System and method for severing a tubular

Information

  • Patent Grant
  • 8424607
  • Patent Number
    8,424,607
  • Date Filed
    Friday, May 27, 2011
    13 years ago
  • Date Issued
    Tuesday, April 23, 2013
    11 years ago
Abstract
The invention relates to techniques for severing a tubular. A blowout preventer is provided with a housing having a bore therethrough for receiving the tubular, an actuator positionable in the housing, and a plurality of cutting tools positionable in the housing and selectively movable into an actuated position with the actuator. Each of the cutting tools have a base supportable by the actuator and selectively movable thereby, and a cutting head supported by the base. The cutting head comprising a tip having a piecing point at an end thereof and at least one cutting surface. The piercing point pierces the tubular and the cutting surfaces taper away from the piercing point for cutting through the tubular whereby the cutting head passes through tubular.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This present invention relates generally to techniques for performing wellsite operations. More specifically, the present invention relates to techniques for preventing blowouts, for example, involving severing a tubular at the wellsite.


2. Description of Related Art


Oilfield operations are typically performed to locate and gather valuable downhole fluids. Oil rigs are positioned at wellsites, and downhole tools, such as drilling tools, are deployed into the ground to reach subsurface reservoirs. Once the downhole tools form a wellbore (or borehole) to reach a desired reservoir, casings may be cemented into place within the wellbore, and the wellbore completed to initiate production of fluids from the reservoir. Tubulars (or tubular strings) may be positioned in the wellbore to enable the passage of subsurface fluids to the surface.


Leakage of subsurface fluids may pose an environmental threat if released from the wellbore. Equipment, such as blow out preventers (BOPs), are often positioned about the wellbore to form a seal about a tubular therein to prevent leakage of fluid as it is brought to the surface. Typical BOPs may have selectively actuatable rams or ram bonnets, such as pipe rams (to contact, engage, and encompass tubulars and/or tools to seal a wellbore) or shear rams (to contact and physically shear a tubular), that may be activated to sever and/or seal a tubular in a wellbore. Some examples of BOPs and/or ram blocks are provided in U.S. patent application Ser. Nos. 4,647,002, 6,173,770, 5,025,708, 5,575,452, 5,655,745, 5,918,851, 4,550,895, 5,575,451, 3,554,278, 5,505,426, 5,013,005, 5,056,418, 7,051,989, 5,575,452, 2008/0265188, 5,735,502, 5,897,094, 7,234,530 and 2009/0056132. Additional examples of BOPs, shear rams, and/or blades for cutting tubulars are disclosed in U.S. Pat. Nos. 3,946,806, 4,043,389, 4,313,496, 4,132,267, 4,558,842, 4,969,390, 4,492,359, 4,504,037, 2,752,119, 3,272,222, 3,744,749, 4,253,638, 4,523,639, 5,025,708, 5,400,857, 4,313,496, 5,360,061, 4,923,005, 4,537,250, 5,515,916, 6,173,770, 3,863,667, 6,158,505, 4,057,887, 5,178,215, and 6,016,880. Some BOPs may be spherical (or rotating or rotary) BOPs as described, for example, in U.S. Pat. Nos. 5,588,491 and 5,662,171, the entire contents of which are hereby incorporated by reference herein.


Despite the development of techniques for addressing blowouts, there remains a need to provide advanced techniques for more effectively severing a tubular within a BOP. The invention herein is directed to fulfilling this need in the art.


SUMMARY OF THE INVENTION

The invention relates to a cutting tool for severing a tubular of a wellbore. The cutting tool is positionable in a housing and actuatable by an actuator of a blowout preventer. The blowout preventer has a bore therethrough for receiving the tubular. The cutting tool has a base supportable by the actuator and selectively movable thereby, and a cutting head supported by the base. The cutting head has a tip with a piercing point at an end thereof and at least one cutting surface. The piercing point is for piercing the tubular. The cutting surface tapers away from the piercing point for cutting through the tubular whereby the cutting head passes through tubular.


The tip may be removeable. The tip may have a connector receivable by a hole in the cutting head. The tip may also be frangible, or terminate at a leading edge or at a point. The cutting surface may have a plurality of flat surfaces, each of the plurality of flat surfaces extending at an angle from the tip.


The cutting tool may be made of a hardening material. The cutting head may have a guide surface for slidably engaging a guide of the housing. The cutting tool may also have a body between the base and the cutting head.


In another aspect, the invention may relate to a blowout preventer for severing a tubular of a wellbore. The blowout preventer may have a housing having a bore therethrough for receiving the tubular, an actuator positionable in the housing, and a plurality of cutting tools positionable in the housing and selectively movable into an actuated position with the actuator. Each of the cutting tools may have a base supportable by the actuator and selectively movable thereby, and a cutting head supported by the base. The cutting head has a tip with a piercing point at an end thereof and at least one cutting surface. The piercing point is for piercing the tubular. The cutting surface tapers away from the piercing point for cutting through the tubular whereby the cutting head passes through tubular.


The housing may have an insert therein defining a guide, and the cutting head may have a guide surface for slidably engaging the guide. The actuator may have a piston having a piston head for engaging an actuation surface of the base. The blowout preventer may also have at least one elastomeric element positionable between the cutting tools, a cutting tool carrier for supporting the cutting tools, and a seal for sealing the bore. The cutting tools may be arranged in a dome-shaped or inverted dome-shaped configuration with the tips of each of the cutting tools converging about the tubular.


