Embodiments relate to power line sensors.
Power line events may be detected by sensing partial discharge, which may be a low leakage current from a primary through a path of least resistance to ground. Early detection of low leakage current may be used to correct and prevent power line events before they occur. Leakage current may be detected via ground based and/or aerial assessments. However, such assessments may be overly expensive and timely.
Thus, one embodiment provides a power line sensor including a housing and a near field sensor. The housing is configured to couple to a power line. The near field sensor is configured to sense a leakage current on the power line.
Another embodiment provides a method of determining a potential event of a power line. The method includes sensing, via a near field sensor, a leakage current on the power line. The method further includes determining, via an electronic processor, a potential event based on the leakage current on the power line.
Yet another embodiment provides a system for determining a potential event on a power line. The system includes a first line sensor, a second line sensor and an electronic processor. The first line sensor includes a first near field sensor configured to sense a first leakage current at a first location on the line. The second line sensor includes a second near field sensor configured to sense a second leakage current at a second location on the line. The electronic processor is configured to receive data corresponding to the first leakage current and the second leakage current, and determine a location of a potential event on the line based on the data.
Other aspects of the application will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the application are explained in detail, it is to be understood that the application is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The application is capable of other embodiments and of being practiced or of being carried out in various ways.
In the illustrated embodiment, the line sensor 115 includes a power input 205, a characteristic sensor 210, a near field sensor 215, and a transceiver 220. In some embodiments, the line sensor 115 further includes an electronic processor and a memory. The electronic processor and/or memory may be configured to provide signal conditioning and/or detecting. The power input 205 may be configured to receive power from line 105, convert the line power to a nominal power, and provide power to other components and/or modules of the line sensor 115.
The characteristic sensor 210 may be configured to sense one or more characteristics of the line 105. In some embodiment, the sensed characteristics include electrical characteristics, such as but not limited to, a line voltage and a line current. In some embodiments, the sensed characteristics include one or more temperatures, such as but not limited to, a line temperature and/or an ambient temperature. In some embodiments, the sensed characteristics include an inclination and/or an amount of line sagging, wind movement, electrical fields, power generation, and/or distribution and consumption of electricity.
The near field sensor 215 may be configured to detect a leakage current of line 105. The leakage current of line 105 may be a leakage current from a primary of the line 105 through a path of least resistance to ground. In some embodiments, the near field sensor 215 detects the leakage current by sensing, a discharged, or partial discharge, radio frequency from line 105. As illustrated, in some embodiments, the near field sensor 215 senses the discharged radio frequency via a near field antenna 225.
In some embodiments, the near field sensor 215 is a conductive sensor. In some embodiments, the near field sensor 215 is an electromagnetic sensor. In such an embodiment, the near field sensor 215 may sense the leakage current via electromagnetic radiation sensing (or radiation sensing), radio frequency sensing, light sensing (for example, ultraviolet sensing, infrared sensing, etc.), and/or thermal sensing. In some embodiments, the near field sensor 215 is an acoustic sensor. In such an embodiment, the near field sensor 215 may sense the leakage current via audio sensing (for example, apparatus (such as, but not limited to audio sensors) and methods disclosed in U.S. Pat. No. 10,440,472, hereby incorporated by reference) and/or ultrasonic sensing. In some embodiments, the near field sensor 215 is a gas sensor. In such an embodiment, the near field sensor 215 may sense the leakage current via ozone sensing and/or nitrous oxide sensing.
The transceiver 220, along with a transceiver antenna 230, may be configured to enable wireless communication to/from the line sensor 115. In other embodiments, rather than a transceiver 220 and transceiver antenna 230, the line sensor 115 may include separate transmitting and receiving components, for example, a transmitter, a transmitting antenna, a receiver, and a receiving antenna. In some embodiments, the transceiver 220 may be configured to enable wired communication to/from the line sensor 115.
The line sensor 115, via the transceiver 220, may communicate with an external device 235. In some embodiments, the line sensor 115 wirelessly communicates with the external device via a communication link 240. In some embodiments, the communication link 240, for example, a wide area network (WAN) (e.g., a transport control protocol/internet protocol (TCP/IP) based network, a cellular network, such as, for example, a Global System for Mobile Communications (or Groupe Special Mobile (GSM)) network, a General Packet Radio Service (GPRS) network, a Code Division Multiple Access (CDMA) network, an Evolution-Data Optimized (EV-DO) network, an Enhanced Data Rates for GSM Evolution (EDGE) network, a 3GSM network, a 4GSM network, a Digital Enhanced Cordless Telecommunications (DECT) network, a Digital advanced mobile phone system (AMPS) (IS-136/time division multiple access (TDMA)) network, or an Integrated Digital Enhanced Network (iDEN) network, etc.). In other embodiments, the communication link 240 is, for example, a local area network (LAN), a neighborhood area network (NAN), a home area network (HAN), or personal area network (PAN) employing any of a variety of communications protocols, such as Wi-Fi, Bluetooth, ZigBee, etc. Other wide area networks, such as land mobile radio (LMR), terrestrial trunked radio (TETRA), and digital mobile radio (DMR) may also be used. In some embodiments, the line sensor 115 uses one or more of the above communication protocols.
