1. Field of the Invention
The present invention relates generally to an image forming apparatus and, more particularly, to a system and method for sensing a media stack from a side of the stack and a side of a delivery path to the stack in order to detect a given stack height and thus when an output bin of the image forming apparatus is full.
2. Description of the Related Art
Traditional output bin sensing systems in image forming apparatus, such as electrophotographic printers, use a mechanical flag and sensor mechanism to sense when the height of a media stack reaches a predetermined level. When this happens, the system will generate output signals indicating the output bin is full and instruct the user to remove the media stack before proceeding with additional jobs. This system typically includes a mechanical flag type arm that acts on the top of the media stack in the output bin. An example of such a system is disclosed in U.S. Pat. No. 6,279,889 assigned to the assignee of the present invention.
Many printers are architected in a reverse “C” format where the media sheet exits in the back of the printer and away from the user. An example of such a printer is disclosed in U.S. Pat. No. 7,292,820 assigned to the assignee of the present invention. The traditional output bin full sensing system has a couple of drawbacks related to the human factors involved in using the output bin of these printers. First, the mechanical flag functions on the top of the media stack where it can impede the user in easily removing the stack from the output bin and pulling it towards the front of the printer. Second, if the media stack is replaced by the user into the output bin, the media stack can easily trap the mechanical flag in way that prevents the mechanical flag from functioning properly and thereby potentially leads to unintended media jams. These issues can lead to even worse human factors issues in an All-In-One (AIO) device where a scanner is positioned above the media stack.
Thus, there is a need for an innovation which will satisfactorily overcome the aforementioned drawbacks of the traditional output bin full sensing system without introducing any significant new drawbacks in place thereof.
The present invention meets this need by providing an innovation that resolves the above-mentioned drawbacks through sensing when a media stack has reached a given height, such as the height that fills the output bin of an image forming apparatus, by measuring the height of the media stack from a side of the stack, instead of the top of the stack, which side is also the same as a side edge position of a media sheet in the media delivery path to the stack. This approach, in particular, is thus useful in conjunction with a reference edge style media feed system.
Accordingly, in an aspect of the present invention, a system for sensing a media stack in order to detect a given height of the stack includes a media sheet stack site and a media contact member movably mounted adjacent to a side of the media sheet stack site in a predetermined state, such as a counterbalanced state, at a home position such that a contact element of the contact member extends into a path of delivery of repetitive media sheets to the stack site where the contact element is exposed to being struck by an edge of media sheets repetitively moving in the delivery path that causes the media contact member to repetitively movably deflect from the home position to a displaced position allowing each media sheet to repetitively pass the contact element of the media contact member and reach the stack site increasing the height of a stack of media sheets at the site, the predetermined state further causing the media contact member to repetitively movably return from the displaced position to the home position after each repetitive media sheet has passed the contact element of the media contact member until the given height of the media stack is reached at which the media contact member cannot return to the home position due to the contact element of the media contact member being unable to extend into the delivery path of the media sheet due to the presence of the media stack. The system further includes a sensor member disposed adjacent to the media contact member and operable to sense movement of the media contact member and in response thereto produce output that distinguishes between the media contact member at the home and displaced positions so as to provide an indication when the media stack is at the given height.
In another aspect of the present invention, a method for sensing a media stack in order to detect a given height of the stack includes movably mounting a media contact member adjacent to a side of a media sheet stack site in a predetermined state at a home position, placing a contact element of the media contact member into a path of delivery of a media sheet to the stack site where the contact element is exposed to being struck by an edge of media sheets repetitively moving in the delivery path, movably deflecting the media contact member repetitively from the home position to a displaced position in response to the edge of media sheets striking the contact element of the media contract member, allowing media sheets to repetitively pass the contact element of the media contact member and reach the stack site increasing the height of a stack of media sheets at the stack site, and movably returning the media contact member repetitively from the displaced position to the home position after each repetitive media sheet has passed the contact element of the media contact member until the given height of the media stack is reached at which the media contact member cannot return to the home position due to the contact element of the media contact member being unable to extend into the delivery path of the media sheet due to the presence of the media stack. The sensing method further includes sensing movement of the media contact member between the home and displaced positions, and in response thereto producing an output that distinguishes between the media contact member at the home and displaced positions so as to provide an indication when the media stack is at the given height.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numerals refer to like elements throughout the views.
Referring now to
The stack side sensing system 12 located in the output bin 10 includes the media sheet stack site 14 and a media contact member, such as in the form of a mechanical flag 24, pivotally mounted at 26 located adjacent to a side 14A of the site 14 in a predetermined, such as a counterbalanced, orientation or state by a predetermined load 28, such as a weighted portion 24A of the flag 24 or an external spring or other suitable means. In the counterbalanced state, the flag 24 is normally disposed in an upright home position, as seen in
The flag 24 has an elongated stem element 30 and a contact element 32. The stem element 30 is pivotally mounted to the side 14A of the media sheet stack site 14 at the location 26 adjacent to one end 30A of the stem element 30 such that the stem element 30 normally extends along a reference line 34 which corresponds to an upright side edge 16A of the stack 16 of media sheets 18 and the edge 18A of the media sheet 18 as it is delivered along the path to the stack site 14. The stack 16 is increased in height at the site 14 by repetitive delivery of media sheets 18 along the path 22 to the site 14. The contact element 32 of the flag 24 has an exposed tip surface portion 32A which extends or protrudes beyond the reference line 34 and thus into the path 22 of the repetitive delivery of the media sheets 18 to the site 14 when the mechanical flag 24 is at the upright home position.
The contact element 32 is exposed to being struck by the edge 18A of the media sheets 18 repetitively moving in the delivery path 22. Such repetitive striking of the contact element 32 by the sheet edge 18A causes the flag 24 to movably or pivotally deflect from the home position, as shown in solid line form in
As shown in
Regarding the forces Fx and Fy shown in
When the media stack height is achieves the full position, as seen in
The benefits and advantages of the present invention may be summarized as follows: (1) provides a means of sensing when the output bin is full based upon detecting the height of the stack by sensing from the side of the stack (as opposed to the traditional approach of sensing stack full on the top of the stack); (2) by sensing bin full on the side of the stack, the human factors of removing the stack from and putting the stack back into the output bin can be improved since the user does not have to work the top of the stack out from under a bin full sensing flag; (3) the system is scalable to the desired output capacity of the bin; (4) allows for improved human factors where the paper path is of a reverse “C” architecture; (5) allows for improved human factors where the device is an AIO with a scanner positioned on the top of the printer and impedes the user from removing the stack from the output bin; and (6) geometry allows for flag to easily pivot out of the way under small applied load of falling sheets from the exit rollers or when the stack is removed from the bin.
The foregoing description of several embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5963754 | Itoh et al. | Oct 1999 | A |
6279899 | Coffey et al. | Aug 2001 | B1 |
6408147 | Oshida | Jun 2002 | B1 |
6851668 | Mui et al. | Feb 2005 | B2 |
6942206 | Kuwata et al. | Sep 2005 | B2 |
7292820 | Triplett et al. | Nov 2007 | B2 |
20090001659 | McNamara et al. | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100025924 A1 | Feb 2010 | US |