In yet another aspect, the invention may relate to a method of severing a tubular of a wellbore. The method involves positioning a BOP about the tubular (the BOP comprising a housing and an actuator), and positioning a plurality of cutting tools in the housing. Each cutting tool has a base supportable by the actuator and selectively movable thereby, and a cutting head supported by the base. The cutting head has a tip with a piercing point at an end thereof and at least one cutting surface. The piercing point is for piercing the tubular. The cutting surface tapers away from the piercing point. The method may further involve selectively moving the cutting tools to an actuated position with the actuator such that the cutting head passes through the tubular by piercing the tubular with the tip of the cutting head and cutting through the tubular with the cutting surface of the cutting head.


The method may also involve guiding the plurality of cutting tools along a guide of the housing, sealing a bore of the housing with a seal, breaking off a portion of the cutting head, replacing a portion of the cutting head, selectively retracting the plurality of cutting tools, and/or securing the plurality of cutting tools with the cutting tool carrier.





BRIEF DESCRIPTION OF DRAWINGS

So that the above recited features and advantages of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof that are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are, therefore, not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. The Figures are not necessarily to scale, and certain features and certain views of the Figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.



FIG. 1 is a schematic view of an offshore wellsite having a blowout preventer (BOP) with a tubular severing system.



FIG. 2 is a cross-sectional view of the BOP of FIG. 1 taken along line 2-2.



FIG. 3 is a schematic, top view of a portion of the BOP of FIG. 1 depicting the tubular severing system in a closed position.



FIGS. 4A and 4B are schematic views of a portion of the tubular severing system of FIG. 1 in an actuated position. FIG. 4A shows the portion of the tubular severing system without a tubular. FIG. 4B shows the portion of the tubular severing system with a tubular.



FIGS. 5A and 5B are various perspective views of a cutting tool of the tubular severing system of FIG. 1.



FIGS. 6A-6C are various perspective views of a cutting tool of the tubular severing system of FIG. 1 having a replaceable tip.



FIG. 7 is a perspective view of the replaceable tip of FIG. 6A.



FIG. 8 is a flow chart depicting a method of severing a tubular.





DETAILED DESCRIPTION OF THE INVENTION

The description that follows includes exemplary apparatus, methods, techniques, and instruction sequences that embody techniques of the inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details.


This application relates to a BOP and tubular severing system used to sever a tubular at a wellsite. The tubular may be, for example, a tubular that is run through the BOP during wellsite operations and/or other downhole tubular devices, such as pipes, certain downhole tools, casings, drill pipe, liner, coiled tubing, production tubing, wireline, slickline, or other tubular members positioned in the wellbore and associated components, such as drill collars, tool joints, drill bits, logging tools, packers, and the like, (referred to as ‘tubulars’ or ‘tubular strings’). The severing operation may allow the tubular to be removed from the BOP and/or the wellhead. Severing the tubular may be performed, for example, in order to seal off a borehole in the event the borehole has experienced a leak, and/or a blow out. The BOP and tubular severing system may be provided with various configurations for facilitating severance of the tubular. These configurations are provided with cutting tools intended to reduce the force required to sever a tubular. The invention provides techniques for severing a variety of tubulars (or tubular strings), such as those having a diameter of up to about 8.5 inches (21.59 cm) or more. Preferably, the BOP and severing system provide one or more of the following, among others: efficient part (e.g., the severing system) replacement, reduced wear, less force required to sever tubular, automatic sealing of the BOP, efficient severing, incorporation into (or use with) existing equipment and less maintenance time for part replacement.



FIG. 1 depicts an offshore wellsite 100 having a subsea system 106 and a surface system 120. The subsea system 106 has a stripper 102, a BOP 108 a wellhead 110, and a tubing delivery system 112. The stripper 102 and/or the BOP 108 may be configured to seal a tubular string 118 (and/or conveyance), and run into a wellbore 116 in the sea floor 107. The BOP 108 has a tubular severing system 150 for severing the tubular string 118, a downhole tool 114, and/or a tool joint (or other tubular not shown). The BOP 108 may have one or more actuators 152 for actuating the tubular severing system 150 thereby severing the tubular string 118. One or more controllers 126 and/or 128 may operate, monitor and/or control the BOP 108, the stripper 102, the tubing delivery system 112 and/or other portions of the wellsite 100.


The tubing delivery system 112 may be configured to convey one or more downhole tools 114 into the wellbore 116 on the tubular string 118. Although the BOP 108 is described as being used in subsea operations, it will be appreciated that the wellsite 100 may be land or water based and the BOP 108 may be used in any wellsite environment.


The surface system 120 may be used to facilitate the oilfield operations at the offshore wellsite 100. The surface system 120 may comprise a rig 122, a platform 124 (or vessel) and the controller 126. As shown the controller 126 is at a surface location and the subsea controller 128 is in a subsea location, it will be appreciated that the one or more controllers 126/128 may be located at various locations to control the surface 120 and/or the subsea systems 106. Communication links 134 may be provided by the controllers 126/128 for communication with various parts of the wellsite 100.


As shown, the tubing delivery system 112 may be located within a conduit 111, although it should be appreciated that it may be located at any suitable location, such as at the sea surface, proximate the subsea equipment 106, without the conduit 111, within the rig 122, and the like. The tubing delivery system 112 may be any tubular delivery system such as a coiled tubing injector, a drilling rig having equipment such as a top drive, a Kelly, a hoist and the like (not shown). Further, the tubular string 118 to be severed may be any suitable tubular and/or tubular string as described herein. The downhole tools 114 may be any suitable downhole tools for drilling, completing, evaluating and/or producing the wellbore 116, such as drill bits, packers, testing equipment, perforating guns, and the like. Other devices may optionally be positioned about the wellsite for performing various functions, such as a packer system 104 hosting the stripper 102 and a sleeve 130.