The external device 235 may be, but is not limited to, an external computer, one or more server(s), a smart telephone, a tablet, and/or a laptop. As illustrated, the external device 235 may be remote from the line sensor 115. The external device 235 may include an electronic processor and a memory. In one embodiment of operation, the external device 235 receives data corresponding to the one or more characteristics of the line 105 and/or the leakage current of the line 105. The external device 235 then analyzes the data to detect potential events that may occur on the line 105.
In one embodiment of operation, the external device 235 receives data corresponding to leakage current at one or more of the various portions 305a, 305b, 305c on line 105 corresponding to locations of the sensors 115a, 115b, 115c. Based on the data from line sensors 115a, 115b, 155c, the external device 235 may determine a potential event and/or extrapolate the location of a potential event on the line 105. For example, a first leakage current detected by line sensor 115a having a greater magnitude than a second leakage current detected by line sensor 115b may correspond to a potential event occurring between line sensors 115a, 115b in an area closer to line sensor 115a than line sensor 115b. The external device 235 may then output alerts and/or notification of the potential event and/or the location of the potential event on the line 105.
Embodiments provide, among other things, a system and method for determining potential events on a power line. Various features and advantages of the application are set forth in the following claims.
This application claims priority to U.S. Provisional Patent Application No. 62/896,201, filed Sep. 5, 2019, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4795973 | Smith-Vaniz et al. | Jan 1989 | A |
5416418 | Maureira | May 1995 | A |
5530364 | Mashikian | Jun 1996 | A |
5565783 | Lau et al. | Oct 1996 | A |
5764065 | Richards et al. | Jun 1998 | A |
9547033 | Batten | Jan 2017 | B1 |
10073132 | Cern | Sep 2018 | B2 |
20070059986 | Rockwell | Mar 2007 | A1 |
20090287430 | Atoji | Nov 2009 | A1 |
20100271044 | Keret | Oct 2010 | A1 |
20120046799 | Alex et al. | Feb 2012 | A1 |
20130169285 | Phillips | Jul 2013 | A1 |
20140123750 | Liu | May 2014 | A1 |
20140278150 | Baesler et al. | Sep 2014 | A1 |
20150331025 | Arashima et al. | Nov 2015 | A1 |
20160370419 | Poluru | Dec 2016 | A1 |
20170030956 | McCammon et al. | Feb 2017 | A1 |
20170045571 | Joseph et al. | Feb 2017 | A1 |
20170206781 | Miller | Jul 2017 | A1 |
20170227593 | Hackl | Aug 2017 | A1 |
20170285091 | Jiang et al. | Oct 2017 | A1 |
20180164361 | Premerlani | Jun 2018 | A1 |
20180188307 | Logvinov | Jul 2018 | A1 |
20190227110 | Lindsey et al. | Jul 2019 | A1 |
20200072814 | Bailey | Mar 2020 | A1 |
20200096551 | Emanuel | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
104422480 | Mar 2015 | CN |
105652168 | Jun 2016 | CN |
205301502 | Jun 2016 | CN |
106597224 | Apr 2017 | CN |
207623451 | Jul 2018 | CN |
110031727 | Jul 2019 | CN |
112557805 | Mar 2021 | CN |
2 866 041 | Apr 2015 | EP |
3499253 | Jun 2019 | EP |
3033198 | Sep 2016 | FR |
2004361248 | Dec 2004 | JP |
2004525344 | Aug 2019 | JP |
20090081772 | Jul 2009 | KR |
101444733 | Sep 2014 | KR |
101531641 | Jul 2015 | KR |
101762577 | Jul 2017 | KR |
101820426 | Jan 2018 | KR |
Entry |
---|
PCT/US2020/049160 International Search Report and Written Opinion dated Dec. 18, 2020. |
Extended European Search Report dated Aug. 2, 2023 for corresponding European Application No. 20859801.1. |
Number | Date | Country | |
---|---|---|---|
20210072325 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62896201 | Sep 2019 | US |