1. Field of the Invention
The present invention relates in general to a system and method for self-referencing a sensor that is used to detect if a biomolecular binding event occurred in a sample solution flowing along side a reference solution in a micron-sized deep flow channel. In one embodiment, the sensor and micron-sized deep flow channel are incorporated within a well of a microplate.
2. Description of Related Art
The performance of sensors based on optical detection techniques such as surface plasmon resonance (SPR), waveguide grating-based surface sensing, and surface or bulk scattering is generally affected by the designs and characteristics of the sensors, the optics, and by the environmental fluctuations. Unwanted sensitivity to environmental fluctuations including temperature change, mechanical vibration, and source drift (among others) is the most common problem affecting the performance of the sensors. Existing instrument's like the Biacore® S51 which is made and sold by Biacore AB in Uppsala, Sweden are equipped with temperature control features which help minimize the effect of temperature fluctuations on the performance of the sensor. However, these types of instruments are expensive, and temperature control alone cannot correct for all environmental factors.
Other instruments attempt to diminish the impact of environmental fluctuations by providing a self-referencing method and/or a common environment for the reference and detection regions such that any environmental fluctuations can be referenced out. Three such instruments have been described in U.S. Pat. No. 6,200,814 B1 and EP1021703 B1 (Malmqvist et al.) and U.S. Pub. No. US2003/0022388 A1 (Roos et al.). Malmqvist et al. disclose methods and devices for controlling the fluid flow over a sensing surface within a flow cell such that selective sensitization of discrete sensing areas is permitted and selective contact of the discrete sensing areas with a sample fluid flow is provided. And, Roos et al. discloses a method for adjusting the position of the interface between fluids in the longitudinal direction of the flow cell by controlling the relative flow rates of the fluids.
One shortcoming of these instruments is that their surface sensors do not cover the whole width of the flow cell and as a result more than one surface sensor is required to cover the whole width of the flow cell in certain embodiments. Thus, in order to reference out any environmental fluctuations or non-specific biomolecular binding, at least two surface sensors are required in the flow cell, one for the referencing and one for the detection. By using more than one spatially separated sensor, the optics required for the detection are increased by the number of sensors added. As a result, there may be a physical limitation of how close the sensors can be positioned together and the number of sensors that can be used in the flow cell. Also, the different sensors may experience different environmental fluctuations and may have different characteristics and performances. All of these differences add to the uncertainty and hence can adversely affect the accuracy of detecting a biomolecular binding event.
Another shortcoming of these instruments is that they rely on a dynamic interface between the multiple laminar flows and then use the movement of the fluid interface as a key component of their referencing methodology. While both sample and reference fluids are present in the flow cell, the interface between the two fluids is adjusted to place the sample fluid stream exclusively over the sensor, then the fluid interface is further modified (via flow rate, etc.) so as to place the reference fluid over the same sensing region, thereby presenting a reference signal. While this method efficiently utilizes a single sensing region for both sample and reference fluids, the movement of the fluid interface can cause a disruption of the laminar flows, promote mixing of the streams, and thereby degrade the signals. Furthermore, accurate movement of the fluid interface requires impeccable control over the dimensions of the fluidic channel, fluid flow rates, etc. In addition, due to the movement of the fluid interface, the sample and reference signals are not measured at the same time which will decrease the accuracy of the self-referencing method.
Accordingly, there is a need for a system and method for self-referencing a sensor that addresses the aforementioned shortcomings and other shortcomings of the traditional instruments. This need and other needs are satisfied by the system and method of the present invention.
