state machine, a programmable logic array, or network of logical gates, ASIC processor, software-based controller, a combination of these components, or a variety of other controllers. Each of these controller examples are examples of processor means for electronically computing operational information based at least in part on control inputs received from the interface means. The controller receives feedback signals from the exercise apparatus and the workout profile and converts the feedback signals into control signals for the display device and exercise apparatus. Data for the controller may be stored in registers or memory modules. The controller makes adjustments to the exercise device simulating mountainous terrain. In one embodiment, the controller includes a temporary storage media for use with the display means. The temporary storage media provides a buffer for each of the displayed values, such as user age, maximum pulse and heart rate, average pulse and heart rate, target heart rate, calories burned and target calories to burn during workout session, length of workout session, and other displayed values. This multi-buffer system allows for the simple control and rapid refresh of the user workout data.
With reference now to
In a neutral position, treadbase 14 is parallel to a support surface. Treadbase 14 is capable of inclining to extreme angles, such that a distal end is high above the neutral position. This enables an exerciser to simulate a hiking motion that requires the user to continually lift the user's knees in an upward, outstretched manner. Treadbase 14 also declines such that a distal end thereof drops below the neutral position. Typical hikes in the mountains, for example, involve inclines and declines as well as flat surfaces. Thus, apparatus 10 is able to more closely simulate a typical mountainous terrain. A hiker traversing a hiking trail typically exhibits substantial lateral movement. Thus, treadbase 14 preferably has an aspect ratio featuring a wide treadbase 14. Examples of such aspect ratios are disclosed in the U.S. patent application to Cutler, et al entitled “Hiking Exercise Apparatus,” filed on Feb. 2, 2000, which is incorporated herein in its entirety by reference as indicated above.
The coupling of treadbase 14 and the positioning of handrail assembly 16 may occur in a variety of different positions depending upon the embodiment. In the embodiment of
In one embodiment, treadbase 14 is selectively moved into a position having a grade of about −30% (declined) with respect to the neutral position to about 90 degrees (inclined) with respect to the neutral position, preferably having a grade of about −120% (declined) with respect to the neutral position to about 60 degrees (inclined) with respect to the neutral position, more preferably, having a grade of about −10% with respect to the neutral position to about 100% (45 degrees) with respect to the neutral position, more preferably, having a grade of about −10% with respect to the neutral position to about 60% with respect to the neutral position. In another embodiment, treadbase 14 is selectively moved into a position having a grade of about −5% with respect to the neutral position to about 50% or 60% with respect to the neutral position.
However, these ranges are generally more of a physical limitation than an electronic limitation as the console 200 for the exercise apparatus can be configured in one embodiment to provide negative 360 degrees to positive 360-degree rotation.
By moving between these extreme ranges, an exerciser is able to simulate a hike through a variety of different slopes and angles. The virtual trail system includes an electronic console 200. Console 200 is electrically coupled to the inclination motor 18. The virtual trail system controls the amount of inclination/declination during each segment. Through the use of console 200, the user can control the amount of inclination/declination of treadbase 14, the speed of the endless belt and a variety of other features related to apparatus 10.
In one embodiment, the exercise system includes braking means for electronically slowing the speed of the operable member, such as an electronic braking system. When the exercise device exceeds a variable incline level, established by the weight of the user and the inherent resistance of the system, the force exerted on the motor of the exercise apparatus exceeds the force generated by the motor to drive the operable member of the apparatus and the electronic braking system should be activated. For hiking devices, this variable incline level can occur at approximately 15%, depending on the inherent system resistance and the forces exerted by the user. At this grade, the energy generated by the user ambulating on the exercise device exceeds the power required to drive the motor on the operable member. At inclines above about 15% the power generated by the virtual trail system exceeds approximately 100 Watts, requiring the braking means to dissipate the excess power generated by the virtual trail system. In one embodiment, the braking means of the present invention dissipates excess power generated by the virtual trail system when the power generated by the system exceeds approximately 100 Watts to approximately 700 Watts. Certain users ambulating at extreme incline settings generate excess power in the range of 500 to 700 Watts for example, depending on user and treadmill specifications.