FIG. 2 shows a cross-sectional view of the BOP 108 of FIG. 1 taken along line 2-2. The BOP 108 as shown has a housing 12 with the tubular severing system 150 and the actuators 152 therein. The tubular severing system 150 includes a plurality of cutting (or metal) elements 248 with elastomeric elements 52 and 54 therebetween. Elastomeric elements 52, 54 may be a single or multiple elements positioned between the cutting elements. The BOP 108 may be similar to the spherical BOPs 108 as described, for example in U.S. Pat. Nos. 5,588,491 and 5,662,171, previously incorporated by reference herein. The BOP 108 may be modified by providing the plurality of cutting tools 248 arranged radially around the BOP 108 as shown in FIG. 2. While the BOP 108 as shown is depicted in a dome configuration, it will be appreciated that the BOP 108 may be inverted such that the BOP 108 is in a bowl configuration. One or more tubular severing systems 150 may be positioned about the BOP 108.


The cutting tools 248 may be supported by the elastomeric elements 52, 54. The cutting tools 248 may also be supported in the housing 12 by a cutting tool carrier 202. The cutting tool carrier 202 may be constructed of a resilient material. The cutting tool carrier 202 may be any suitable member, bonnet, carriage and the like configured to be engaged by the actuator 152. The cutting tool carrier 202 may be a single member that radially surrounds the bore 32, or may be a plurality of members that hold the cutting tools 248 and surround the bore 32.


The cutting tools 248 may travel in a guideway (or curved outer surface) 50. The guideway 50 may direct each of the cutting tools 248 radially toward the tubular string 118 as the actuator 152 actuates the tubular severing system 150. The guideway 50 may be constructed of one or more bowl shaped inserts (or rotatable inner housings) 38 configured to guide the cutting tools 248. Although the bowl shaped inserts 38 are shown as a separate attachable piece, the bowl shaped inserts 38 may be integral with the BOP 108. The guideway 50 is shown as a bowl shape formed by the bowl shaped inserts 38, although the guideway 50 may take any suitable form, so long as the guideway 50 guides the plurality of cutting tools 248 into engagement with the tubular string 118 thereby severing the tubular string 118.


A seal 250 may seal the central bore 32. The cutting tool carrier 202 may be configured as the seal 250 to seal the central bore 32, and/or add flexibility to the travel paths of the cutting tools 248 as they travel in the guideway 50. If the cutting tool carrier 202 is configured to seal the central bore 32 upon severing the tubular string 118, the cutting tools 248, and/or portions thereof, may be configured to break off and/or move out of the way of the cutting tool carrier 202 as the cutting tool carrier moves into the central bore 32. The elastomeric seals 52, 54 may also be used to form a seal about the tubular string 118.



FIG. 2 also shows, for demonstrative purposes, a portion (left side) of the tubular severing system 150 in the BOP 108 in the actuated position, while another portion (right side) of the tubular severing system 150 is shown in the un-actuated position. In the un-actuated position, the actuator 152 is retracted, in this case toward a downhole end of the BOP 108. With the actuator 152 retracted, each of the cutting tools 248 is retracted out of a central bore 32 of the BOP 108, thereby allowing the tubular string 118 to move freely through the BOP 108.


When an event occurs requiring the severing of the tubular string 118, such as a pressure surge in the wellbore 116 (FIG. 1), an operator command, a controller command, etc., the actuator 152 actuates the cutting tools 248. To actuate the actuator 152, hydraulic fluid may be introduced into a piston chamber 90 via flow line 26. As the fluid pressure in the piston chamber 90 increases, a piston 56 may move toward the actuated position as shown on the left side of the BOP 108 in FIG. 2. The piston 56 has a piston head 57 for engaging the cutting tools 248 and advancing them to the actuated position. As shown, the actuators 152 are hydraulically operated and may be driven by a hydraulic system (not shown), although any suitable means for actuating the cutting tools 248 may be used such as pneumatic, electric, and the like.


Continued movement of the piston 56 moves each of the cutting tools 248 along the guideway 50. The cutting tool 248 follows the guideway 50 as a point (or tip or piercing point) 200 on each cutting tool 248 engages and then pierces the tubular string 118. Continued movement of the piston 56 severs the tubular string 118 completely as the cutting tools 248 converge toward a center axis z of the tubular string 118.



FIG. 3 shows a schematic top view of the tubular severing system 150 in the BOP 108. The tubular severing system 150 may include a plurality of cutting tools 248 positioned radially about the central axis of the bore 32. In this figure, the cutting tools 248 are depicted in the fully actuated position whereby the cutting tools 248 are converged to the central axis of the bore 32 of the BOP 108. As depicted in this figure, the cutting tools 248 may converge at a central or off-center location within the bore 32 for engagement with the tubular 118.



FIGS. 4A and 4B show a portion of the tubular cutting system 150 in greater detail with the rubber elements removed. As shown in these figures, the tubular cutting system 150 includes the cutting tools 248 positioned adjacent to each other in a dome-shaped configuration. The cutting tools 248 may be positioned in a tight or loose configuration radially about the tubular. The cutting tools 248 may be arranged so that, upon activation, the cutting tools 248 converge about the tubular 118.


Each of the cutting tools 248 has a cutting head 400, a body 402 and a base 404. The cutting head has a tip at an end thereof. The tip has a piercing point 200 for piercing the tubular 118, and angled cutting surfaces 406 extending from the piercing point 200. The angled cutting surfaces 406 taper away from the piercing point 200 and toward the body 402.