The present invention includes a system and method for self-referencing a sensor that is used to detect a biomolecular binding event which occurred in a sample solution flowing along side a reference solution in a micron-sized deep flow channel. In one embodiment, the system includes an interrogation system that directs an input optical beam at the sensor which has a sensing region within the sample solution and the reference solution that flow side-by-side to one another in the micron-sized deep flow channel. The interrogation system receives an output optical beam from the sensor. The system also includes a computer or other electrical hardware to analyze the output optical beam, to determine a detection signal associated with the sample solution flowing in a detection region of the sensing region of the sensor and to determine a reference signal associated with the reference solution flowing in a reference region of the sensing region of the sensor. The computer (or equivalent electrical circuit) then subtracts the reference signal from the detection signal so as to generate a corrected detection signal which indicates whether or not a biomolecular binding event occurred in the sample solution flowing in the micron-sized deep flow channel. In this way, the system is able to self-reference the sensor and mitigate the uncertainties in the detection signal that are due to environmental conditions.
A more complete understanding of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
Referring to
The system 100 includes an interrogation system 110 that directs (step 202) an optical beam 112 at the sensor 102 and receives (step 204) an optical beam 114 from the sensor 102. The system 100 further includes a computer/processor (or equivalent electrical hardware) 118 that analyzes/demultiplexes (step 206) information associated with the optical beam 114 and generates a detection signal 120 which is associated with the sample solution 104 that is flowing in a detection region 116a of the sensing region 116 of the sensor 102 (see
The system 100 and method 200 are a marked improvement over the prior art in that only one sensor 102 is required for both simultaneous detection and referencing, which reduces the complexity of the optics, the instruments, and the number of sensors required. As described above, in the present invention the reference signal 122 is generated from the same sensor 102 that is used for the detection. Furthermore, unlike the prior art, the fluidic interface between detection and reference fluids 104 and 106 may be kept constant, preventing turbulent mixing, hysteresis, and repeatability problems inherent in moving fluidic interface systems. In addition, since both sample and reference signals are measured at the same time, any sudden short environmental fluctuations can be referenced out making the self-referencing method 200 more accurate and robust. And, since the sample solution 104 and the reference solution 106 flow next to one another in the micron-sized deep flow channel 108 they both experience the same environmental fluctuations as do the reference signal 122 and the detection signal 120. It is this fact that enables the system 100 to mitigate the undesirable environmental effects by subtracting the reference signal 122 from the detection signal 120 to generate the corrected detection signal 124.
This is all possible since, when two streams of fluids 104 and 106 flow side by side in a micron-sized deep channel 108, the only means of mixing the two fluids 104 and 106 is by molecular diffusion. The small length scale and height of the channel 108 preclude any possibility of eddy diffusivity due to turbulence and/or shear layer instability between the two fluids 104 and 106. In this micron high fluid channel mass diffusivity of the molecular entities of the two fluids 104 and 106 typically employed for drug discovery investigations is many orders of magnitude smaller that the thermal diffusivity of the two fluids 104 and 106. This leads to disparate thermal and mass diffusion length scales in the channel 108. Due to smallness of the mass diffusivity, the two streams 104 and 106 are well separated by a very thin diffusion layer, which grows relative to the amount of time the two fluids 104 and 106 are in contact. The magnitude of the diffusion interface can be obtained by using the equation √{square root over (2Dt)} where D is the mass diffusion coefficient and t is time (t=L/U, where L is the distance of the sensing region from the inlet, and U is the average flow velocity). The small value of D (e.g., D for the small molecule fluorescein biotin and the protein bovine serum albumin are 3.4×10−6 cm2s−1 and 6.5×10−7 cm2s−1, respectively) ensures that the chemical/compositional integrity of each stream 104 and 106 is maintained except in a very thin layer near the center. On the other hand, the large value of thermal diffusivity ensures that the lateral temperature distribution in the channel 108 is uniform since the thermal boundary layer grows as √{square root over (2αt)}, where α is the thermal diffusivity (e.g., α=1.4×10−3 cm2s−1 for water). By exploiting the disparate mixing length scales of heat and mass, the self-referencing system 100 and method 200 is able to use one sensor 102 to investigate interactions between biomolecules in the sensing area 116. This type of self-referencing effectively reduces or removes the sensitivity that the sensor 102 has to perturbations in angle, location, temperature, source wavelength, thermal expansion of instrumentation, and even some non-specific binding between biomolecules in the sample solution 104.