Therefore in the preferred embodiment, the presence of excess power activates the electronic braking system, which dissipates the excess power and maintains the appropriate speed of the operable member. One method of reducing this excess power is through a feedback loop connected to the power supply for the motor, in essence reducing the power available to the motor and slowing the belt. Another method senses the presence of excess power and activates the electronic braking system by closing a switch between the motor and a power resistor, such as a heating coil resistor. This method effectively allows the motor to generate more power, but absorbs excess power via the power resistor in the required range of about 100 to about 700 watts, e.g. about 500 to about 700 watts. In one embodiment, a heating coil is provided to provide inexpensive power dissipation. However, care must be taken to disperse the heat generated by high energy levels.
In the preferred embodiment, a device cutoff system within the electronic braking system activates a forced ventilation system when heat levels begin to exceed pre-established operating ranges and in extreme cases completely cutoff the treadmill system until the detected heat levels returned to safe operating ranges. Generally, the power resistor circuit employed in the exercise device is system specific, and designed to dissipate excess power generated by the motor during to prolonged use at extreme inclines. Once the power is dissipated, the virtual trail system will open the circuit between the motor and the power resistor. In this manner the virtual trail system is able to maintain a constant speed for the operable member at high speed and high inclination settings.
Other examples of braking systems are disclosed in the U.S. patent application “Hiking Exerciser Apparatus,” incorporated herein by reference.
As mentioned above, the aspect ratio, i.e., the length and width of treadbase 14 is such that climbing apparatus 10 simulates a climbing motion and allows the user the lateral movement associated therewith, yet has a minimal footprint and can be conveniently used and stored in a home or exercise gym.
Handrail assembly 16 will now be discussed in additional detail with reference to
In the embodiment of
With reference to
Trail workout panel 204 displays trail workout information on one panel of said user interface console 200, the trail workout information comprising at least one of: percentage of trail workout completion, relative trail elevation, distance traveled, vertical distance traveled, workout segment difficulty, remaining segment length, selected trail workout routine, and topographical information concerning the trail workout profile. In one embodiment, each of these features are present. This single glance panel provides an optimal amount of workout information to the user without distracting the user from the workout. Grade program control panel 206 includes an incline display representing the inclination of the treadmill or exercise device in degrees or grade percentage. In the embodiment of
The virtual trail system causes the exercise device to incline the treadbase grade or increase resistance so as to correspond to the hills displayed on the grade program control terrain display. In this manner, the user is provided with a short-term display of upcoming and/or current terrain. The grade program control panel 206 also contains a manual control indicator to signify that the user is establishing grade settings. Grade program control panel 206 further comprises a data field shown in
A hike exertion panel 208 provides a single row of colored indicator LEDs summarizing the workout stress level placed upon the user. The hike exertion panel 208 divides the colored indicator LEDs into four subcategories: warm-up/cool-down, moderate hike, challenging hike, and Extreme hike. The subcategories are either based upon preprogrammed values for grade level independent of the user's response to the system and speed level or the indicator panel 208 can be a compilation and summarization of indicator panels 204, 206, 210, 212, 214, and 216 adapted to each user. In this second configuration, the hike exertion panel 208 becomes a single look pacing indicator panel considering age, heart rate, speed, grade, pace, and hike ranking. As such the hike exertion panel 208 is at least indirectly connected to the feedback circuitry, which measures the performance of the exercise equipment and/or the user.