FIG. 4A shows the portion of the tubular cutting system 150 without the BOP 108 and/or the tubular 118 (as shown in FIG. 1). This view shows the plurality of cutting tools 248 in greater detail in the actuated position. As shown, the cutting heads 400 have converged together where the central bore 32 (as shown in FIG. 2) would have been. The cutting tools 248 are positioned so that, upon activation, the points 200 of each of the cutting heads 400 converge.



FIG. 4B shows the plurality of cutting tools 248 in the actuated position with a tubular 118 therein as it is severed by the cutting tools 248. The piercing point 200 of each of the cutting heads 400 has pierced a hole into the tubular. The cutting heads 400 form a plurality of holes in a ring around the tubular 118. The cutting surfaces 406 of each of the cutting heads 400 advance through the pierced holes to expand the holes until the tubular 118 is severed.


The cutting tools 248 may have any form suitable for traveling in the guideway 50 and severing the tubular string 118. FIGS. 5A and 5B show one of the cutting tools 248 in greater detail. FIGS. 5A and 5B shows perspective side and bottom views of the cutting tool 248. The cutting tool 248, as shown, has the cutting head 400, the body 402 and the base 404. The cutting head 400 may have the point 200, one or more cutting surfaces 406 and a guide surface 525. The point 200 may be configured to be the first point of contact for the cutting tool 248 and the tubular string 118.


The point 200 may have any structure suitable for puncturing, cutting, shearing and/or rupturing the tubular string 118. For example, the point 200 may be a cone, a blade, a pick type surface and the like. As shown in FIGS. 5A and 5B, the point 200 is a wedge shaped blade. The point 200 may have a leading edge or terminate at a point. The tip 401 as shown in FIGS. 5A and 5B has multiple, flat cutting surfaces 406 extending from the point 200. The cutting surfaces 406 may cut, shear, sever and/or destroy the wall of the tubular string 118 as the cutting tool 248 continues to move into the tubular string 118. Further, the cutting surfaces 406 may act as a wedge to spread the wall of the tubular string 118 apart as the cutting tool 248 cuts. The cutting surfaces 406 taper away from the point 200 at a leading end of the cutting tool 248. The cutting surfaces 406 are depicted as flat, polygonal surfaces that extend at an angle away from the piercing point 200. The angles and shapes of the cutting surfaces 406 and/or piercing point 200 may be selected to facilitate entry into the tubular, expansion of the holes formed by the piercing points 200 and/or severing of the tubular 118.


The guide surface 525 of the cutting tool 248 may be configured to guide the cutting tool 248 along the guideway 50 as the actuator 152 motivates the cutting tool 248 toward the tubular string 118 (as shown in FIG. 2). The guide surface 525 of the cutting tool 248 may conform to the shape of the guide 50 for slidable movement therealong. The guide surface 525 may terminate at one end at the cutting surfaces 406, and at an opposite end at the body 402.


The base 404 may be configured to couple the cutting tool 248 to the cutting tool carrier 202 and/or actuator 152 (as shown in FIG. 2). As the cutting tool carrier 202 is engaged by the actuator 152, the cutting tool carrier 202 moves the base 404 and thereby the cutting tool 248. The base 404 may also have an actuation surface 527 for actuatable engagement with the actuator 152. The base 404 may be any suitable shape for securing to and/or engaging the cutting tool carrier 202 and/or actuator 152.


The body 402 may be configured to be a support between the base 404 and the cutting head 400. The body 402 may be any suitable shape for supporting the cutting head 400. Further, the body 402 may be absent and the cutting head 400 may extend to the base 404 and/or form the base 404. The body 402 may have a narrower width than the base 404 and the cutting head 400 for placement and flow of the elastomeric elements 52 and 54 between adjacent cutting tools 248.


The cutting tools 248, and/or portions thereof, may be constructed of any suitable material for cutting the tubular string 118, such as steel. Further, the cutting tools 248 may have portions, such as the points 200, the cutting head 400, and/or the cutting surfaces 406, provided with a hardened material 550 (as shown in FIG. 5A) and/or coated in order to prevent wear of the cutting tools 248. This hardening and/or coating may be achieved by any suitable method such as, hard facing, heat treating, hardening, changing the material, and/or inserting hardened material such as polydiamond carbonate, INCONEL™ and the like.



FIGS. 6A-6C show perspective views of a cutting tool 248′ usable as the cutting tool 248, and having a replaceable tip 600. The cutting tool 248′ of these figures may be the same as the cutting tool 248′ previously described, except that a portion of the cutting head 400 comprises the replaceable tip 600. The replaceable tips 600 may be shaped like any of the tips 401 described herein. The replaceable tips 600 may be constructed with the same material as the cutting tool 248 and/or any of the hardening and/or coating materials and/or methods described herein.


The replaceable tips 600 and cutting head 400 may be connectable by any means. The replaceable tips 600 and/or the cutting head 400, the body 402, or the base 404 may have one or more connector holes 602, as shown in FIG. 6C for receivably coupling with the replaceable tips 600 to the cutting tool 248′. The connector holes 602 may be configured to receive a connector 704 on the replaceable tip 600 as shown in FIG. 7. The replaceable tips 600 may allow the operator to easily replace the tips during maintenance. Further, the replaceable tips 600 may be configured to easily break off in order to allow the cutting tool carrier 202 (as shown in FIG. 2) to seal the bores 32. Such ‘frangible’ tips 600 may be made of material that is sufficient to puncture and/or cut the tubular, but breaks away from the tubular severing system 150.