The interrogation system 110 typically used to interrogate the sensor 102 utilizes an optical beam 112 that has the appropriate spectral or angular content, such that when the optical beam 112 is reflected by the sensing surface the angular or wavelength content is altered by the presence of the analyte 114. This includes the possibility for surface plasmon resonance use, in which the measured quantity is the absorption of a set of angles or wavelengths from the input beam and not a resonant reflection. The interrogation system 110 can take many forms, and two general embodiments are described herein. In one embodiment, the interrogation system 110 delivers a single-wavelength, high-angular content optical beam 112 to the sensor 102, and the output beam 114 retains some angular response information from the sensor 102. This type of interrogation system 110 is commonly referred to as an angular interrogation system 110a since angular detection is employed to locate a dominant angle in the output beam 114 (see
The differences between the angular interrogation system 110a (
A larger difference in instrument systems is based upon the choice of optical delivery: the input/output light can be delivered to/from the sensor via free space (shown for example in the angular system of
Referring to
As shown, the laser/optical source 402 emits an optical beam 112a which has a collection of angles that interacts with the sensor 102. The sensor 102 responds by emitting an optical beam 114a to the CCD camera 412, which produces an image of the far-field response of the sensor region 116. The bright streak, for example, indicates the resonant response angles from across the width of the sensor 102 (see photographs in
In an experiment to demonstrate the capabilities of the present invention, the inventors used an “H” shaped flow chamber with 4 mm width and 200 μm deep flow channel 108, a 3 mm×3 mm waveguide grating surface sensor 102 and an angular interrogation system 110a like the one shown in
Referring to
As mentioned above, because the spatial information about the sensor 102 is lost during the waveguide propagation in the spectral interrogation system 110b, another means needs to be used to demultiplex the responses from the fluid flows 104 and 106 in the optical beam 114b. One solution is to duplicate the waveguide delivery/receive system 702, 704, 706, 708, 710 and 712 corresponding to the number of fluid flows 104 and 106 where in this example two fiber launch/receive systems 702, 704, 706, 708, 710 and 712 would be placed side-by-side under the two fluids 104 and 106 flowing above the sensor 102. This embodiment of course involves added complexity as well as cost, and the waveguide mechanics and optics need to physically fit and be precisely aligned under the sensor 102. Another solution could involve precisely moving or oscillating a single optical fiber launch/receive system 702, 704, 706, 708, 710 and 712 mechanically from one flow region 116a to the other flow region 116b when a measurement is desired from each flow 104 and 106. Yet another embodiment could be made feasible by appropriate differentiation of each sensor region 116a and 116b. For example, if the fluids 104 and 106 in the flow channel 108 are significantly different, or if different surface chemistries are applied via each separate flow, this may cause a large enough shift in each resonant signal relative to the other due to resultant waveguide differences so as to cause a spectral separation in the resonant responses. In other words, the need for spatial information is foregone by the large (necessarily unambiguous) spectral separation of the two flow regions 116a and 116b. This situation is shown schematically in the graph shown in
Referring to
The interrogation system 110 when used to interrogate the 96-H well plate 900 is designed to emit an optical beam 112 at each sensor 102 in each device 101 and receive an optical beam 114 from each sensor 102 in each device 101. In this way, multiple sensors 102 can be interrogated at the same time. For instance, either a CCD camera 412 or multiplexed optical detector system 414 can receive the plurality of optical beams 114 from the sensor array 102. If the multiplexed detector system 414 is used the plurality of beams is demultiplexed by virtue of impinging upon separate detectors. As described previously, each optical detector (e.g. detector pair, one for each of the detection and reference regions of a sensor) can then demultiplex the detection signal 120 and reference signal 122 from the different regions of an individual sensor. If the CCD camera 412 is used then the computer/processor 118 analyzes/demultiplexes the plurality of optical beams 114 from the sensor array, and also analyzes/demultiplexes each optical beam 114 in order to generate detection signals 120 and reference signals 122 that are subtracted from one another to determine the corrected detection signals 124. Each corrected detection signal 124 effectively indicates whether or not a biomolecular binding event occurred in the sample solution 104 located in the corresponding device 101.