The heart rate training zone indicator panel 210 selectively indicates age, heart rate and percentage of maximum heart rate of the user that is exercising. Training zone indicators show a user whether the current workout is proceeding above, below, or at the target heart rate for the user's age. The pulse sensor is activated after the user enters their age before the workout begins using the incremental adjustment keypad 240. In the preferred embodiment, the virtual trail system will remember a user's vitals after they renew a previous workout. Heart rate training zone indicator 210 is an extremely useful feature as it allows the trail workout to be personalized for each user, assuring that a maximum cardiovascular workout is obtained. Optional safety features in the virtual trail system include a monitor of a user's heart rate that reduces the stress or exertion levels imposed upon the user when the heart rate exceeds the target value. The stress level may be increased for a user whose heart rate is at or below the target level. These heart rate signals are received at least indirectly from the user feedback circuitry, part of the feedback means, which may collect information from a heart monitor worn, by the user or a heart monitor placed in handrail assembly 16.
Time and distance indicator panel 212 indicate the distance traveled or the segment time required for the user to travel between exercise workout segments, or the overall time required for the trail workout. Indicator panel 214 selectively provides the vertical feet traveled, the calories burned, the percentage of grade, and the maximum percentage. The time and distance indicator panel 212 and the indicator panel 214 are at least indirectly attached to feedback circuitry connected to the exercise device. Speed indicator panel 216 provides the speed presently traveled on the exercise device, or the maximum speed attained during the exercise period. The speed indicator panel 216 is indirectly attached to the feedback circuitry on the exercise device and more specifically to circuitry connected to the electronic braking system used to regulate the belt speed on the treadbase.
Control interface 218 comprises several individual adjustment keypads for interfacing with the selectively adjustable exercise apparatus. Direct grade adjustment keypad 220 allows the user to select a desired grade of an operable member of the selectively adjustable exercise apparatus through quick touch keys with pre-set percentage grade values and automatically adjust the device to the selected level. Specifically, direct grade adjustment keypad 220 has pre-set percentage grade keys for −5%, 0%, 10%, 20%, 30%, 40%, 50%, and 60%, for example, although a variety of different grades are available. The grade program controller may increase the grade or residence depending on the exercise device attached to the grade program controller. For example, a treadmill can increase the inclination of the treadbase to the desired grade. A bicycle exercise device can increase the resistance such that a comparable grade is represented. A skiing device can elevate the slope of the surface being skied upon. Similar grade or resistance adjustments can be made for other exercise devices. Inclination and declination interface buttons are also included in the direct grade adjustment keypad 220. These keys allow a user to increase or decrease the grade in 1% grade intervals, for example.
Start interface button 224 allows a user to begin the trail workout once the trail has been selected or the previous segment has been restored. Stop/Pause interface button 226 allows a user to stop or pause the workout and save the location of the user's last position on the trail for future use or allows the user to recover from overexertion. In one embodiment, Stop/Pause interface button 226 is electronically connected to an electronic braking system that prevents a user from driving the treadbase faster than the speed driven by a motor, but also for slowing the treadbase down to a stopped position so that the user won't fall of the treadbase.
As mentioned above, beginning at around a 15% grade, a hiker exercising on a treadmill may start producing more energy than is necessary to drive the treadmill belt. Thus the braking system of the present invention is useful at inclines such as in excess of about 15% grade and is particularly useful at high inclines, such as in excess of about 25% grade. The electronic braking system is electronically connected to the feedback means for calculating the actual belt speed of a given treadbase. The feedback means sends this information to the processor means for further adjustment of the treadbase to optimize to overall performance of the climbing exercise device.
Power indicators 228 show whether the proper activation key has been provided to the selectively adjustable exercise apparatus. In one embodiment, the activation key is a physical electronic key that stores the users workout information. Other embodiments may require an electronic key or password be typed in so that the workout information can be restored from a user database. Another embodiment uses a physical key as a safety measure to prevent unauthorized use of the trail exercise apparatus.