FIG. 8 depicts a method 800 of severing a tubular. The method involves positioning (880) a BOP about the tubular, positioning (882) a plurality of cutting tools in the housing, and selectively (884) moving the plurality of cutting tools to an actuated position with the actuator such that the cutting head passes through the tubular by piercing the tubular with the tip of the cutting head and cutting through the tubular with the cutting surface of the cutting head.


The method may also involve guiding the plurality of cutting tools along a guide of the housing, sealing a bore of the housing with a seal, breaking off a portion of the cutting head, and/or replacing a portion of the cutting head. The steps may be performed in any order, and repeated as desired.


In operation, the severing action of tubular severing system 150 may pierce, shear, and/or cut the tubular string 118 (see, e.g., FIG. 2). After the tubular string 118 is severed, a lower portion of the tubular string 118 may drop into the wellbore 116 (not shown) below the blowout preventer 108. Optionally (as is true for any method according to the present invention) the tubular string 118 may be hung off the BOP after being severed. The BOP 108, the cutting tool carrier 202, seal 250, elastomeric members 52, 54, and/or another piece of equipment may then seal the bore hole 32 in order to prevent an oil leak, and/or explosion. The sealing using a spherical BOP is described, for example, in U.S. Pat. Nos. 5,588,491 and 5,662,171, previously incorporated by reference herein.


It will be appreciated by those skilled in the art that the techniques disclosed herein can be implemented for automated/autonomous applications via software configured with algorithms to perform the desired functions. These aspects can be implemented by programming one or more suitable general-purpose computers having appropriate hardware. The programming may be accomplished through the use of one or more program storage devices readable by the processor(s) and encoding one or more programs of instructions executable by the computer for performing the operations described herein. The program storage device may take the form of, e.g., one or more floppy disks; a CD ROM or other optical disk; a read-only memory chip (ROM); and other forms of the kind well known in the art or subsequently developed. The program of instructions may be “object code,” i.e., in binary form that is executable more-or-less directly by the computer; in “source code” that requires compilation or interpretation before execution; or in some intermediate form such as partially compiled code. The precise forms of the program storage device and of the encoding of instructions are immaterial here. Aspects of the invention may also be configured to perform the described functions (via appropriate hardware/software) solely on site and/or remotely controlled via an extended communication (e.g., wireless, internet, satellite, etc.) network.


While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible. For example, any number of the cutting tools at various positions may be moved into engagement with the tubular at various times.


Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.

Claims
  • 1. A cutting tool for severing a tubular of a wellbore, the cutting tool positionable in a housing and actuatable by an actuator of a blowout preventer, the blowout preventer having a bore therethrough for receiving the tubular, the cutting tool comprising: a base supportable by the actuator and selectively movable thereby; anda cutting head supported by the base, the cutting head having a curved outer guide surface and comprising a tip having a piercing point at an end thereof and at least one cutting surface, the piercing point for piercing the tubular, the at least one cutting surface tapering away from the piercing point for cutting through the tubular whereby the cutting head passes through the tubular.
  • 2. The cutting tool of claim 1, wherein the tip is removeable.
  • 3. The cutting tool of claim 2, wherein the tip has a connector receivable by a hole in the cutting head.
  • 4. The cutting tool of claim 2, wherein the tip is frangible.
  • 5. The cutting tool of claim 1, wherein the tip terminates at a leading edge.
  • 6. The cutting tool of claim 1, wherein the tip terminates at a point.
  • 7. The cutting tool of claim 1, wherein the at least one cutting surface comprises a plurality of flat surfaces, each of the plurality of flat surfaces extending at an angle from the tip.
  • 8. The cutting tool of claim 1, further comprising a hardening material.
  • 9. The cutting tool of claim 1, wherein the cutting head has a guide surface for slidably engaging a guide of the housing.
  • 10. The cutting, tool of claim 1, further comprising a body between the base and the cutting head.
  • 11. A blowout preventer for severing a tubular of a wellbore the blowout preventer comprising: a housing having a bore therethrough for receiving the tubular;an actuator positionable in the housing; and a plurality of cutting tools positionable in the housing and selectively movable into an actuated position with the actuator, each of the plurality of cutting tools comprising: a base supportable by the actuator and selectively movable thereby; anda cutting head supported by the base, the cutting head having a curved outer guide surface and comprising a tip having a piercing point at an end thereof and at least one cutting surface, the piercing point for piercing the tubular, the at least one cutting surface tapering away from the piercing point for cutting through the tubular whereby the cutting head passes through the tubular.
  • 12. The blowout preventer of claim 11, wherein the housing has an insert therein defining a guide, the cutting head having a guide surface for slidably engaging the guide.
  • 13. The blowout preventer of claim 11, wherein the actuator comprises a piston having a piston head for engaging an actuation surface of the base.
  • 14. The blowout preventer of claim 11, further comprising at least one elastomeric element positionable between the plurality of cutting tools.
  • 15. The blowout preventer of claim 11, further comprising a cutting tool carrier for supporting the plurality of cutting tools.
  • 16. The blowout preventer of claim 11, further comprising a seal for sealing the bore.
  • 17. The blowout preventer of claim 11, wherein the plurality of cutting tools are arranged in a dome-shaped configuration with the tips of each of the plurality of cutting tools converging about the tubular.
  • 18. The blowout preventer of claim 11, wherein the plurality of cutting tools are arranged in an inverted dome-shaped configuration with the tips of each of the plurality of cutting tools converging about the tubular.
  • 19. A method of severing a tubular of a: wellbore, the method comprising: positioning a BOP about the tubular, the BOP comprising a housing and an actuator;positioning a plurality of cutting tools in the housing, each cutting tool comprising: a base supportable by the actuator and selectively movable thereby;a cutting head supported by the base, the cutting head having a curved outer guide surface and comprising a tip having a piercing point at an end thereof and at least one cutting surface that tapers away from the piercing point; selectively moving the plurality of cutting tools to an actuated position with the actuator such that the cutting head passes through the tubular by piercing the tubular with the piercing point and cutting through the tubular with the at least one cutting surface; and advancing the plurality of cutting tools through the tubular.
  • 20. The method of claim 19, further comprising guiding the plurality of cutting tools along a guide of the housing.
  • 21. The method of claim 19, further comprising sealing a bore of the housing with a seal.
  • 22. The method of claim 19, further comprising breaking off a portion ‘of the cutting head.
  • 23. The method of claim 19, further comprising replacing a portion of the cutting head.
  • 24. The method’ of claim 19, further comprising selectively retracting the plurality of cutting tools.
  • 25. The method claim 19, further comprising securing the plurality of cutting tools with the housing.
  • 26. The cutting tool of claim 1, wherein the tubular is a tool joint.
  • 27. The blowout preventer of claim 11, wherein the tubular is a tool joint.
  • 28. The method of claim 19, wherein the tubular is a tool joint.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Non-Provisional Application No. 12/883,469 filed on Sep. 16, 2010, which is a continuation of U.S. Non-Provisional Application No. 12/151,279 filed on May 5, 2008, which is now U.S. Pat. No. 7,814,979, which is a divisional of U.S. Non-Provisional Application No. 11/411,203 filed on Apr. 25, 2006, which is now U.S. Pat. No. 7,367,396, the entire contents of which are hereby incorporated by reference. This application also claims the benefit of U.S. Provisional Application No. 61/349,660 on May 28, 2010, U.S. Provisional Application No. 61/349,604 filed on May 28, 2010, U.S. Provisional Application No. 61/359,746 filed on Jun. 29, 2010, and U.S. Provisional Application No. 61/373,734 filed on Aug. 13, 2010, the entire contents of which are hereby incorporated by reference.

