In telecommunications systems, there is a need to re-route from a legacy (existing) service to a new service with respect to customers who are switching from the legacy service to the new service.
A system and method of providing telecommunications service comprising: an interruption free copper cable interception and re-routing from an existing service to a new service avoiding transmission effects during the changeover, including a conductive tap, and a termination module with a disconnection plug.
Testing of the new service pathways is also provided through the termination module.
A system and method of providing telecommunications service is provided wherein non-active pairs of wires are eliminated during re-routing from an existing service to a new service.
Another system and method allows for testing of the new service.
Further systems and methods are provided for removing the termination module in an effort to save space, if desired.
A system 10 and a related process for an interruption free copper cable interception and re-routing from a legacy (existing) service to a new service is provided. The system 10 avoids transmission effects during a change over. In the current or existing state, the signal flow goes via a copper multi-pair OSP (outside plant) cable from the legacy service side 20 to the subscriber or customer 30 over pathways 1 and 2. The signal is carried on cable 22 including portion 22a and 22b. Typically, pathways 1 and 2 are the same cable and are not interrupted at area D. Legacy service is delivered in the direction of arrows 24.
When new service is desired, on a point on the existing copper cable 22, an access to the buried or overhead copper cable needs to be provided by taking the outer insulation off or otherwise piercing the jacket of the cable to gain access to the individual copper cables of the multi-pair cable. Preferably, the access is selectable from a variety of access option. These individual selectable copper cables will be parallel and interruption free electrically connected to a single line connector B which provides three electrical access points on the same electrical potential. A PICABOND™ connector, by CommScope, Inc. is one example of a device to add a tap line by splicing to a conductor of a multi-conductor telephone cable.
The two electrical connections 4 are now electrically replacing the old line through connection pathway 1 along pathway 2 on conductor 22b. The third leg 5 of the single line connector B will be terminated with another individual copper cable 5 which provides a connection to the electrical connector A. An example of connector A is an LSA plus™ termination module. The termination module may also be referred to as a disconnect module.
This procedure can be repeated for multiple amounts of copper cables up to the maximum capacity of the legacy multi-pair OSP cable. The electrical connector A is constructed in a way that two connection points for one individual copper cable are isolated against each other by using a disconnection element C which electrically isolates both termination sides. This disconnection element C can be designed as an individual or a multi-pair isolating element. The cable side 3 of the electrical connector A is already pre-cabled to the new service device.
With this type of cable arrangement, an interruption free method of individual copper pair access and re-routing to a new service device has been realized, but not put in final electrical connection from the new service to the customer home due to the isolating function of the disconnection element C. Besides the blocking of the new service signal, this disconnection element C is also blocking electrical interferences from the new copper cables to the legacy copper multi-pair OSP cables still carrying the legacy service. Once the disconnection element C is removed and the legacy service cut, the new service is delivered in the direction of arrows 44.
In addition, the disconnection element C can be used for electrical copper line tests using the 2 pole method or the 4 pole method. The 2 pole method uses a test plug in the disconnect module that looks only at one pair of wires (in one direction). The 4 pole method uses a test plug in the disconnect module that looks at both pairs of wires (in both directions).
During the transition time of this described procedure the electrical connector arrangements B and A will be integrated in an enclosure D which allows access multiple times together with a sealed protection against environmental influence. Once individual copper cables for new service activation are identified and terminated with the above described method, the final service activation can be carried out by physically cutting the re-routed copper cables at the legacy service multi-pair OSP copper cable 6. Afterwards, the disconnection element C will be taken out of the connector A. As a result, a new electrical connection has been made from the new service point to the customer's home. The enclosure D can be changed over on request on a kind of heat-shrinkable closure device for final and commercial efficient environmental protection in a buried or over-head type of copper cable structure.
The system 10 of
Referring to
Referring to
Referring to
To modify the termination module 46 and activate the new service (i.e., disrupt the first signal path), the technician can easily activate and de-activate the new service to the subscriber 40 simply by inserting and removing the activation plug C into and from the termination module 46. Details of the function and operation of another system including a termination module are shown a described in U.S. patent application Ser. No. 10/301,960 (U.S. Pat. No. 7,155,004) and Ser. No. 10/725,108 (U.S. Pat. No. 7,409,053); which applications are incorporated herein by reference. The termination module may also be referred to as a Krone style multiple contact pair block, one specific example being the LSA plus™ block noted above, from Krone GmbH, ADC GmbH, TE Connectivity, or CommScope, Inc. In general, with the systems and methods herein legacy service is provided at day 1. At day 2, a tap line can be added. The tap line is electrically connected (with a disconnection contact in the open or disconnected state) to the new service. Then the legacy service is cut or disrupted, and then the disconnection contact is placed in the closed or connected state, wherein new service is provided.
The connections described herein are made wire by wire. An advantageous aspect is to test whether a pair of wires is active. This can only be done when one can measure between the two wires of a pair. The wire pairs are labeled with the wires as 1a, 1b (pair 1), 2a, 2b (pair 2), etc. (European style) or in the US: 1T, 1R (pair 1), 2T, 2R (pair 2), etc. (for Tip and Ring).
A related system and method is shown in
System 100 may offer advantages such as allowing for more working room for the technician doing the cut over. Other advantages include locating and eliminating unused wire pairs from the cut over, saving time and/or storage space for the wire connection structure. Some aspects of system 100 are advantageous in that the final cut over may allow a test function. Other aspects of system 100 are advantageous in that the final cut over may allow for reduced storage needs for the wire connection structure if the test function is removed at the conclusion of the cutover.
Half taps 122 like connectors B above are used in system 100, as well as one or more of blocks or termination modules 46 as described above and shown in
See also
When all active pairs are connected to the block or blocks, first insert insulating plugs in all the disconnect slots 64 of the blocks. This to ensure that no stub (bridge tap) is seen on the pair when the cable with the new service is connected to the other side of the blocks (IDC 64).
Connect the cable with the pairs that carry the new service to the other side of the blocks. This can be done at a later time.
Optionally test the new service at the block. This can be done by inserting a test plug in the disconnect slot and connecting a handheld tester to the pair that carries the new service. If the new service on block position I is ok, cut the wires Ia and Ib at the exchange side of the block. Then remove the test plug or insulating plug. Repeat for each position on the blocks.
When all active pairs are connected to the new service, the cable going back to the exchange can be removed. See
Three alternatives:
This application claims the benefit of U.S. Patent Application Ser. No. 62/470,838, filed on Mar. 13, 2017, and claims the benefit of U.S. Patent Application Ser. No. 62/588,072, filed on Nov. 17, 2017, and claims the benefit of U.S. Patent Application Ser. No. 62/634,500, filed on Feb. 23, 2018, the disclosures of which are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/056252 | 3/13/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62470838 | Mar 2017 | US | |
62588072 | Nov 2017 | US | |
62634500 | Feb 2018 | US |