Direct speed adjustment keypad 222 allows the user to adjust the speed of the particular exercise device. Specifically, direct speed adjustment keypad 222 has keys for 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0 mph. In addition to the aforementioned preset speed values, increase and decrease buttons increase or decrease the selectively adjustable exercise apparatus operable member speed in 1/10th intervals. In the preferred treadmill configuration, the treadbase will gradually increase the belt speed according to the inputs from the user interface console 200.
Incremental adjustment keypad 240 contains an increment and decrement input keys as well as a final enter input key. One embodiment allows a user to input their age through this keypad so that the virtual trail system can customize a workout and monitoring system. Another embodiment allows a user to use this keypad to enter one or more of the following workout variables: the exerciser's age, length of workout segment, distance of workout segment, vertical feet of workout segment, maximum speed of workout segment, maximum pulse, target heart rate, maximum grade, calories to be burned, and maximum heart rate. These keys may also be used along with the trail workout panel to specifically select a workout segment for making adjustments in the present workout profile or even to select different trails. For example, the virtual trail system of
The total input key 242 changes the display panels 210, 212, 214 and 216 to display their total or maximum changes. Thus an individual is enabled to see the total distance traveled, the total time of the workout, the total vertical feet traveled, the total calories burned, the average grade, and the maximum percentage. The average speed can also be indicated through the total button. In one embodiment, the results displayed when total input key 242 is pressed, are computed using registers which increment the values for the time and distance, vertical feet, and calories burned during the workout profile at variable rates depending on the amount of exercise and the speed of exercise being performed by the user. These figures are dictated by the device parameters. For example, the distance traveled in the preferred treadmill embodiment is based upon the speed of the belt on the tread base, and the distance covered by a user running upon such a base. The total calories burned would be based on the angle or the grade of the tread base and the speed of the tread base. Another embodiment includes the monitored heart rate of the individual working on the treadmill as a variable to compute the calories burned.
The select trail keypad 238 allows a user to choose a moderate, challenging, or extreme trail for their workout. In the preferred embodiment provided in
The iFit.com button 244 is both a selector and an indicator. The indicator light on the iFit.com button 244 demonstrates that a connection has been established between the virtual trail system and the external iFit.com system. The virtual trail system, if properly connected to either a computer or directly to the Internet through a communication line connection will use software to contact the new www.iFit.com website to obtain the services of a personal trainer. Examples of suitable communication line connections include via PSTN, DSL, G-Lite, cable modem, wireless, WAN line, radio frequency transmission, or other data connection. Once the user initiates the iFit.com session via the interface by depressing the iFit.com button 244, the virtual trail system interacts with the website to obtain digital signals for the workout session. If the online iFit.com trainer creates a “hill climb” workout for the user, the incline of the treadbase 14 will get steeper and steeper responsive to the personal trainer. The iFit.com module uses a “plug in and logon” design to make it very user friendly, even for users that are newcomers to the Internet. One advantage of the iFit.com technology is its simplicity; all the user needs to do is plug the iFit.com compatible fitness equipment into their computer, an Internet access point or PSTN access line. Once the connection is established, the workout options are endless. For example, the user can select a daily iFit workout, press “start,” and the virtual trail system will begin following the daily workout profile received from the offsite database.
An alternative embodiment allows the user to participate in a live online workout session. The user designates their fitness equipment and selects a personal trainer. The trainer can adjust the equipment settings to constantly challenge the user while monitoring the user's vitals, despite the fact that the user is working out in the privacy and convenience of the user's own home. It is well known by those skilled in the art that a personal trainer helps keep a user motivated, makes the user more accountable to their goals, and helps the user achieve better results. The problem is, millions of consumers do not belong to health clubs and therefore do not have access to qualified personal trainers. Use of the iFit.com button 244 provides a new standard of fitness at home. User's can schedule a private workout session with a personal trainer conducted and monitored via computer cameras and simultaneously sent by the trainer digital signals that control the treadmill's electronic functions. As such, the present invention becomes a truly interactive personal training experience.