US Referenced Citations (196)
Number Name Date Kind
1161705 Lloyd et al. Nov 1915 A
1981059 Matthews et al. Nov 1934 A
2178698 Penick et al. Nov 1939 A
2231613 Burke Feb 1941 A
2304793 Bodine, Jr. Dec 1942 A
2504377 Beil Apr 1950 A
2555069 Verney May 1951 A
2592197 Schweitzer Apr 1952 A
2596851 Hansen May 1952 A
2717440 Anacker Sep 1955 A
2752119 Allen et al. Jun 1956 A
2825130 Fry Mar 1958 A
2851773 Jennison Sep 1958 A
2919111 Nicholson Dec 1959 A
3040611 Tournaire Jun 1962 A
3145462 Bognar Aug 1964 A
3190330 Hawkins Jun 1965 A
3272222 Allen et al. Sep 1966 A
3323773 Walker Jun 1967 A
3399728 Allan Sep 1968 A
3449993 Temple Jun 1969 A
3554278 Reistle, III et al. Jan 1971 A
3554480 Rowe Jan 1971 A
3561526 Williams, Jr. et al. Feb 1971 A
3561723 Cugini Feb 1971 A
3566724 Templeton et al. Mar 1971 A
3647174 LeRouax Mar 1972 A
3667721 Vujasinovic Jun 1972 A
3670761 Lerouax Jun 1972 A
3716068 Addison Feb 1973 A
3741296 Murman et al. Jun 1973 A
3744749 Le Rouax Jul 1973 A
3756108 Fuchs, Jr. Sep 1973 A
3766979 Petrick Oct 1973 A
3863667 Ward Feb 1975 A
3918478 Le Rouax Nov 1975 A
3922780 Green Dec 1975 A
3946806 Meynier, III Mar 1976 A
3955622 Jones May 1976 A
4007797 Jeter Feb 1977 A
4015496 Hill Apr 1977 A
4043389 Cobb Aug 1977 A
4057887 Jones et al. Nov 1977 A
4068711 Aulenbacher Jan 1978 A
4119115 Carruthers Oct 1978 A
4132265 Williams, Jr. Jan 1979 A
4132267 Jones Jan 1979 A
4140041 Frelau Feb 1979 A
4215749 Dare et al. Aug 1980 A
4220206 Van Winkle Sep 1980 A
4253638 Troxell, Jr. Mar 1981 A
4313496 Childs et al. Feb 1982 A
4341264 Cox et al. Jul 1982 A
4347898 Jones Sep 1982 A
4372527 Rosenhauch et al. Feb 1983 A
4392633 Van Winkle Jul 1983 A
4416441 Van Winkle Nov 1983 A
4437643 Brakhage, Jr. et al. Mar 1984 A
4492359 Baugh Jan 1985 A
4504037 Beam et al. Mar 1985 A
4508313 Jones Apr 1985 A
4516598 Stupak May 1985 A
4518144 Vicic et al. May 1985 A
4519577 Jones May 1985 A
4523639 Howard, Jr. Jun 1985 A
4526339 Miller Jul 1985 A
4537250 Troxell, Jr. Aug 1985 A
4540046 Granger et al. Sep 1985 A
4549349 Harrison Oct 1985 A
4550895 Shaffer Nov 1985 A
4558842 Peil et al. Dec 1985 A
4612983 Karr, Jr. Sep 1986 A
4646825 Van Winkle Mar 1987 A
4647002 Crutchfield Mar 1987 A
4690033 Van Winkle Sep 1987 A
4690411 Van Winkle Sep 1987 A
4699350 Herve Oct 1987 A
4858882 Beard et al. Aug 1989 A
4923005 Laky et al. May 1990 A
4923008 Wachowicz et al. May 1990 A
4943031 Van Winkle Jul 1990 A
4949785 Beard et al. Aug 1990 A
4969390 Williams, III Nov 1990 A
4987956 Hansen et al. Jan 1991 A
5002130 Laky Mar 1991 A
5013005 Nance May 1991 A
5025708 Smith et al. Jun 1991 A
5056418 Granger et al. Oct 1991 A
5116017 Granger et al. May 1992 A
5178215 Yenulis et al. Jan 1993 A
5199493 Sodder, Jr. Apr 1993 A
5217073 Bruns Jun 1993 A
5237899 Schartinger Aug 1993 A
5360061 Womble Nov 1994 A
5361832 Van Winkle Nov 1994 A
5400857 Whitby et al. Mar 1995 A
5505426 Whitby et al. Apr 1996 A
5515916 Haley May 1996 A
5566753 Van Winkle et al. Oct 1996 A
5575451 Colvin et al. Nov 1996 A
5575452 Whitby et al. Nov 1996 A
5588491 Brugman et al. Dec 1996 A
5590867 Van Winkle Jan 1997 A
5655745 Morrill Aug 1997 A
5662171 Brugman et al. Sep 1997 A
5713581 Carlson et al. Feb 1998 A
5735502 Levett et al. Apr 1998 A
5778918 McLelland Jul 1998 A
5863022 Van Winkle Jan 1999 A
5897094 Brugman et al. Apr 1999 A
5918851 Whitby Jul 1999 A
5961094 Van Winkle Oct 1999 A
5975484 Brugman et al. Nov 1999 A
6006647 Van Winkle Dec 1999 A
6012528 Van Winkle Jan 2000 A
6016880 Hall et al. Jan 2000 A