Referring to
It should be noted that in the past there have been described different methods for generating concentration gradients in a sample located in a microfluidic device. Several of the methods are disclosed in the following documents the contents of which are incorporated herein by reference:
From the foregoing, it can be readily appreciated by those skilled in the art that the present invention enables a simple and highly flexible self-referencing method for sensors within micron-depth flow chambers. Unlike the prior art, only one sensor is required for both simultaneous detection and referencing, which reduces the complexity of the optics and the instruments. The reference signal is generated from the same sensor used for the detection. Thus, the reference signal experiences the same environmental fluctuations as the detection signal. This increases the accuracy of the referencing and reduces uncertainty due to environmental conditions. Using the preferred embodiment of the system 100 shown in
It should be noted that the preferred sensors 102 used in the present invention are grating-coupled waveguide sensors 102 or surface plasmon resonance sensors 102. The following documents disclose details about the structure and the functionality of exemplary sensors 102 that can be used in the present invention:
It should also be noted that for clarity the system 100 shown in
Although multiple embodiments of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
This is a divisional of application Ser. No. 10/993,565, filed Nov. 18, 2004, now U.S. Pat. No. 7,285,420, entitled “SYSTEM AND METHOD FOR SELF-REFERENCING A SENSOR IN A MICRON-SIZED DEEP FLOW CHAMBER”.
Number | Name | Date | Kind |
---|---|---|---|
4642469 | Bretaudeau et al. | Feb 1987 | A |
4815843 | Tiefenthaler et al. | Mar 1989 | A |
5313264 | Ivarsson et al. | May 1994 | A |
5716852 | Yager et al. | Feb 1998 | A |
5869004 | Parce et al. | Feb 1999 | A |
5972710 | Weigl et al. | Oct 1999 | A |
6103479 | Taylor | Aug 2000 | A |
6200814 | Malmqvist et al. | Mar 2001 | B1 |
6555389 | Ullman et al. | Apr 2003 | B1 |
6570657 | Hoppe et al. | May 2003 | B1 |
6627406 | Singh et al. | Sep 2003 | B1 |
7057720 | Caracci et al. | Jun 2006 | B2 |
20020113095 | Jeon et al. | Aug 2002 | A1 |
20020127565 | Cunningham et al. | Sep 2002 | A1 |
20020168295 | Cunningham et al. | Nov 2002 | A1 |
20030017580 | Cunningham et al. | Jan 2003 | A1 |
20030017581 | Li et al. | Jan 2003 | A1 |
20030022388 | Roos et al. | Jan 2003 | A1 |
20030026891 | Qiu et al. | Feb 2003 | A1 |
20030027327 | Cunningham et al. | Feb 2003 | A1 |
20030027328 | Cunningham et al. | Feb 2003 | A1 |
20030032039 | Cunningham et al. | Feb 2003 | A1 |
20030059855 | Cunningham et al. | Mar 2003 | A1 |
20030068657 | Lin et al. | Apr 2003 | A1 |
20030077660 | Pien et al. | Apr 2003 | A1 |
20030092075 | Pepper | May 2003 | A1 |
20030113766 | Pepper et al. | Jun 2003 | A1 |
20040132172 | Cunningham et al. | Jul 2004 | A1 |
20040132214 | Lin et al. | Jul 2004 | A1 |
20040151626 | Cunningham et al. | Aug 2004 | A1 |
20040223881 | Cunningham et al. | Nov 2004 | A1 |
20050099622 | Caracci et al. | May 2005 | A1 |
20050236554 | Fontaine et al. | Oct 2005 | A1 |
20060141527 | Caracci et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0 202 021 | Nov 1986 | EP |
1 021 703 | Nov 2001 | EP |
7-159319 | Jan 1997 | JP |
2001-330560 | May 2003 | JP |
WO 9905512 | Feb 1999 | WO |
WO 02081085 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080063569 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10993565 | Nov 2004 | US |
Child | 11900263 | US |