The iFit.com connection uses Internet “streaming” technology. Allowing consumers to quickly select and immediately begin using a workout segment without downloading the entire workout profile. The iFit.com streamable workouts are convenient and easily accessed. Furthermore, the quality of personalized workout sessions are improved, because ACE certified personal trainers develop the workouts that are sent across the iFit.com communication lines. Three predominant features are given to the present invention through the iFit.com button 244. The first is access to the basic iFit.com workout database that allows the user to change his or her workout routine every day, thereby encouraging site and workout “stickiness.” The workout database streams into the user's home computer or exercise device and gives the user access to an electronic library of hundreds of preprogrammed workouts whereas most treadmills have a maximum of only 6-8 basic workouts. For example, users can adjust their treadmills to accommodate a specialized preprogrammed 20-minute fat burning workout or an 18-minute strength-training workout.
The second area of expansion are audio workouts, which give the consumer a motivating combination of heart rate paced music and the encouraging voice of a personal trainer. Digital signals in the soundtrack control: resistance, speed, and incline of the fitness equipment. The user will be able to choose from a variety of musical styles and enjoy them within the confines of their home workout area.
Finally, video workouts will stream to the virtual trail system in two categories. The first workouts are group classes and the second are hiking adventure series trails. Both types of workouts feature heart rate paced music and digital signals to control the exercise equipment. In the group class video, users will watch a fun group “sweating it up” with a motivating personal trainer leading the workout. The adventure series of workouts will combine music, digital signals, and add engaging scenes of natural beauty. One series features three hikes in the Grand Tetons. Another running adventure series will be a workout following the race course of the St. George Marathon in St. George, Utah, named by Runner's World as the most scenic marathon in America. In this manner, the hiker treadmill can be programmed to include training workouts such as the incline and distances of activities like the St. George Marathon. This would allow hiker treadmill users to practice for a marathon in another state without requiring them to travel to the location to run the course and, in essence, prepare themselves for the eventual competition without being there. While the functionality of the iFit.com button 244 is presently limited to controlling the treadmill, in the foreseeable future such workouts will interact with home stereos, TVs, VCRs, DVDs, and CDs along with the treadmill to improve the quality of the interactive feel of the exercise equipment.
One embodiment of the hiker treadmill allows the virtual trail system to interface with a program that emulates a particular climb. The program will provide virtual trail system with adjustment codes that allow the hiker device to simulate the terrain of a given hike. One method of programming a hike is through analysis of the GPS coordinates for a starting point, one or more weigh points, and an ending point. The virtual trail system will then automatically compute the distances, inclines, to simulate a hike along that course.
A programmed routine 410 is comprised of inclination adjustments and distances for workout segments compiled by a trail designer to optimize the selected trail exertion. For example, a moderate trail can contain grade adjustments from negative 5% to positive 20%, while a challenging trail might include adjustments from negative 10% to positive 40% and an extreme trail can include adjustments from negative 15% to positive 60% in which some of the segments might contain drastic 20% to 30% grade changes over previous segments. The iFit.com programs 415 relate to programs available over Internet sites and allow a user to access a new trail each day.