6113061 Van Winkle Sep 2000 A
6158505 Araujo Dec 2000 A
6164619 Van Winkle et al. Dec 2000 A
6173770 Morrill Jan 2001 B1
6192680 Brugman et al. Feb 2001 B1
6244336 Kachich Jun 2001 B1
6244560 Johnson Jun 2001 B1
6276450 Seneviraine Aug 2001 B1
6374925 Elkins et al. Apr 2002 B1
6484808 Jones et al. Nov 2002 B2
6510897 Hemphill Jan 2003 B2
6530432 Gipson Mar 2003 B2
6601650 Sundararajan Aug 2003 B2
6718860 Mitsukawa et al. Apr 2004 B2
6719042 Johnson et al. Apr 2004 B2
6742597 Van Winkle et al. Jun 2004 B2
6834721 Suro Dec 2004 B2
6843463 McWhorter et al. Jan 2005 B1
6857634 Araujo Feb 2005 B2
6964303 Mazorow et al. Nov 2005 B2
6969042 Gaydos Nov 2005 B2
6974135 Melancon et al. Dec 2005 B2
7011159 Holland Mar 2006 B2
7011160 Boyd Mar 2006 B2
7044430 Brugman et al. May 2006 B2
7051989 Springett et al. May 2006 B2
7051990 Springett et al. May 2006 B2
7055594 Springett et al. Jun 2006 B1
7086467 Schlegelmilch et al. Aug 2006 B2
7108081 Boyadjieff Sep 2006 B2
7165619 Fox et al. Jan 2007 B2
7181808 Van Winkle Feb 2007 B1
7195224 Le Mar 2007 B2
7207382 Schaeper Apr 2007 B2
7225873 Schlegelmilch et al. Jun 2007 B2
7234530 Gass Jun 2007 B2
7243713 Isaacks et al. Jul 2007 B2
7270190 McWhorter et al. Sep 2007 B2
7287544 Seneviratne et al. Oct 2007 B2
7331562 Springett Feb 2008 B2
7350587 Springett et al. Apr 2008 B2
7354026 Urrutia Apr 2008 B2
7360603 Springett et al. Apr 2008 B2
7367396 Springett et al. May 2008 B2
7389817 Almdahl et al. Jun 2008 B2
7409988 Borden et al. Aug 2008 B2
7410003 Ravensbergen Aug 2008 B2
7434369 Uneyama et al. Oct 2008 B2
7464765 Isaacks et al. Dec 2008 B2
7487848 Wells et al. Feb 2009 B2
7520129 Springett Apr 2009 B2
7523644 Van Winkle Apr 2009 B2
7673674 Lam Mar 2010 B2
7703739 Judge et al. Apr 2010 B2
7726418 Ayling Jun 2010 B2
7748473 Wells et al. Jul 2010 B2
7798466 Springett et al. Sep 2010 B2
7814979 Springett et al. Oct 2010 B2
8066070 Springett et al. Nov 2011 B2
20030127231 Schlegelmilch et al. Jul 2003 A1
20040124380 Van Winkle Jul 2004 A1
20050183856 Williams Aug 2005 A1
20060076526 McWhorter et al. Apr 2006 A1
20060113501 Isaacks et al. Jun 2006 A1
20060137827 Uneyama et al. Jun 2006 A1
20070102655 Springett May 2007 A1
20070137866 Ravensbergen et al. Jun 2007 A1
20070240874 Williams Oct 2007 A1
20070246215 Springett et al. Oct 2007 A1
20080040070 McClanahan Feb 2008 A1
20080185046 Springett et al. Aug 2008 A1
20080189954 Lin Aug 2008 A1
20080265188 Springett et al. Oct 2008 A1
20080267786 Springett et al. Oct 2008 A1
20080286534 Springett et al. Nov 2008 A1
20090056132 Foote Mar 2009 A1
20090205838 Springett Aug 2009 A1
20100038088 Springett et al. Feb 2010 A1
20120193087 Hall et al. Aug 2012 A1
20120193556 Yadav et al. Aug 2012 A1
Foreign Referenced Citations (14)
Number Date Country
2649771 Nov 2007 CA
35 16424 Nov 1986 DE
0 145 456 Jun 1985 EP
0593280 Apr 1994 EP
2013443 Jun 2011 EP
2 100 773 Jan 1983 GB
S53-015683 Feb 1978 JP
2401935 May 2010 RU
959935 Sep 1982 SU
9949179 Sep 1999 WO
03060288 Jul 2003 WO
2005106187 Nov 2005 WO
2006014895 Feb 2006 WO
2007122365 Nov 2007 WO
Non-Patent Literature Citations (32)
Entry
Casselman et al., “Device's Design Flaw Let Oil Spill Freely,” Business, Mar. 24, 2011, pp. 1-4.
CIPO, Canadian Patent Application No. 2,649,771, Examination Report and Response, May 28, 2010, pp. 1-17.
EPO, European Patent Application No. 11168306.6, Extended European Search Report, Aug. 4, 2011, pp. 1-6.
EPO, European Patent Application No. 06820703.4, First Examination Report and Response, Sep. 11, 2009, 47 pgs.