Hike simulations 420 correspond to topographically entered information or to hike simulation inserts that may be added to the virtual trail system via PCMCIA, magnetic disk, PROM, flash upgrades, or other storage means. For example, the Grand Teton hikes displayed in
Once the appropriate trail data is collected, execution block 440 creates a workout hike profile. The hike development module 450 collects information concerning distance, incline adjustments, and average speed traveled. The hike development module then creates individual workout segments to be chained together for an overall workout profile. Blocks 455, 460, 465 and 470 illustrate examples of workout segments. Workout segment block 465 illustrates how the grade change can occur in 1% increments. Workout block 455 demonstrates the grade 10% along with the distance 0.05 miles. This also indicates the distance factor being 0.01 miles. Workout segment block 470 demonstrates the use of a negative grade change as well as reemphasizing the potential for 0.01 miles distance changes. It is foreseeable that these grade changes can be adjusted to angular slopes and that the distances can be adopted as meters or kilometers. Once the workout profile has been assembled containing the individual workout segments, the hike is stored in execution block 480 for future playback on the exercise device.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. patent application Ser. No. 09/907,846, Filed Jul. 18, 2001 now abandoned, entitled “System and Method for Selective Adjustment of Exercise Apparatus” to Ashby, et al, which is incorporated herein in its entirety by reference and which is a continuation of U.S. patent application Ser. No. 09/496,560, Filed Feb. 2, 2000, now U.S. Pat. No. 6,447,424 entitled “System and Method for Selective Adjustment of Exercise Apparatus” to Ashby, et al, which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
D211801 | Quinton | Jul 1968 | S |
3518985 | Quinton | Jul 1970 | A |
3592466 | Parsons | Jul 1971 | A |
3602502 | Hampl | Aug 1971 | A |
3659845 | Quinton | May 1972 | A |
3903613 | Bisberg | Sep 1975 | A |
4082267 | Flavell | Apr 1978 | A |
4120294 | Wolfe | Oct 1978 | A |
4151988 | Nabinger | May 1979 | A |
4278095 | Lapeyre | Jul 1981 | A |
4358105 | Sweeney, Jr. | Nov 1982 | A |
4408613 | Relyea | Oct 1983 | A |
4504055 | Wells | Mar 1985 | A |
4544152 | Taitel | Oct 1985 | A |
4549044 | Durham | Oct 1985 | A |
4571682 | Silverman et al. | Feb 1986 | A |
4586495 | Petrofsky | May 1986 | A |
4602779 | Ogden | Jul 1986 | A |
4643418 | Bart | Feb 1987 | A |
4659074 | Taitel et al. | Apr 1987 | A |
4659078 | Blome | Apr 1987 | A |
4671257 | Kaiser et al. | Jun 1987 | A |
4687195 | Potts | Aug 1987 | A |
4708337 | Shyu | Nov 1987 | A |
4759540 | Yu et al. | Jul 1988 | A |
4786049 | Lautenschlager | Nov 1988 | A |
4790528 | Nakao et al. | Dec 1988 | A |
4828257 | Dyer et al. | May 1989 | A |
4842266 | Sweeney, Sr. et al. | Jun 1989 | A |
4848737 | Ehrenfield | Jul 1989 | A |
4860763 | Schminke | Aug 1989 | A |
4869497 | Stewart et al. | Sep 1989 | A |
4907795 | Shaw et al. | Mar 1990 | A |
4919418 | Miller | Apr 1990 | A |
4927136 | Leask | May 1990 | A |
4938474 | Sweeney et al. | Jul 1990 | A |
4949993 | Stark et al. | Aug 1990 | A |
4959713 | Morotomi et al. | Sep 1990 | A |
4976435 | Shatford et al. | Dec 1990 | A |
4998725 | Watterson et al. | Mar 1991 | A |
5020795 | Airy et al. | Jun 1991 | A |
5037089 | Spagnuolo et al. | Aug 1991 | A |
5054774 | Belsito | Oct 1991 | A |
5062632 | Dalebout et al. | Nov 1991 | A |
5067710 | Watterson et al. | Nov 1991 | A |
5078152 | Bond et al. | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088729 | Dalebout | Feb 1992 | A |
5089960 | Sweeney, Jr. | Feb 1992 | A |
5104120 | Watterson et al. | Apr 1992 | A |
5113427 | Ryoichi et al. | May 1992 | A |
5142358 | Jason | Aug 1992 | A |
5145475 | Cares | Sep 1992 | A |
5149084 | Dalebout et al. | Sep 1992 | A |
5195935 | Fencel | Mar 1993 | A |
5213555 | Hood et al. | May 1993 | A |
5290205 | Densmore et al. | Mar 1994 | A |
5292293 | Schumacher | Mar 1994 | A |
5299810 | Pierce et al. | Apr 1994 | A |
5308296 | Eckstein | May 1994 | A |
5313942 | Platzker | May 1994 | A |
5314391 | Potash et al. | May 1994 | A |
5323784 | Shu | Jun 1994 | A |
D348493 | Ashby | Jul 1994 | S |
5328420 | Allen | Jul 1994 | A |
5328422 | Nichols | Jul 1994 | A |
5352166 | Chang | Oct 1994 | A |
5382207 | Skowronski et al. | Jan 1995 | A |
5382209 | Pasier et al. | Jan 1995 | A |
5403252 | Leon et al. | Apr 1995 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5410472 | Anderson | Apr 1995 | A |
5431612 | Holden | Jul 1995 | A |
5433679 | Szymczak et al. | Jul 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5462503 | Benjamin et al. | Oct 1995 | A |
5462504 | Trulaske et al. | Oct 1995 | A |
5466200 | Ulrich | Nov 1995 | A |
5474090 | Begun et al. | Dec 1995 | A |
5476430 | Lee et al. | Dec 1995 | A |
5489249 | Brewer et al. | Feb 1996 | A |
5489250 | Densmore et al. | Feb 1996 | A |
5512025 | Dalebout et al. | Apr 1996 | A |
5518471 | Hettinger et al. | May 1996 | A |
5527239 | Abbondanza | Jun 1996 | A |
5527245 | Dalebout et al. | Jun 1996 | A |
5535664 | Rokowski | Jul 1996 | A |
5545112 | Densmore et al. | Aug 1996 | A |
5547439 | Rawls et al. | Aug 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5591104 | Andrus et al. | Jan 1997 | A |
5600310 | Whipple, III et al. | Feb 1997 | A |
5619412 | Hapka | Apr 1997 | A |
5619991 | Sloane | Apr 1997 | A |
5626539 | Piaget et al. | May 1997 | A |
5645509 | Brewer et al. | Jul 1997 | A |
5645513 | Haydocy et al. | Jul 1997 | A |
5674453 | Watterson et al. | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5697834 | Heumann et al. | Dec 1997 | A |
5702323 | Poulton | Dec 1997 | A |
5713794 | Shimojima et al. | Feb 1998 | A |
5720771 | Snell | Feb 1998 | A |
5722418 | Bro | Mar 1998 | A |
5733228 | Stevens | Mar 1998 | A |
5738612 | Tsuda | Apr 1998 | A |
5741205 | Doll et al. | Apr 1998 | A |
5743833 | Watterson et al. | Apr 1998 | A |
5749372 | Allen et al. | May 1998 | A |
5752883 | Butcher et al. | May 1998 | A |
5752897 | Skowronski et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5779596 | Weber | Jul 1998 | A |
5785630 | Bobick et al. | Jul 1998 | A |
5810696 | Webb | Sep 1998 | A |
5810747 | Brudny et al. | Sep 1998 | A |
5813864 | Ikuta | Sep 1998 | A |
5820525 | Riley | Oct 1998 | A |
5827155 | Jensen et al. | Oct 1998 | A |
5830113 | Coody | Nov 1998 | A |
5833577 | Hurt | Nov 1998 | A |