EPO, European Patent Application No. 06820703.4, Notice of Allowance and Post Allowance Amendment, Aug. 3, 2010, 39 pgs.
EPO, European Patent Application No. 06820703.4, Post Allowance Amendment including French and German language translations and amended claims, Dec. 13, 2010, 49 pgs.
EPO, PCT Patent Application No. PCT/GB2006/050478, Demand, Written Opinion Response and Amended Claims, Feb. 25, 2008, 32 pgs.
EPO, PCT Patent Application No. PCT/GB2006/050478, International Preliminary Report on Patentability, Aug. 12, 2008, 8 pgs.
EPO, PCT Patent Application No. PCT/GB2006/050478, International Search Report and Written Opinion, Apr. 4, 2007, 11 pgs.
Lukosavich, “OTC 2011 Shifts Gears to Navigate Post-Macondo Landscape,” Word Oil, vol. 232, No. 4, pp. 1-8.
National Oilwell Varco, “National Oilwell Varco Makes Spotlight Award List,” Offshore Magazine, Apr. 2011, pp. 1.
National Oilwell Varco, OTC 2011: ShearMax Low Force Casing Shear Rams, p. 1.
RU, Russian Patent Application No. 2008146406, Russian Amended Claim Set and Decision on Grant, May 12, 2010, 17 pgs.
Shear Ram Capabilities Study: West Engineering Services, Sep. 2004, pp. Cover to 4-7 (23 pgs.).
Springett et al., “Low Force Shear Rams: The Future is More,” SPE/IADC 140365, Mar. 1-3, 2011, pp. 1-9.
Varco's NXT Next Generation BOP Systems reduce the cost of Drilling: Varco, 2001, 6 pgs.
Langely, , “Drilling Contractor”, Categorized, Jan. 28, 2011, p. 5.
Land and Marine Drilling; Cameron Iron Works Oil Tool Division; pp. Cover, 1604, 1617, 1621: 1982-1983.
EPO Extended Search Report for counterpart Application No. 11180788.9, Dec. 6, 2011, 8 pages.
EPO Extended Search Report for counterpart Application No. 11180811.9, May 30, 2012, 6 pages.
PCT Notification of Transmittal of International Search Report and the Written Opinion for counterpart application PCT/GB2011/051006, Nov. 28, 2011, 12 pages.
PCT Notification of Transmittal of International Search Report and the Written Opinion for counterpart application PCT/GB2011/051005, Nov. 28, 2011, 11 pages.
PCT Notification of Transmittal of International Search Report and the Written Opinion for counterpart application PCT/GB2011/051004, Nov. 30, 2011, 12 pages.
PRC Office Action for Chinese Application No. 200680054363.7, Aug. 25, 2011, 5 pages.
PRC Office Action for Chinese Application No. 200680054363.7, Apr. 1, 2012, 4 pages.
Response to Office Action of Apr. 1, 2012 in counterpart Chinese Application No. 200680054363.7, 12 pages.
Response to Office Action of Aug. 25, 2011 in counterpart Chinese Application No. 200680054363.7, 7 pages.
CIPO, Canadian Patent Application 2649771, Notice of Allowance, Jan. 26, 2011, 1 page.
CIPO, Canadian Patent Application 2754716, Notice of Allowance, Dec. 22, 2011, 6 pages.
CIPO, Canadian Patent Application 2747138, Examination Report, Oct. 25, 2011, 2 pages.
Canadian Patent Application 2747138, Response to Examination Report, Apr. 19, 2012, 9 pages.
CIPO, Canadian Patent Application 2747138, Notice of Allowance, May 23, 2012, 1 page.
Related Publications (1)
Number Date Country
20110226475 A1 Sep 2011 US
Provisional Applications (4)
Number Date Country
61349660 May 2010 US
61349604 May 2010 US
61359746 Jun 2010 US
61373734 Aug 2010 US
Divisions (1)
Number Date Country
Parent 11411203 Apr 2006 US
Child 12151279 US
Continuations (1)
Number Date Country
Parent 12151279 May 2008 US
Child 12883469 US
Continuation in Parts (1)
Number Date Country
Parent 12883469 Sep 2010 US
Child 13118200 US