5836770 | Powers | Nov 1998 | A |
5845230 | Lamberson | Dec 1998 | A |
5855537 | Coody | Jan 1999 | A |
5857939 | Kaufman | Jan 1999 | A |
5860893 | Watterson et al. | Jan 1999 | A |
5860894 | Dalebout et al. | Jan 1999 | A |
5865733 | Malinouskas et al. | Feb 1999 | A |
5868648 | Coody | Feb 1999 | A |
5873369 | Laniado et al. | Feb 1999 | A |
5879270 | Huish | Mar 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5888172 | Andrus et al. | Mar 1999 | A |
5890995 | Bobick et al. | Apr 1999 | A |
5899834 | Dalebout et al. | May 1999 | A |
5905442 | Mosebrook et al. | May 1999 | A |
5910070 | Henry et al. | Jun 1999 | A |
5911132 | Sloane | Jun 1999 | A |
5911687 | Sato et al. | Jun 1999 | A |
5917405 | Joao | Jun 1999 | A |
5929748 | Odinak | Jul 1999 | A |
5931763 | Alesandri | Aug 1999 | A |
5947872 | Ryan et al. | Sep 1999 | A |
5961561 | Wakefield, II | Oct 1999 | A |
5964701 | Asada et al. | Oct 1999 | A |
5967975 | Ridgeway | Oct 1999 | A |
5995868 | Dorfmeister et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
6004243 | Ewert | Dec 1999 | A |
6010451 | Clawson | Jan 2000 | A |
6013007 | Root et al. | Jan 2000 | A |
6013011 | Moore et al. | Jan 2000 | A |
6014432 | Modney | Jan 2000 | A |
6022272 | Sano | Feb 2000 | A |
6027429 | Daniels | Feb 2000 | A |
6033344 | Trulaske et al. | Mar 2000 | A |
6033347 | Dalebout et al. | Mar 2000 | A |
6045490 | Shafer et al. | Apr 2000 | A |
6050822 | Faughn | Apr 2000 | A |
6050921 | Wang | Apr 2000 | A |
6050923 | Yu | Apr 2000 | A |
6050924 | Shea | Apr 2000 | A |
6053737 | Babbit et al. | Apr 2000 | A |
6053844 | Clem | Apr 2000 | A |
6059692 | Hickman | May 2000 | A |
6068578 | Wang | May 2000 | A |
6103203 | Fisher | Aug 2000 | A |
6106297 | Pollak et al. | Aug 2000 | A |
6110076 | Hurt | Aug 2000 | A |
6132337 | Krupka et al. | Oct 2000 | A |
6132340 | Wang et al. | Oct 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6171218 | Shea | Jan 2001 | B1 |
6174268 | Novak | Jan 2001 | B1 |
6179753 | Barker et al. | Jan 2001 | B1 |
6211451 | Tohgi et al. | Apr 2001 | B1 |
6231481 | Brock | May 2001 | B1 |
6231482 | Thompson | May 2001 | B1 |
6234936 | Wang | May 2001 | B1 |
6241524 | Aoshima et al. | Jun 2001 | B1 |
6244988 | Delman | Jun 2001 | B1 |
6251048 | Kaufman | Jun 2001 | B1 |
6280362 | Dalebout et al. | Aug 2001 | B1 |
6283896 | Grunfeld et al. | Sep 2001 | B1 |
6312363 | Watterson et al. | Nov 2001 | B1 |
6322451 | Miura | Nov 2001 | B1 |
6358187 | Smith | Mar 2002 | B1 |
6447424 | Ashby et al. | Sep 2002 | B1 |
6450922 | Henderson et al. | Sep 2002 | B1 |
6572512 | Anderson et al. | Jun 2003 | B2 |
6582342 | Kaufman | Jun 2003 | B2 |
6626803 | Oglesby et al. | Sep 2003 | B1 |
6712737 | Nusbaum | Mar 2004 | B1 |
6761667 | Cutler et al. | Jul 2004 | B1 |
6776740 | Anderson et al. | Aug 2004 | B1 |
6783482 | Oglesby | Aug 2004 | B2 |
20020055422 | Airmet et al. | May 2002 | A1 |
20050026750 | Oglesby et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0199442 | Oct 1986 | EP |
9417860 | Aug 1994 | WO |
WO 9800204 | Jan 1998 | WO |
WO 9832496 | Jul 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050209052 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09907846 | Jul 2001 | US |
Child | 11113921 | US | |
Parent | 09496560 | Feb 2000 | US |
Child | 09907846 | US |